A Commodities Based Approach to Grid Computing with Oracle RAC

Christopher Dale, Booz Allen Hamilton

Doug Johnson, Booz Allen Hamilton
Overview of a Commodities Based Approach to Grid Computing

What is Commodity Computing

Commodity computing is computing done on commodity computers as opposed to supermicrocomputers or boutique computers. Commodity computers are computer systems manufactured by multiple vendors, incorporating components based on open standards. Such systems are said to be based on commodity components since the standardization process promotes lower costs and less differentiation among vendor's products. - Wikipedia

Great, we have a definition, but does it help us? How do we implement a grid computing environment in a commodities based approach and more importantly, why should we do it? Well, before we tackle the former question, we are going to have dig deep and have an answer for the latter question. Do you want to save money? Do you want to reduce your support costs? Do you want to avoid vendor lock in? Do you want to increase your output as a function of cost? Do you want to have greater control of your resources as it pertains to power, cooling and floor space? Do you want to take advantage of new technology sooner, rather than later? Do you want to be able to pick the right technology, new, relatively new or older for your given situation without totally rethinking your architecture? All of these are valid questions, but making a choice to embrace grid computing with commodities components based solely on any of the individual questions will have you doubting your sanity, several months down the line.

Grid computing is more of a philosophical commitment to a future where you can deal with your computing infrastructure in a more agile manner. Instead of keeping track of the amount of available storage on a system by system basis, you decide to monitor storage availability and consumption rates based on the grid as a whole. Instead of paying the monthly power bill while grinding your teeth, you decide to take proactive measures to ensure that the least amount of power is being consumed (and by direct correlation, your cooling costs). Instead of embarking on technology refresh cycles that balloon your IT budget every three years, you commit to the process of continually tuning your grid by adding (and taking away) components that are no longer providing the optimal cost / performance benefit. Instead of having a data center where you have received a 'special deal' by only working with a single vendor, pulse the market yearly, quarterly or monthly (depending on your situation) and make procurements of a 'best value' nature.

Best Value? Optimal Cost / Performance benefit? What are you talking about and who is going to do it?

Let's define 'Best Value' first, as it is foundational to understanding the Optimal Cost / Performance benefit. The use of the term best value indicates an understanding that the latest and greatest technology may not actually be the correct purchase. I am only going to use a component until I can show that it is cheaper to use a different component. This evaluation has to include the cost of the component, the amount of money saved in terms of power and cooling for a specific period of time, the cost of integrating it into the grid and perhaps the cost of removing (and disposing of) any displaced equipment from the grid. There may also need to be consideration for the tax implications for the depreciation of the equipment.

Having made the leap to embrace the process of continually tuning the grid, I am now free to do a couple of tricks that my data center hasn't seen before. The first is to only build what I need with a very minimal amount of extra capacity. (That extra capacity should provide me a buffer to accommodate failed components and some reasonable amount of growth in terms of weeks or months.) Utilizing thin provisioning for the storage and over allocating my processing capacity through scheduling and virtualization are a couple of key elements to accomplishing this trick.

The second new trick is to choose equipment, regardless of vendor, that meets my current and near term need, and not necessarily buying the newest technology (unless there is a justification for doing so). In the traditional mind set, purchases are made with the understanding that I will not have budget for more equipment for another 3, 4 or 5 years. I must buy the most powerful server, the largest SAN, the fastest networking gear I can find to hopefully accomplish what my mission will be 3, 4 or 5 years from now.

Evaluating the 'Unique Feature'

In a world where commodity grid computing has leaped to the fore, it has become painfully obvious that hardware manufacturers are scrambling to create the non-commodity commodity component. By that I mean that they do meet the requirement for a standardized component, but then they throw in something that is the answer to one of your more pressing problems. “We have a device embedded into our servers that you just can't live without.” Carefully evaluate the feature that is being offered in relationship to the prospects of only being able to buy that component from that vendor. If you really need that feature, it may be acceptable to de-commoditize that portion of your grid.

Let's say you agree. How is it done?

[image: image1.emf]
Figure 1. Grid Components for an Operational Oracle RAC Component.

Is the above diagram not what you were expecting? There are several fairly expensive components in this configuration, but it is, nonetheless, the foundation for getting to a true commodities grid environment.

Cost and Benefits of the Grid

Power and Cooling

Does this say it all? The amount that you will spend on powering your equipment and then dissipating the heat generated by that equipment will dwarf the overall cost of the equipment in its lifetime. Exercising control over this picture is the single most effective manner to control your long term costs.

Servers, SANS, Switches

When should I consider adding a server, replacing a server, adding more SAN, replacing a SAN, adding a switch or replacing a switch? There are two methods to answer this question. The first method is to determine your need. If you have found yourself in the unenviable position of needing more of one of your resources, it's time to buy, period. It takes a little more effort and some planning on your part to be able to answer this question using the second method. Are you leasing space? Is your organization paying its own power bill? Does your organization have an enterprise purchase agreement with a particular vendor? Do you have staff with the right skill sets to implement an upgrade? In the end, you must determine what it is costing you in your specific situation to have a piece of equipment in use. Once you do that, you need to determine what the total cost of implementing the new technology will be within your specific environment. This is going to take more work than just going out and pulling down metrics from the vendors. You need to be able to quantify the Mission Effectiveness of a procurement. This is a metric that you will have to create that reflects the amount of mission work that a particular component is accomplishing. This is different than saying that the new equipment is twice as fast or uses half the power. In practice, the metrics that are used by hardware vendors for marketing, seldom apply to your real world implementation.

To come up with a Mission Effectiveness metric within your shop is going to take some work. Work expended in determining the Mission Effectiveness of a particular component, needs to be fed back into other metrics that are used to determine the true cost of this approach.

What is the best way to do this? Unless you have a workload that closely parallels an industry bench mark, trial and error may be your best answer. If you are in a position to get evaluation equipment and have the staff to manage it, it will be worth your while to see how the latest server performs with your workload. Capture a set of metrics when you are doing this and keep them (and the cost of the component) in your ROI calculator. Then wait until the price is right.

Did I lose you? What I am saying is that a component may need to be on the market for six months or a year, before the price is right. Remember, you are only going to make a purchase when the numbers tell you the time is right.

Support Costs

Support costs are among the most difficult expenses to which a true value can be determined. If I pay 10% of the equipment costs for a three year support contract and nothing ever breaks, what was the support worth? On the other hand if I have invested a considerable amount of capital in a piece of equipment and I do not support it, what will the cost of repairing the component be if I have to go the pay-per-incident route? Determining the right course of action for support is not an easy one. However, there are some guidelines that can help.

Enterprise Purchase Agreement

If your organization has an enterprise purchase agreement and it requires all equipment to be supported, this is not something that you have to worry about. They are taking your money.

It is important to note at this point that there is a difference between using commodity components in your data center and having a commodity data center. It is true that you cannot have the latter without using the former, but it cannot be asserted that the use of the former indicates the latter. If everyone buys there commodity products from one supplier, the same supplier, each time they make a purchase, they are not really taking advantage of the commoditization of that product. To take advantage of commoditization, the consumer needs to purchase what they need, when they need it and at the lowest overall price.

Servers, cheap switches and low end storage

It will often be cost effective for organizations that are shopping for best value components to go the unsupported route, the 90-day limited warranty route or the pay per incident route. (Be prepared for the hard sell from your hardware vendor. The most useful response, “If your equipment is unreliable, we won't be buying it again.”) The money that you will save by not paying for the support contract will need to be held in escrow to replace any faulty equipment. In the end, you will most likely save a considerable amount.

If you do take the unsupported path, make certain that you have a tested and validated procedure for replacing your various grid components. Your grid should be constructed in such a way that there is excess capacity to absorb various types of failures without disrupting the work load. This will allow you to correct most component failures in normal working hours.

High End Switches and High End Storage

It is almost certain that paying for support contracts on these components will pay off. Not monetarily, but if you are the guy who is ultimately responsible, you will be able to sleep at night knowing that you have covered your bases. On the other hand, it would be worth your while to determine if the high end components in your data center are really the right components. If you do not have anyone in your organization who can tell you why an expensive piece of equipment is necessary, you can probably replace it with a commodity component for which you may not need a support contract.

Operating Systems

There is almost no way around this unless your are going to take the experimental route (Fedora, WhiteBox, CentOS, FreeBSD, etc). If your business can handle the risk, this may be an option for you.

