 Development Track

Real World Solutions using the Perl DBI
 Mishek

Real World Solutions Using the Perl DBI

 Timothy Mishek, ITT
Perl DBI Just Might Be the Solution

In the real world, how many times do we get tasked with trying to find a solution to an administration request that is quick and inexpensive. It is a fact that in today’s business environment, the cheaper solution often wins out. Since Perl and the underlying DBI module is free and accessible, unleashing this power can provide alternatives for the Oracle DBA not found with even the best tools. Real world solutions uncovering the power of the Perl DBI will detail database administration areas including database monitoring, generating reports, loading flat files, and generating DDL.

Getting Started

If programming Perl is a new experience or an old friend, it is well worth reviewing the basic elements in a simple Perl DBI program. Since Perl is an interpretative language and not compiled, the source is compiled at run time. What does this mean in English? Simply, the program is run from the script containing the source code. With languages such as C, the source code is compiled into an executable and then the executable is run. Perl eliminates the compilation step, at least to the user that is. Thinking about this, the Perl script containing the source code is the executable. By looking at the following line of Perl code, starting the Perl interpreter is invoked by adding “#!/usr/bin/perl” or something similar to the beginning of the program. Incidentally, a Perl script can be run by calling the Perl application outside the file being run at the command line. Using an example file called test.pl, it would look like “C:\perl test.pl” at the command prompt assuming this were run in windows. The next section of the Perl program will normally load external Perl modules. This is notated by the word “use” followed by the module name. When using DBI, “use DBI;” will most likely be at the beginning of the program telling the Perl interpreter to load the DBI module. Using the above examples, the first few lines of code will look something like this:

#!/usr/bin/perl –w use DBI;

In the first line, the “-w” switch is used. It is optional, but should be used to indicate problems or warnings within the program.

Some of the most common symbols used in the Perl language include “$”, “@”, “%”. The “$” symbol is used to define a scalar variable, a “@” is used to define an array, and a “%” is used to define a hash. In most Perl programming, the scalar variables, arrays, and hashes are declared in the section under “use” near the top of the script. It is often that a variable is declared by the word “my” in front of the variable declaration indicating the variable is private. The significance is a private variable is not visible until the statement after its declaration. In the example where the variables are declared at the beginning of the program, the variables are visible to all the code after the declaration. After adding in the variable declaration, the example would look like the following:

#!/usr/bin/perl –w

use DBI;

my $var1 = q(test); #scalar variable named $var1

my @arr1 = q(test1, test2); #array variable @arr1

%words = qw(#hash named %words

 fred camel

 barney llama

 betty alpaca

 wilma alpaca

);

When looking at the sample program so far, the “q()” is the Perl way of putting single quotes around a string. By contrast, “qw()” quotes a list of single-word strings by splitting its argument on white space.

A Bird’s eye view of the DBI

In order to get a bird’s eye view of the Perl DBI, examples of several common methods will be looked at next. The connect method (also referred to as a handle) looks like the following example. The connection is assuming a tnsname of “orcl” with the username “scott” and the password “tiger”. Since AutoCommit is evaluated to false it will be turned off (default is true). RaiseError and PrintError are evaluated to true. Any DBI error will exit the program at this point and not continue to execute anything further. In this example, “croak” is the equivalent to “die” using the Carp module.

$dbh = DBI->connect(“dbi:Oracle:orcl”,”scott”,”tiger”,

 {AutoCommit => 0,

 RaiseError => 1,

 PrintError => 1})

 or croak($DBI::errstr);

Once the connection method is open, a “prepare” or “do” method is called next. Depending on what is being done, the “execute” may or may not be used. The first example will illustrate an insert statement using “prepare”. The prepare method always needs an execute method to be called in order to execute what is being prepared. In the second example, the “do