The 'Green' Data Center

What it means to be green

Green computing is the study and practice of using computing resources efficiently. Typically, technological systems or computing products that incorporate green computing principles take into account the so-called triple bottom line of economic viability, social responsibility, and environmental impact. This differs somewhat from traditional or standard business practices that focus mainly on the economic viability of a computing solution. These focuses are similar to those of green chemistry; reduction of the use of hazardous materials such as lead at the manufacturing and recycling stages, maximized energy efficiency during the product's lifetime, and recyclability or biodegradability of both a defunct product and of any factory waste. - Wikipedia

Why does it matter?

The answer to this question will not be lengthly, nor is it necessary to make any statement of belief, nor is it necessary to establish the need for a green data center. The one and only reason that this matters is because it is in demand.

What does it take?

To truly arrive at a commodity grid that meets the green standard in a general sense, the following key elements must be present:

· Linear (or near linear) Scalability

· High Availability/Failover.

· Manageability.

· Agility

· Divide and conquer. Work is broken down into manageable chunks that draw on grid resources

· Dynamic provisioning.

· Low cost/ high scalability

· Right Sizing.

· Lower cost of ownership. Lower Cost general purpose servers supplied from multiple vendors.

Additionally, the grid must be able to demonstrate the following four capabilities without causing any service disruption:

· Any compliant server from any vendor can provide processing and memory to the active grid

· Any compliant switch(es) from any vendor can provide bandwidth to the active grid

· Any Fibre Channel switch can provide I/O throughput to the active grid

· Any compliant SAN from any vendor can provide storage capacity to the active grid

What does it really take

Where does your power come from?

To meet the Green in the capital G sense of the word, there is a lot more involved. A good place to start is to employ the use of a 'green' gage. It is not only important to consider the amount of power that your data center is using, but where that power was generated. Did it come from a coal fire plant, an oil fired plant or a natural gas fired plant? You have just lost your Greenness. If on the other hand you have placed your data center near a hydroelectric plant and use its power, a windmill farm and use its power, a solar farm and use its power or are able to generate your power in some other earth friendly manner, you are likely to gain the acceptance of the most committed earth steward. (Nuclear power is generally considered a 'g'reen source of power and sometimes may be considered a 'G'reen source of power, but the final verdict has not been given.)

How efficient are you?

It is not enough to say that you have an energy efficient device if that device is powered on 24x7 and is not being utilized. To meet the 'G'reen standard, you will have to have a grid that can scale in real time to meet the needs of the mission. Unused cycles will count against you. This can impact your selection of operating systems as it can be shown that not all are created equally green.

How efficient is your floor design?

Remember that the pursuit of 'G'reen involves more than what happens inside your data center. It is also concerned with what happened to create your data center. If you have met all of the 'G'reen requirements, but had to build your data center in the last pristine track of old growth forest in a 200 mile radius. The time, effort and expense that you put into meeting the other benchmarks will be forgotten.

What happens when we're done?

Additionally, to really embrace your inner Green, you will have to have a plan for the responsibly handling your end-of-life equipment. This means recycling the components that can be and disposing of the rest in an environmentally conscious manner. This may not be cheap, so if your are after a 'G'reen rating, you may want to consider the costs of disposal up front.

The 'G'reen conclusion

Where do you hit the sweet spot on Mission Green? What is that perfect balance on the triple bottom line? It is uncertain. Making an effort will be appreciated by some. Giving till it hurts will be appreciated by most. Trying to please everyone will likely put you out of business and that will please no one.

Infrastructure Configuration

When deploying Oracle grids, it has been our experience that there is no single document that will answer all of your questions. We have found that rolling your own document has huge benefits in terms of maintenance and reproducibility of result. This is particularly so when working through issues that are unique to your environment. If you are just getting started, however, the following list of references may be useful:

· Oracle Documentation Library

· Oracle 10g Linux Administration – Edward Whalen

· Werner Puschitz is also a great resource for Linux environments

· RHELTuningandOptimizationforOracleV11.pdf – A derivative work of the Puschitz guide. Ask your Red Hat guy.

· Pro Oracle 10g on Linux – Julian Dyke and Steve Shaw

· Dell Deployment Guides

Building the Grid

There are several factors that should be considered when deciding how to build your Oracle 10g environment. In our environment, however, there were two primary drivers. The first is that our client has an Enterprise Purchase Agreement with Dell. The second driver related to maintainability. We built our first Oracle 10g configuration when 10.1.0.1 was just out the door. As a result, we had difficulties with supporting our environment. To remedy our clients concerns, the Dell Deployment Guides were started.

Physical Configuration

As we have historically been a Dell shop, it will not be surprising to find out that the physical structure of our network is very similar to the image below that was take from the Dell website.

Over the last four years, however, their have been various modifications to this configuration. We now use Brocade 48000 Director Class Fibre Channel Switches (2 per system), the networking gear now consists of a rack full of Cisco equipment with a Cisco 6509 and its core, and the SAN is now a 3Par s400. So, you can see that we have lived the commodity life to a large extent.

So, this is where we start. We download both the latest Dell-Oracle cdrom images and our RHEL 4 update 5 images and we begin our OS install. Once the base operating system is installed, a number of scripts are run that are specified in the guide. There are a few things that we have learned along the way which may be useful to share at this point.

Network

If your are using one of the Dell Ethernet switches, you will most definitely want to turn off Spanning tree. If spanning tree is on, the time to build its network tree will almost always exceed the time-out on your Cluster Ready Services timer. This will cause CRS to reboot the node and start the whole process over again.

Bond your networks on both the public and the interconnect. This may be overkill, but it doesn't cost us anything. We have the available port on our servers and we have enough ports on our Cisco switches. When we moved to this dual bond configuration we eliminated our occasional and unexplainable node reboots. In theory, the interconnect should be constructed with one on-board port and one off-board port. In reality, this complicates things beyond what they need to be. Yes, there is a single point of failure introduced with both sides of the bond being either on-board or on a single dual port card, but the multiple server aspect of RAC, if using Transparent Application Fail-over (TAF) will accommodate an issue where the node dies because of loss of heartbeat. All we are really looking to accomplish with this configuration is to limit, not eliminate, node reboots.

Are you having difficulty setting up a configuration that supports two bonds? So did we until we found the max_bonds option for the modprobe.conf file. max_bonds is somewhat of a misnomer. Although it may be true that it limits the maximum number of bonds for a particular server, it is also true that you cannot create more than one bond without this being set to 2. Your modprobe.conf file should have a line that looks similar to the following:

#/etc/modprobe.conf

In EOL4 / RHEL4

alias
eth0
bcm5700

alias
eth1
bcm5700

alias
eth2
e1000

alias
eth3
e1000

install bond0 /sbin/modprobe -a eth0 eth1 && /sbin/modprobe bonding

alias
bond0
bonding

install bond1 /sbin/modprobe -a eth2 eth3 && /sbin/modprobe bonding

alias
bond1
bonding

options bonding mode=active-backup miimon=100 max_bonds=2

#/etc/modprobe.conf

In EOL5 / RHEL5

alias
eth0
bcm5700

alias
eth1
bcm5700

alias
eth2
e1000

alias
eth3
e1000

alias
bond0
bonding

alias
bond1
bonding

options bonding max_bonds=2

Mode Integer Mode Name

0

balance-rr

1

active-backup

2

balance-xor

3

broadcast

4

802.3ad

5

balance-tlb

6

balance-alb

Table 1: Integer and word values for mode option in modprobe.conf

The following should be present in your network configuration script in addition to the normal things that you keep in there.

In /etc/sysconfig/network-scripts/ifcfg-eth0

#eth0

no IP or MAC should be specified in this file

...

MASTER=bond0

SLAVE=yes

In /etc/sysconfig/network-scripts/ifcfg-eth1

#eth1

no IP or MAC should be specified in this file

...

MASTER=bond0

SLAVE=yes

In /etc/sysconfig/network-scripts/ifcfg-eth2

#ieth2

no IP or MAC should be specified in this file

...

MASTER=bond1

SLAVE=yes

In /etc/sysconfig/network-scripts/ifcfg-eth3

#eth3

no IP or MAC should be specified in this file

...

MASTER=bond1

SLAVE=yes

/etc/sysconfig/network-scripts/ifcfg-bond0

do not specify a MAC in this file

...

IPADDR=10.0.0.1

NETMASK=255.255.255.0

GATEWAY=10.1.1.1 # the GATEWAY can also be set in /etc/sysconfig/network

BONDING_OPTS=”mode=active-passive miimon=100”
EOL5 / RHEL5 ONLY!

/etc/sysconfig/network-scripts/ifcfg-bond1

do not specify a MAC in this file

for this example, this is my interconnect. There is NO gateway for the interconnect

...

IPADDR=192.168.0.1

NETMASK=255.255.255.0

BONDING_OPTS=”mode=active-passive miimon=100”
EOL5 / RHEL5 ONLY!

A couple of things to point out. We are not using channel aggregation for either our interconnect or our public interface. This is because we have historically had some difficulties with network 'flapping' when in the channel aggregation mode. In active-passive mode, we have not seen that problem. We have also not seen a burst on the interconnect that exceeds its 1Gb throughput.

I/O schedulers

There are four I/O schedulers (elevators) in current versions of the Linux kernel. It is a subject of some debate as to what elevator gives you the best performance. The four elevators with brief comments are listed in the following table:

· Elevator

· Comments

· CFQ or Completely Fair Queuing

This is the default and it has worked well for us.

Deadline

Most information that can be found indicates that this is a better I/O scheduler for database purposes. Out clients workload is so unpredictable, however, it would be almost impossible to make a comparison.

NoOp or No Operation

Having invested heavily in our Fibre Channel fabric as well as our SAN infrastructure, this may well be our best option. NoOp which is short for No Operation does not order any data. If you have an environment where this function is being performed by either your SAN or your Fibre Channel card, this elevator will save CPU cycles.

AS or Anticipatory Scheduler

The anticipatory scheduler anticipates that after one read, there is likely to be another and after one write there is likely to be another. If after a short timeout period another read or write has not occurred, the scheduler completes the read or write in its charge.

Table 2: I/O Schedulers (set with an elevator=<value> on the boot line)

[image: image2.jpg]
Figure 3. Red Hat Enterprise Linux 4 IO schedulers vs. Red Hat Enterprise Linux 3 for database Oracle 10G oltp/dss (relative performance)

Source: Red Hat Magazine (http://www.redhat.com/magazine/008jun05/features/schedulers/)

Fibre Channel Switches

The planning, design and configuration of the Fibre Channel Switches is a complicated thing. If you have an FC switch, it is worth your while to invest in a Fibre Channel specialist. In the case of Fibre Channel, its not what you don't know that hurts you, its what you don't know that you don't know that hurts you.

SANs

As stated before, we switched from EMC Cx700 SANs for our database storage to 3Par storage. The decision to do so was based largely on just one feature of 3Par storage, chunklets. When we were using the EMC arrays for our database storage, it took hours of careful planning to position the LUNs that would be placed into ASM Data groups so that we could minimize the amount of disk activity that was going to be generated by other LUNs within the same RAID groups (on the same set of disks). To deal with this problem, Oracle requires that every LUN in an ASM Data disk be carved out of a RAID1+0 RAID group. This means that we are using double the amount of disk space as compared to raw. Even with RAID1+0 RAID groups, it was still necessary to carefully plan your disk usage.

The 3Par allows us to simplify our SAN planning because it does not statically assign specific disks to specific RAID groups. In fact, the 3Par SAN attempts to spread the data within a LUN across as many spindles as it can. The net effect is that we no longer have to worry about where we are placing various LUNs because there is no way to know. 3Par also is certified for use with Oracle utilizing a RAID 5 configuration which leads to more efficient disk utilization.

Regardless of what SAN equipment you are using, if it supports thin provisioning, we would recommend that you take advantage of that feature. This is particularly so if your database is growing rapidly or is subject to periods of time of rapid growth. It is a lot easier for the SAN administrator to add some more capacity to a thinly provisioned set of LUNs than it is to add disks to and ASM group and have to rebalance the ASM groups.

Multipath Considerations

Where the schedulers have been the subject of much debate, the round robin minimum I/O setting does not get any press, but may be a source for significant performance gain. The rr_min_io parameter indicates the number of I/Os to route to a path before switching to the to the next in the same path group. The default is 1000 and that is almost certainly too high. We have tuned ours down to 100 and have been happy with the results. The following indicates relevant portions of the /etc/multipath.conf file.

defaults {

.

.

.

rr_min_io
100
default is 1000, what is best for you?

rr_weight
priorities

failback
immediate

user_friendly_name yes
aliases in /etc/mutlipath.conf

#user_friendly_names yes
aliases found in /var/lib/multipath/bindings

.

.

.

}

Note the user_friendly_name parameter. The documentation states that the user_friendly_name's' parameter, when set to yes, causes the /var/lib/multipath/bindings file to be read to obtain a list of friendly names or aliases for LUNs wwid is specified within the file. The default for this parameter is no and should force the multipath daemon to look into the /etc/multipath.conf file for its aliases. We have found this not to be true. Instead, we set the user_friendly_name (not plural) parameter to yes and then our friendly name (aliases) are ready from the XML block within the /etc/modules.conf page. The following example shows a set of LUNs that have been made friendly. The result is that we can now deal with these LUNs by referencing /dev/mapper/Data1, /dev/mapper/Flash1 and so on.

multipaths {

multipath {

wwid 9999FF999999FF990

alias
Data1

}

multipath {

wwid 9999FF999999FF991

alias
Flash1

}

multipath {

wwid 9999FF999999FF992

alias
Logs1

}

multipath {

wwid 9999FF999999FF993

alias
Vote1

}

multipath {

wwid 9999FF999999FF994

alias
OCR1

}

}

Blacklists are a way to let the multipath daemon know that it should not be trying to do anything with a certain device. In most instances, this is just a way to avoid seeing an error because local devices cannot be multipathed anyway. This does not stop the multipath daemon from trying. So, spend a few minutes and get your blacklist in order. Below is a set of entries that prevent the multipath daemon from touching the local drive / partitions. The blacklist is found in /etc/multipath.conf with everything else.

devnode_blacklist {

.

.

.

“/dev/sda$”

“/dev/sda[0-9]”

.

.

.

}

Network Time Protocol

Get a good time source and set up your ntp. Having various nodes in your configuration writing time stamped logs to a common area can be one of the more maddening things to deal with when you are trouble shooting a problem. By using a GPS time source (or an atomic clock if you have access to one) in conjunction with ntp, this headache can largely be forgotten.

The OCR, The Voting Disk and OCFS2

At the beginning of our Oracle 10g journey, we used raw devices to house are Voting Disk and Oracle Cluster Registry. Over the last year, however, we have made the change to using the OCFS2 which is the Oracle Clustered File System version 2. This has been a relatively painless move for use, but there have been some things that we have learned that will benefit you.

The first thing to note is that the OCFS2 file system preserves its integrity by causing a kernel panic if the node ever thinks that it has become a liability. The problem with this is that you are relying on the node with the problem to determine that it has the problem. OCFS2 is also dependent on the network where the raw devices were not. This is because OCFS2 uses the network for its heartbeat. So, if there is a problem with the network it can cause nodes to drop out. What this means in practice is that the OCFS2 disks will not always be mounted on boot due to network irregularities.

Troubleshooting OCFS2

If you have a node that has booted but will not join the Oracle cluster, check to make sure that all OCFS2 volumes were mounted, particularly those volumes that house the Voting Disk (or its backups) or the OCR disk (or its backups) by executing the df -h command. If anything is missing, execute the mount -a -t ocfs2 command and see if that corrects the problem by again executing the df -h command. If all is well, start CRS manually. If you are using OCFS2 for your voting and ocr disks, it will be worth your while to add <mount -a -t ocfs2> to the end of the /etc/rc.local file.
Oracle Real Applications Cluster Overview

An Oracle Real Application Cluster (RAC) is comprised of multiple interconnected computers or servers that can support multiple instances against a single database. To the end user or applications environment RAC appears as if it is one server. Much in the same way the national power grid operates, it does not matter where the electricity is generated, as long as when you need power, electricity flows through your outlet. It may have been one or many power plants that generated the electricity that you consume, but as a user of the energy, you see a device plugged into an outlet.

Therefore, the collective process capacity of all of the servers that comprise the cluster can be used together to perform database operations. Each server/instance in a RAC environment can be used to support a separate database or all servers and instances can be used to support a single database.

Oracle Clusterware (CRS) is software that is installed on each node in the cluster. Clusterware manages the association of the nodes in the cluster and monitors the status of node membership and provides services that interact with each node in the cluster. In a RAC environment it is necessary to install and configure Oracle Clusterware before installing the Oracle database software. A separate Oracle Home directory is required for Oracle Clusterware. Usually, the Clusterware directory is referred to as the CRS_HOME. A single installation of clusterware, and therefore, a single CRS_HOME is all that is required for the Node to handle any number of database instances running on a particular server. A few of the major processes that support Clusterware are:

· Cluster Synchronization Services (CSS). CSS manages node membership within the cluster.

· Cluster Ready Services (CRS). CRS performs management tasks and recovery within the cluster.

· Event Manager (EVM): EVM manages event notification callouts.

· Oracle Cluster Registry (OCR): There must be a shared storage area in order for Oracle to store details about the cluster configuration, database status, cluster instances, services and applications running to support the cluster. The OCR file can reside on a raw device or a cluster file system. It cannot be placed on an Automatic Storage Management (ASM) file.

· Voting Disk: A shared storage area is also required for a voting disk. This is used to determine the nodes that join, are removed, or are currently active and available within the cluster.

CRS manages the following resources:

· The ASM instance on each node

· Databases

· Instances on each node

· Oracle Database Services

· The nodes in the cluster

· Nodeapps (node applications):

· VIP

· GSD

· The listener

· The ONS daemon

There are also a number of node applications and background processes that are utilized to support the RAC cluster. Appendix A lists these applications and processes with a brief description of each.

Online Redo Logs: Oracle writes each change to the database to an online redo log before it applies the change to the undo segment or the database. RAC requires each instance in the cluster to have its own set of online redo log groups. Each redo log managed by an individual instance is known as a redo log thread. Each thread must have at least two redo log groups.

Undo Tablespace: It is required in a RAC environment when using Automatic Undo Management, that a separate undo tablespace exist for each instance in the RAC environment.

Archived Logs: In a RAC environment, each instance maintains its own set of archived redo logs. These logs can reside on a shared file system, or local disk. However, if a remote node requires the information from a redo log for a recovery operation, it is recommended that redo logs be shared so that each node has access.

 Therefore, RAC differs from a single server/single instance database in that:

· Each RAC instance has to have a least one additional thread for redo on each instance.

· There must be an instance specific undo tablespace.

· Each instance of the RAC cluster must maintain its own archive log.

Instances within the RAC environment all have their own SGA. Within the SGA reside the buffer caches which are used to hold blocks of data that have been read from the database. When blocks are modified, the changes are written to the redo buffer and then to the redo log when a commit is issued. The changes are applied to the block in the buffer cache where it remains until it is written to disk by the database writer process. To ensure consistency between instances in the RAC environment, a virtual structure called the Global Resource Directory (GRD) is used. The GRD is distributed across the SGA’s of all active instances and contains information about all blocks and latches held by instances and their corresponding processes across the cluster. To support the GRD, two services known as the Global Cache Service (GCS) and the Global Enqueue Service (GES) are employed.

As stated above, each instance in the RAC environment has its own database buffer cache located in the SGA. All instances may share the same set of datafiles in support of a single database. It is possible for multiple instances to read or write the same block at the same time. Therefore access to the data blocks across the cluster must be managed so that the instances can update datablocks in an organized and synchronous fashion. Further, any modifications to the data must be made available to all instances immediately. This data management and synchronization between the buffer caches across all instances of the cluster is managed by the Global Cache Service (GCS). In conjunction with GCS, the Global Enqueu Service (GES) manages concurrency for resources operating on transactions, tables, and other objects within the cluster.

RAC uses a high-speed private network between cluster nodes (referred to as the “interconnect”), to ensure that data on all nodes in the cluster is managed as a seamless single entity. The interconnect network is a key component of “global cache fusion”, a term used to describe the process by which Oracle keeps the individual database memory caches (SGAs) on each node in sync, cluster-wide. On most RAC systems this interconnect is Gig-E fiber that allows for high speed data transfer between the nodes.

In Oracle 10.1 and above, a RAC database instance can be accessed through a virtual IP address (VIP). This is an alternative public address that client connections use instead of the standard public IP’s. The VIP address belongs to the same sub-net as the public network, and clients should specify the VIP as apposed to the public IP when connecting to the database. The reason for this is if a node fails, then the node’s VIP address fails over to another node. Connections using the VIP will be redirected to the surviving node. Using the VIP eliminates issues with TCP timeouts that caused long delays when clients attempted to connect to failed nodes. VIP is a node application that is configured in the Oracle Cluster Registry (Described later). VIP’s can be configured using the Virtual IP Configuration Assistant (VIPCA) utility.
The following diagram illustrates a basic RAC configuration:

[image: image3.png]

 Figure 4.

RAC supports multiple instances operating against one or more databases. A database instance usually runs on a separate server. The collective process capacity of each server can be used to support a single database operation. RAC provides for greater throughput, scalability, and availability than a single server environment.

The following table describes some of the advantages of a RAC environment over a traditional single instance database configuration:

	Observations of Common Industry Practices
	RAC Capability and Benefits

	Scalabiltiy: Single server, single instance database environments do not scale well. Once the capacity of the server has been exhausted, a new larger server must be constructed. The database is then migrated to the new server. This process is pedestrian, time consuming, and requires system down time.
	As the collective process capacity of a RAC cluster nears its maximum capability, new servers are added to the cluster, providing the ability to scale horizontally in a quick, cost effective manner. There is no down time involved in expanding a RAC cluster by adding new servers.

	Availability: The ability to have immediate and transparent failover of a database does not exist in a single server database environment. Service outage results as recovery operations take place.
	In a RAC environment, if a server goes down, all processes and connections are transparently failed over to surviving nodes in the cluster. There is no down time. The user community has no interruption to their service.

	Flexibility: In an environment where a single server hosts the database, the server must be replaced in order to leverage advancements in hardware technology.
	Within a RAC Cluster, advancements in hardware can be integrated with existing servers. New servers are added to the cluster with no down time.

	Agility: As business requirements demand more process capability, larger data sets, and greater performance, more capable machines must replace existing infrastructure to ramp-up capacity. There is no way to respond to business needs on-demand.
	In a RAC cluster, the need for greater processing capability can be allocated on-demand. More servers in the cluster can be employed to meet the requirement for greater process capacity. Or, new servers can quickly be added to the cluster.

	Manageability: In an environment where monolithic servers are constructed to support multiple database instances, the management of those separate and often times disparate servers becomes arduous. There is no central management of the entire environment.
	The Grid Control utility can be used in a RAC environment to manage the entire infrastructure from a single console. Not only does Grid Control manage the database servers, but application and web servers as well.

	Performance: In a single server, single instance database environment, the processing power of one machine is all that can be applied against the processing requirements of the database.
	Within the RAC environment, any number of servers can be used to support a database. The collective resources of multiple machines can be used together to provide much greater processing capacity upon a single database. In essence, the processes running to support the database can be divided among multiple servers working in concert. This significantly reduces the processing time for many database operations.

Thinking Horizontally Instead of Vertically

In a RAC grid environment there are multiple servers supporting multiple instances against one or more databases. Each instance has its own SGA, but the data in the buffer cache for each instance can be shared across the cluster. There is a performance penalty to be paid in the RAC environment due to latency issues between the nodes and the overhead associated with the services that run to support the RAC environment. However, there are tremendous performance gains to be realized if your environment is configured properly and your database architecture leverages the grid environment.

The problem domain must be viewed as being solved horizontally, employing the process capacity of all the servers in the cluster against the task. We commonly refer to this as a “Divide and Conquer” approach to applications processing. Many people think that dropping a legacy database architecture on top of a grid database will buy them a better performing system. The truth is, applying most data structures on a grid architecture will yield less performance due to latency and overhead.

In Oracle 10.1 and above, database services can be used to logically group sessions together based on workload requirements. A database service is foundational to providing the means by which resource usage can be distributed across the instances in a RAC environment. Each service can be configured to run against one or more instances, and can also have primary and backup server(s)/instance(s) to support them.

Oracle also provides the ability to balance connections to the database across the instances of a RAC environment through services. The connection balancing afforded by services allows the workload to be distributed across the cluster to maximize throughput, and increase response times. There are two types of load balancing, client-side and server-side. Client-side load balancing allows the client to distribute connection requests randomly to all available listener processes. Server-side load balancing uses the listener process to direct connections to the best instance, using load information provided by the instances. In Oracle 10.2 and above, this information is presented in the form of a load balancing advisory, which provides information to applications about the current service levels provided by each instance in the cluster. The advisory generates advice based on the load balancing goal for each service which can be “long” or “short”. Long is used for applications that have long-lived connections like connection pools. Short is for applications that have short-lived connections, like stateless web apps.

Further, Oracle RAC employs Transparent Application Failover (TAF), so that in the event of an instance failure, an active connection can be failed over to another instance. This new connection will be identical to the original, except any uncommitted transactions at the time of the failure will be rolled back. However, with select statements the result sets can be propagated to the surviving node. You can also specify that connections should be preconnected to the failover instance. Therefore, a session will have multiple connections, one to the primary node and one or more to the failover nodes. Note that the preconnect option will require multiple connections, thus, adding to the overhead and the time required to connect to the database.

A detailed discussion on Load Balancing and TAF will be presented in the section titled: “Creating net services for TAF and workload distribution” later in this paper.

With the use of Services, users no longer connect directly to a database instance, but to a service instead. That service is supported by a number of RAC instances. If for any reason a node in the cluster fails, users who are currently connected to the database via a service will automatically and transparently fail over to surviving nodes. This also gives us the ability to perform maintenance on our database environment with minimum down time. Services also give us the means to spread our workload over a number of database servers so that jobs can be run concurrently. This divide and conquer approach significantly reduces the amount of time it takes to perform many database processes.

Lets take a look at a way multiple servers can be utilized in a RAC environment to support parallelism in reducing response times for a simple sql statement. For example, in a four node RAC cluster, with each server equipped with 8 CPU’s, a parallel query can be set up with a ‘Parallel Hint’ to utilize the CPUs from each instance.

SELECT /*+ FULL(test) PARALLEL(test, 7,4) */ count(*) FROM test;
In this example, the degree of parallelism (DOP) is 7 and uses four instances. Therefore, 28 processes, 7 on each instance are applied against the query.

In a particular production environment, selecting the count(*) from a 60 million row table, on Dell 2950’s with 4 CPU’s the following results were observed, clearing the cache for each sql statement executed so results and execution plans were not in memory:

Select count(*) from tableA; - elapsed time 1:38

Select /*+ Full(tableA) parallel(tableA, 4) */ count(*) from tableA; - elapsed time :46

Select /*+ Full(tableA) parallel(tableA, 3, 4) */ count(*) from tableA; - elapsed time 78 ms.

Here is a list of the types of operations that can take advantage of parallel processing:

· Queries (based on full table scan)
· Create Table As
· Index Builds
· DML Operations (insert, update, delete) on partitioned tables
· Data Loads
In another example of leveraging the grid architecture for performance boost, we will employ table partitioning. Now we will use the grid environment to divide up the architecture across multiple nodes.

A service called “SERV1” is created that utilizes four servers in an 8 node RAC environment as primary servers.

Connect to the database with this service as follows:

SQL>connect user/password@SERV1
The service used to connect to the grid environment utilizes 4 out of 8 nodes in the cluster. Now we can see a “Divide and Conquer” approach. For this example an index is built locally for each partition of a table. The table in question has 80 partitions. Since the index was built local for the table, each partition will have its own index, therefore, re-building the index can be done a partition at a time. We divide the partitions in the table to be handled synchronously by every server in the RAC cluster.

Therefore, the following sql statement will be used to rebuild the index for each partition:

SQL>Alter index test_index rebuild partition p1 parallel 28;

(Remember 8 CPUs/Node). Note that one parallel process thread is reserved on each server to act as a coordinator of the parallel processes. So when specifying the degree of parallelism use the number of cpu’s per node – number of nodes.

Since there are 80 partitions, we can divide the table up and process groups of partitions on each node as follows:

Server1 – Processes partitions 1-20.

Server 2 – Processes partitions 21-40.

Server 3 – Processes partitions 41-60.

Server 4 – Processes partitions 61-80.

Using this strategy, we significantly reduce the amount of time required to perform an index rebuild.

RAC Environment Considerations

Although RAC can provide many benefits in the database space such as high availability, agility in the architecture, and dynamically provisioned process capacity, it also brings with it much more complexity and the essential requirement that careful planning, documentation, and consideration of the architecture to leverage the grid environment be taken.

Oracle RAC alone does not ensure a successful high availability computing environment. Business processes, database architecture, and applications must be evaluated and perhaps re-designed to leverage the grid. Traditionally, demands for increased process capacity have been handled by deploying a more capable server in a monolithic fashion. No concern was given to spreading the workload across multiple servers against the same database. Database architecture, applications, and business processes were designed to function on single servers or “Big Iron” servers such as the Sun E25K.

With the advent of the grid environment, the way in which we do business must be re-evaluated. It has been stated by a number of Oracle professionals who have commented that although Oracle RAC provides for high availability and fail-over support, the RAC configurations provide less performance than running the database on a single instance/single server installation. When you consider the latency involved in the synchronization of data blocks and latches between multiple servers against a single database, the lack of performance in the RAC environment is of no surprise.

Although latency between the inter-node communications is a detractor from performance, there are enormous performance gains to be had in the grid environment. However, to fully realize these gains, the database architecture and objects, as well as the utilization of parallelism must be constructed to optimally function within the grid architecture. The problem domain must be viewed as being solved horizontally, employing the process capacity of all the servers in the cluster against the task.

Therefore, a comprehensive review of database architectures must be undertaken to make any necessary modifications that can be leveraged within RAC. This means employing table partitioning whenever possible, creating indexes local to each partition, utilizing parallelism, and using database services to connect to the database in order to achieve load balancing and transparent application failover.

The business process environment must be looked at to see how the work can be divided and sub-divided to be processed by multiple servers concurrently. Application design must make the same considerations.

When designing the RAC environment, keep in mind that it is now possible to have multiple instances operating against a single database. Items to consider:

· Each RAC instance has to have a least one additional thread for redo on each instance.

· There must be an instance specific undo tablespace.

· Each instance of the RAC cluster must maintain its own archive log.

· Each instance must have shared disk resources, and must share the data buffer cache with coherency.

· Raw devices are only for the Voting Disk and the OCR.

· The implementation of Automatic Storage Management (ASM) as a best practice for disk management within the RAC environment.

· The use of virtual IP’s for failover support.

· The use of Oracle 10g services to manage workload. Group homogenous activities together in a service. For example, a service that handles OLTP processing, another to handle bacth jobs, and another for external connectivity from the applications. If you have a process intensive endeavor, you may have a service that utilizes all of the nodes in the cluster.

· If your RAC environment has a heterogeneous mix of servers, then plan your instance SGA with that in mind. For instance, if your environment has two Dell 6850s with 64 Gig of RAM and 4 Dell 2950’s each with 32 gig of RAM. Then in a Linux environment, specifying half of the available RAM on each server for the RAC instances supporting a single database will not work. Your SGA’s for the 6850’s can be 32 Gig, however, if you try to start the instances on the 2950’s you will fail due to the fact that in a Linux environment you cannot specify a 32 Gig SGA on a server that only has 32 gig of RAM. In Linux, half of the physical memory is the guidline for the SGA.

· Implement the use of Transparent Application Failover for connections, and Fast Connection Failover for client side notification. Remember, uncommitted transactions will be lost after the failover, therefore that contingency must be planned for.

· Utilize table partitioning, local indexes, and stored procedures tuned for parallelism.

· Watch for high buffer busy waits and latch contention to identify hot spots in the internode latency.

The bottom line is to watch you application design and make it RAC aware. RAC scales well and will enhance performance if it is driven right. Application and architecture design is the key for a successful RAC implementation.

Managing the Cluster

Within the RAC configuration, there are a number of tools and utilities to help you manage the environment. Obviously, Enterprise Manager is a well known utility, and Grid Control is gaining steady popularity. However, this section is going to focus on two specific utilities titled “Server Control Utility - srvctl”, and “Cluster Ready Services Control utility – crsctl”.

SRVCTL: The server Control (SRVCTL) utility is installed on each node of the cluster. This utility can be used to start and stop the database and instances, manage configuration information, and move or remove instances and services. You can use the utility to control node applications that include GSD, Oracle Net Listener processes, VIP, and ONS. You can add, remove and relocate database services as well. SRVCTL is fully integrated with the OCR, and some srvctl operations store configuration information in the Oracle Cluster Registry (OCR).

To use SRVCTL, enter the srvctl command and corresponding options in case sensitive syntax with the following format:

srvctl verb noun options

srvctl is the command, verb is an action, noun is the object to operate on, and options extend the use of the preceding verb and nouns. To see the online command syntax and options for each srvctl command enter:

srvctl verb noun –h

As an example of the use of srvctl, consider a situation where database services have been specified to provide load balancing and failover for a two node cluster. Connections to the database are made through those services. In this example the database will be called TestDB, the Node names are Node1 and Node2 and the instances on each node are called TestDB1, and TestDB2 respectively. The services that connect to each of these instances are called TestDB_Serv1, and TestDB_Serv2. TestDB_Serv1 uses TestDB1as the preferred instance, and TestDB2 as the available instance. Conversely, TestDB_Serv2 uses TestDB2 as the preferred instance and TestDB1 as the available instance. The following table describes the services created for this example:

	Service Name
	Database Name
	Instance Not Used
	Preferred Instance
	Available Instance

	TestDB_Serv1
	TestDB
	None
	TestDB1
	TestDB2

	TestDB_Serv2
	TestDB
	None
	TestDB2
	TestDB1

For some reason it has become necessary to restart Node1. Before the node is brought down it will be necessary to relocate the service TestDB_Serv1 to be handled by the instance on Node2. TestDB_Serv1 will be relocated to the TestDB2 instance on Node2. Relocating will allow connections made through the service TestDB_Serv1 to be re-directed to Node2. The following srvctl command is issued:

$ srvctl relocate service –d TestDB –s TestDB_Serv1 –i TestDB1 –t TestDB2
The parameters for this command are:

-d the name of the database

-s the name of the service being relocated

-i the name of the instance the service is currently running on

-t the name of the target instance that the service is being relocated to.

The srvctl commands are summarized in this table:

	Table 1. Summary of srvctl commands.

	Command
	Targets
	Description

	srvctl add
srvctl modify
srvctl remove
	database
instance
service
nodeapps
	srvctl add / remove adds/removes target's configuration information to/from the OCR.

srvctl modify allows you to change some of target's configuration information in the OCR without wiping out the rest.

	srvctl relocate
	service
	Allows you to reallocate a service from one named instance to another named instance.

	srvctl config
	database
service
nodeapps
asm
	Lists configuration information for target from the OCR.

	srvctl disable
srvctl enable
	database
instance
service
asm
	srvctl disable disables target, meaning CRS will not consider it for automatic startup, failover, or restart. This option is useful to ensure an object that is down for maintenance is not accidentally automatically restarted.

srvctl enable reenables the specified object.

	srvctl getenv
srvctl setenv
srvctl unsetenv
	database
instance
service
nodeapps
	srvctl getenv displays the environment variables stored in the OCR for target.

srvctl setenv allows these variables to be set, and unsetenv unsets them.

	srvctl start
srvctl status
srvctl stop
	database
instance
service
nodeapps
asm
	Start, stop, or display status (started or stopped) of target.

The following guidelines were taken from the “Server Control Utility Reference”, Oracle Corporation:

Guidelines for using SRVCTL are:

To use SRVCTL to change your Oracle RAC database configuration, log in to the database as the oracle user. Members of the DBA group can start and stop the database.

· Only use the version of SRVCTL that is provided with Oracle Database 10g on Oracle RAC databases that are created or upgraded for Oracle Database 10g.

· Always use SRVCTL from the Oracle_home of the database that you are administering.

· SRVCTL does not support concurrent executions of commands on the same object. Therefore, only run one SRVCTL command at a time for each database, service, or other object.

CRSCTL: This utility is executed from the command-line and is used to manage Oracle Clusterware. Whenever a node managed by Oracle10g CRS / Clusterware is initiated, the Clusterware processes (CRS stack) starts up automatically. It is possible to manually control these services like starting and stopping the instance, listener, or ONS using crsctl. Usually, crsctl is found at the following sub-directory: $ORA_CRS_HOME/bin/crsctl

The following list illustrates the use of crsctl:

crsctl check cssd - checks the viability of CSS
crsctl check crsd - checks the viability of CRS
crsctl check evmd - checks the viability of EVM
crsctl set css <parameter> <value> - sets a parameter override
crsctl get css <parameter> - gets the value of a CSS parameter
crsctl unset css <parameter> - sets CSS parameter to its default
crsctl query css votedisk - lists the voting disks used by CSS
crsctl add css votedisk <path> - adds a new voting disk
crsctl delete css votedisk <path> - removes a voting disk
crsctl enable crs - enables startup for all CRS daemons
crsctl disable crs - disables startup for all CRS daemons
crsctl start crs - starts all CRS daemons.
crsctl stop crs - stops all CRS daemons. Stops CRS resources in case of cluster.
crsctl start resources - starts CRS resources.
crsctl stop resources - stops CRS resources.
crsctl debug statedump evm - dumps state info for evm objects
crsctl debug statedump crs - dumps state info for crs objects
crsctl debug statedump css - dumps state info for css objects
crsctl debug log css [module:level]{,module:level} ...
- Turns on debugging for CSS
crsctl debug trace css - dumps CSS in-memory tracing cache
crsctl debug log crs [module:level]{,module:level} ...
- Turns on debugging for CRS
crsctl debug trace crs - dumps CRS in-memory tracing cache
crsctl debug log evm [module:level]{,module:level} ...
- Turns on debugging for EVM
crsctl debug trace evm - dumps EVM in-memory tracing cache
crsctl debug log res <resname:level> turns on debugging for resources
crsctl query crs softwareversion [<nodename>] - lists the version of CRS software installed
crsctl query crs activeversion - lists the CRS software operating version
crsctl lsmodules css - lists the CSS modules that can be used for debugging
crsctl lsmodules crs - lists the CRS modules that can be used for debugging
crsctl lsmodules evm - lists the EVM modules that can be used for debugging

To check the status of your RAC environment run the crs_stat command. This will list the status of the database, instance, and CRS Nodeapps running on each node in the cluster.

$ $ORA_CRS_HOME/bin/crs_stat

NAME=ora.TestDB.TestDB1.inst

TYPE=application

TARGET=ONLINE

STATE=ONLINE on Test1

NAME=ora.TestDB.TestDB_Serv1.srv

TYPE=application

TARGET=ONLINE

STATE=ONLINE on Test1

NAME=ora.TestDB.db

TYPE=application

TARGET=ONLINE

STATE=ONLINE on Test1

NAME=ora.Test1.ASM1.asm

TYPE=application

TARGET=ONLINE

STATE=ONLINE on Test1

.

.

.

All the “ilities” – We Have Them

Grid Computing offers many advantages, and a number of “ilities” such as, scalability, availability, agility, manageability, flexibility, and performance(ility) (. The following list is by no means comprehensive. However, it does describe many of the advantages of Grid Computing.

Characteristics of a Grid Computing Environment include:

· Scalability. (linear)

· High Availability. Redundant servers, Transparent Application Failover

· Manageability. All servers acting as one, managed from a single console. Central management of the entire enterprise. Enterprise Manager/Grid Control.

· Agility - rapidly leveraging advances in hardware technology and integrating advancements with client’s core competencies and existing infrastructures while the systems remains operational.

· Divide and conquer. Work is broken down into manageable chunks that draw on grid resources. If a hot spot develops, the workers can be rearranged. When it becomes evident that maximum utilization is approaching, just add or augment physical resources (e.g. add a server or replace an old server with a newer more capable server). Since services are not physically bound to the resources that make them possible, services can be automatically or manually relocated if/when physical components fail (e.g. if a server fails, the remaining servers pick up the extra work load).

· Dynamic provisioning, allocating computing resources to consumers on demand

· Low cost/ high scalability

· Right sizing – In the grid world, build what you need now and scale later. This is a sharp contrast to an environment where you have to build to what you think you will need five years from now.

· Flexibility, Integration of heterogeneous servers. .

· Lower cost of ownership. Lower Cost general purpose COTS servers supplied from multiple vendors.

· Market moving away from costly proprietary, high risk, architectures. In particular, Solaris supported applications are dwindling according to Gartner.

Creating Net Services for TAF and Workload Distribution:

As stated earlier in this document, Oracle 10g achieves workload distribution using connection balancing. All load balancing occurs before a session establishes a connection to the database. Client side connection balancing involves the selection of a random instance by the client process. Server side balancing selects the instance to connect to by the listener daemon on the server and is based on statistics and metrics received by the listener from activity on the database. The following tnsnames.ora example demonstrates client-side connection balancing:

TestDB_Serv1 =

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = TCP)(HOST = TestDB1)(PORT = 1521))

 (ADDRESS = (PROTOCOL = TCP)(HOST = TestDB2)(PORT = 1521))

 (LOAD_BALANCE = ON)

 (FAILOVER = ON)

 (CONNECT_DATA =

 (SERVICE_NAME=TestDB_Serv1)

 (FAILOVER_MODE = (TYPE = SELECT)(METHOD = BASIC))

)

)

When the LOAD_BALANCE parameter is set to ON, Oracle Net will select the nodes to connect to at random from the list of address specified in the tnsnames.ora file. There are issues with implementing client-side load balancing. First, client side load balancing is unaware of existing loads on the server, does not take into account how many existing connections there are, or what activities are in processes at the time of connection.

Server side load balancing is achieved by setting the LOAD_BALANCE parameter to OFF in the tnsnames.ora file. As we already stated, server side connection balancing uses the TNS listener process to perform an informed load balancing decision when making the connection. The database reports load metrics via the PMON background process, that in turns sends updated SERVICE_REGISTER information to the listener, and the connection is made based on load activity, number of existing sessions, maximum load on the instance, etc. PMON updates this information about every 3 seconds. Due to the fact that PMON can register with remote listeners, each listener process is aware of all instances in the cluster. Therefore, for most applications, server side load balancing is the preferred method.

If connections are expected to be long-lived, then the workload should be spread across all nodes. This can be done by setting the PREFER_LEAST_LOADED_NODE parameter to OFF in $TNS_ADMIN/listener.ora. If connections are expected to be short lived, then send the connection to the least loaded node by setting the PREFER_LEAST_LOADED_NODE parameter to ON (default value). Note also that in Oracle 10.2 and above, RAC now has a load balancing advisory to supply information to OCI. JDBC, and ODP.NET connection pools. Applications can take advantage of the load balancing advisory using Oracle Notification Service (ONS).

Database services provide a way to logically group sessions to work against process requirements. These services provide the foundation for workload management in a RAC database. You can assign these services to specific instances within the cluster and control the resources used by the service using Resource Manager. Each service is associated with a Net Service Name that enables users to connect to the service.

Services can be assigned to one or more instances known as PREFERRED instances, where these instances will be employed in providing process capacity and resources to support the activity of the service. You can also specify instances that can act as AVAILABLE resources, should the primary, or PREFERRED instance become unavailable. Service can be associated with a load balancing method that can be either LONG or SHORT. The service can also have associated TAF attributes, which specify a failover of active sessions to an AVAILABLE instance in the event of a PREFEREED instance failure. In Oracle 10.1 and above parallel execution, job scheduler, Streams and Advanced Queues (AQ) are aware of services. Note that for parallel execution, a parallel job coordinator process, depending on resources, can create job slaves for the service on any server in the cluster. It does not matter whether an instance was specified as preferred or available to the service, all nodes in the cluster can be used to support parallelism, even those unspecified to the service but exist in the cluster.

Therefore, to achieve dynamic provisioning of process capacity services are employed. Services can be built to use the capacity of one, two, 10, 100, or any number of servers that exist in a RAC cluster. If there is a process that needs to be run and requires a great deal of computing power, a service can be created that the user connects to, or schedules jobs with, that will employ all the nodes in the cluster to get the job done. Database services are the basis of workload management in a RAC environment.

Appendix B provides a tutorial from Oracle Corporation on creating Database Services. The tutorial can be seen at: http://www.oracle.com/technology/obe/10gr2_db_vmware/ha/rac/rac.htm#t2
Scaling out the Grid:

In a RAC environment it is easy to add servers to an existing grid via OUI.

Here are some suggested steps to take when adding a node to the cluster:

1. Plan the installation

2. Install and Configure the new Hardware

3. Configure the network

4. Install the OS

5. Configure the storage

6. Install Oracle Clusterware

7. Install the Oracle database software

8. Configure the listener

Assuming you already have built the RAC to which you are adding a node, this process should be pretty straight-forward. The Oracle Universal Installer (OUI) will guide you through the installation of the Clusterware, Oracle database software, and listener configuration.

Leveraging advancements in hardware (Agility):

Advancements in hardware are being introduced into the market at a very rapid pace. With some investments in large iron solutions costing as much as $1 million per server, it would be hard to justify swapping out servers to leverage more capable ones every year. In a RAC Grid environment, employing commodity hardware, advancements can be utilized by adding more sophisticated servers to an existing grid, and with no downtime. The agility of the system is its ability to adapt quickly to market trends such as leveraging advances in hardware technology without a disruption to service. Also, obsolete hardware can be removed from the grid in the same manner.

Due to the endless necessity to process ever increasing volumes of data and to do it faster, more reliable, and more cost effective, many companies are turning to a commodities based approach to grid computing. Grid architectures are gaining wide popularity in the industry as a cost effective means to develop scalable and agile infrastructures to provide dynamic provisioning of process capacity. Oracle Real Application Clusters is a key component of this architecture. The benefits of commoditization and the ability to scale the cluster to meet ever changing workload demands provide many organizations with the solution they need. Oracle RAC allows for high availability, scalability, agility, manageability, and provisioned processing capacity for greater productivity and throughput.

Appendix A – Background Process that Support the RAC environment

Every RAC instance runs a number of background processes that exist for the life of the instance. In Linux, each Oracle background process runs in its own OS process. In Oracle 10.1 and above there are two types of instances, RDBMS and ASM. The following list describes some of the background process that support a RAC environment:

The following list was copied in its entirety from Oracle Background Processes, Don Burleson, http://www.dba-oracle.com/t_background_processes.htm

ARCH - (Optional) Archive process writes filled redo logs to the archive log location(s). In RAC, the various ARCH processes can be utilized to ensure that copies of the archived redo logs for each instance are available to the other instances in the RAC setup should they be needed for recovery.
CJQ - Job Queue Process (CJQ) - Used for the job scheduler. The job scheduler includes a main program (the coordinator) and slave programs that the coordinator executes. The parameter job_queue_processes controls how many parallel job scheduler jobs can be executed at one time.

CKPT - Checkpoint process writes checkpoint information to control files and data file headers.

CQJ0 - Job queue controller process wakes up periodically and checks the job log. If a job is due, it spawns Jnnnn processes to handle jobs.

DBWR - Database Writer or Dirty Buffer Writer process is responsible for writing dirty buffers from the database block cache to the database data files. Generally, DBWR only writes blocks back to the data files on commit, or when the cache is full and space has to be made for more blocks. The possible multiple DBWR processes in RAC must be coordinated through the locking and global cache processes to ensure efficient processing is accomplished.

FMON - The database communicates with the mapping libraries provided by storage vendors through an external non-Oracle Database process that is spawned by a background process called FMON. FMON is responsible for managing the mapping information. When you specify the FILE_MAPPING initialization parameter for mapping data files to physical devices on a storage subsystem, then the FMON process is spawned.

LGWR - Log Writer process is responsible for writing the log buffers out to the redo logs. In RAC, each RAC instance has its own LGWR process that maintains that instance’s thread of redo logs.

LMON - Lock Manager process

MMON - The Oracle 10g background process to collect statistics for the Automatic Workload Repository (AWR).

MMNL - This process performs frequent and lightweight manageability-related tasks, such as session history capture and metrics computation.

MMAN - is used for internal database tasks that manage the automatic shared memory. MMAN serves as the SGA Memory Broker and coordinates the sizing of the memory components.

PMON - Process Monitor process recovers failed process resources. If MTS (also called Shared Server Architecture) is being utilized, PMON monitors and restarts any failed dispatcher or server processes. In RAC, PMON’s role as service registration agent is particularly important.

Pnnn - (Optional) Parallel Query Slaves are started and stopped as needed to participate in parallel query operations.

RBAL - This process coordinates rebalance activity for disk groups in an Automatic Storage Management instance.

SMON - System Monitor process recovers after instance failure and monitors temporary segments and extents. SMON in a non-failed instance can also perform failed instance recovery for other failed RAC instance.

WMON - The "wakeup" monitor process

Data Guard/Streams/replication Background processes

DMON - The Data Guard Broker process.

SNP - The snapshot process.

MRP - Managed recovery process - For Data Guard, the background process that applies archived redo log to the standby database.

ORBn - performs the actual rebalance data extent movements in an Automatic Storage Management instance. There can be many of these at a time, called ORB0, ORB1, and so forth.

OSMB - is present in a database instance using an Automatic Storage Management disk group. It communicates with the Automatic Storage Management instance.

RFS - Remote File Server process - In Data Guard, the remote file server process on the standby database receives archived redo logs from the primary database.

QMN - Queue Monitor Process (QMNn) - Used to manage Oracle Streams Advanced Queuing.

Oracle Real Application Clusters (RAC) Background Processes

The following are the additional processes spawned for supporting the multi-instance coordination:

DIAG: Diagnosability Daemon – Monitors the health of the instance and captures the data for instance process failures.

LCKx - This process manages the global enqueue requests and the cross-instance broadcast. Workload is automatically shared and balanced when there are multiple Global Cache Service Processes (LMSx).

LMON - The Global Enqueue Service Monitor (LMON) monitors the entire cluster to manage the global enqueues and the resources. LMON manages instance and process failures and the associated recovery for the Global Cache Service (GCS) and Global Enqueue Service (GES). In particular, LMON handles the part of recovery associated with global resources. LMON-provided services are also known as cluster group services (CGS)

LMDx - The Global Enqueue Service Daemon (LMD) is the lock agent process that manages enqueue manager service requests for Global Cache Service enqueues to control access to global enqueues and resources. The LMD process also handles deadlock detection and remote enqueue requests. Remote resource requests are the requests originating from another instance.

LMSx - The Global Cache Service Processes (LMSx) are the processes that handle remote Global Cache Service (GCS) messages. Real Application Clusters software provides for up to 10 Global Cache Service Processes. The number of LMSx varies depending on the amount of messaging traffic among nodes in the cluster.

The LMSx handles the acquisition interrupt and blocking interrupt requests from the remote instances for Global Cache Service resources. For cross-instance consistent read requests, the LMSx will create a consistent read version of the block and send it to the requesting instance. The LMSx also controls the flow of messages to remote instances.

The LMSn processes handle the blocking interrupts from the remote instance for the Global Cache Service resources by:

· Managing the resource requests and cross-instance call operations for the shared resources.

· Building a list of invalid lock elements and validating the lock elements during recovery.

· Handling the global lock deadlock detection and Monitoring for the lock conversion timeouts

Appendix B - Using Transparent Application Failover in Oracle Real Applications Clusters
Purpose

The goal of this tutorial is to show you how transparent application failover is used within Oracle Database 10g Real Applications Clusters.

Time to Complete

Approximately 30 minutes

Topics

This tutorial covers the following topics:

	[image: image4.png]
	Overview

	[image: image5.png]
	Setup

	[image: image6.png]
	Creating a Service

	[image: image7.png]
	Simulating a Connection Crash

	[image: image8.png]
	Cleanup

	[image: image9.png]
	Summary

Overview

The Transparent Application Failover (TAF) feature is a runtime failover for high-availability environments, such as Oracle Real Application Clusters. TAF fails over and reestablishes application-to-service connections. It enables client applications to automatically reconnect to the database if the connection fails and, optionally, resume a SELECT statement that was in progress. The reconnection happens automatically from within the Oracle Call Interface (OCI) library.

With Oracle Database 10g Release 2, you no longer have to specify TAF options in your tnsnames.ora file. This can be done directly inside the database, and thus eliminating the need to change all your tnsnames.ora files on your clients. TAF has been instrumented to capture Fast Application Notification events propageted by the Oracle Clusterware.

Back to Topic List
Setup

You will first setup your environment. Perform the following steps:

	1.
	You need to make sure that both instances RACDB1 and RACDB2 are running. Open a terminal window and execute the following command

[image: image10.png]
If either of the databases are offline, execute any one of the following commands depending on your situation:

srvctl start instance -d RACDB -i RACDB1

srvctl start instance -d RACDB -i RACDB2

	2.
	From your terminal window and execute the following commands:

cd /home/oracle/wkdir

sqlplus /nolog

@rac_setup
This script connects to the database, grant the DBA role to HR, and create the HR.EMP table as a copy of the HR.EMPLOYEES table.

connect / as sysdba
grant connect, resource, dba to hr;
connect hr/hr
drop table emp purge;
create table emp as select * from employees;
[image: image11.png]

Back to Topic List
Creating a Service

Before you can use TAF, you need to create an application service using Enterprise Manager. You will use PL/SQL to modify the service to make it usable by TAF. Perform the following steps:

	1.
	Open a browser window, and enter the following URL:

http://raclinux1.us.oracle.com:1158/em
On the Enterprise Manager Login page, enter SYS in the User Name field, oracle in the Password field, and select SYSDBA from the Connect As drop down list. Once done, click the Login button.

[image: image12.png]

	2.
	On the Cluster Database home page, click the Maintenance link.

[image: image13.png]

	3.
	On the Maintenance page, click the Cluster Managed Database Services link under the Services section.

[image: image14.png]

	4.
	On the Cluster and Database Login page, enter oracle/oracle for the Cluster Credentials, and sys/oracle for the Database Credentials. Once done, click Continue.

[image: image15.png]
[image: image16.png]

	5.
	On the Cluster Managed Database Services page, click the Create Service button.

[image: image17.png]

	6.
	On the Create Service page, enter SERV1 in the Service Name field, make sure that the Start service after creation box is selected, and that both RACDB1 and RACDB2 are selected as Preferred instances for the service.

[image: image18.png]

	7.
	Scroll down to the bottom of the Create Service page, and click OK.

[image: image19.png]
[image: image20.png]

	8.
	Your service was created and you can see that SERV1 is now started on both instances.

[image: image21.png]

	9.
	You are now going to use PL/SQL to modify SERV1 so that it can be used by TAF. In this tutorial, you are using the BASIC method. From your terminal session, execute the following command:

@rac_modserv
connect / as sysdba

execute dbms_service.modify_service(-

service_name => 'SERV1' -

, aq_ha_notifications => true -

, failover_method => dbms_service.failover_method_basic -

, failover_type => dbms_service.failover_type_select -

, failover_retries => 180 -

, failover_delay => 5 -

, clb_goal => dbms_service.clb_goal_long);

exit;

[image: image22.png]

	10.
	Before you can start using your service, you need to add a corresponding entry in your tnsnames.ora file. To do so, execute the following commands:

cd $ORACLE_HOME/network/admin

gedit tnsnames.ora
Add the following entry to the bottom of the file:

SERV1 =
 (DESCRIPTION=(FAILOVER=ON)(LOAD_BALANCE=ON)
 (ADDRESS=(PROTOCOL=TCP)(HOST=raclinux1-vip.us.oracle.com)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=raclinux1-vip.us.oracle.com)(PORT=1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = SERV1)
))

As you can see, you no longer have to specify the TAF options in your tnsnames.ora file. This is now done directly from the server (see previous step).

Back to Topic List
Simulating a Connection Crash

Now you can connect to the database using SERV1, and see what is happening when you simulate connection crashes. Note that you will be using two terminal sessions for this part of the tutorial.

	1.
	First you want to connect as HR using the SERV1 service. It will determine which instance you are connected to, and determine some important TAF characteristics. From your existing terminal window, execute the following commands:

cd /home/oracle/wkdir

sqlplus hr/hr@SERV1

@rac_query
The rac_query.sql script contains the following:
select instance_name from v$instance;

col service_name format a10

select failover_type,failover_method,failed_over

from v$session where username='HR';

[image: image23.png]
Notice the connection is using TAF with the BASIC method. So far, this connection was not failed over.

	2.
	You will now insert one row into the EMP table. Notice that you are still using the same session that was created in the previous step. Execute the following script:

@rac_insert1
The rac_insert1.sql script contains the following:
insert into emp select * from employees where rownum<2;
commit;

[image: image24.png]

	3.
	Open a second terminal window. From now on, this session will be called the second session, and the other one, the first.

You will remove your foreground process established during the first step to simulate a database crash. From the second session, execute the following shell script:

./rac_kill_sessions.sh

The rac_kill_sessions.sh shell script contains the following:
ps -ef | grep "(LOCAL=NO)" | awk '{print "kill -9 " $2 }' > y.sh

. ./y.sh

[image: image25.png]

	4.
	Now you can try to insert a new row into the EMP table again. Switch to your first session and execute the following script:

@rac_insert2

The rac_insert2.sql script contains the following:

insert into emp select * from employees where rownum<2;

.[image: image26.png]
Because you just killed the server process of your session, it is no longer possible to insert the row.

	5.
	Wait a few seconds and execute the following script from the first session:

@rac_insert1
The rac_insert1.sql script contains the following:

insert into emp select * from employees where rownum<2;
commit;

Again, you try to insert a new row in the EMP table. This time it succeeds because TAF automatically reestablished the connection

[image: image27.png]

	6.
	Now re-execute the following script:

@rac_query

The rac_query.sql script contains the following:

select instance_name from v$instance;

col service_name format a10

select failover_type,failover_method,failed_over

 from v$session where username='HR';
Your session was failed over automatically by TAF.

[image: image28.png]

Back to Topic List
Cleanup

Perform the following to cleanup your environment:

	
	To cleanup your environment, execute the following script:

./rac_cleanup.sh
srvctl stop service -d RACDB -s SERV1 -f
srvctl disable service -d RACDB -s SERV1
srvctl remove service -d RACDB -s SERV1
sqlplus /nolog @rac_cleanup

connect / as sysdba

revoke dba from hr;

connect hr/hr

drop table emp purge;

exit;

Note: you will need to enter Y to remove the service.

Back to Topic List
Summary

In this tutorial, you've learned how to:

	[image: image29.png]
	Use Enterprise Manager and PL/SQL to setup TAF in a RAC environment

	[image: image30.png]
	Simulate a connection crash and see how TAF handles it.

� INCLUDEPICTURE "http://i.dell.com/images/global/topics/solutions/oracle6.gif" \d���Figure 2: source: dell.com/oracle

� Tuning Oracle Rac Databases, Linxcel Europe Limited, August, 2003.

� Oracle® Real Application Clusters Administration and Deployment Guide, Oracle Corporation.

� Using srvctl to Manage your 10g RAC Database. Natalka Roshak, 8/20/2005

� Pro Oracle Database 10g on Linux, Julian Dyke and Steve Shaw, Apress

PAGE
1

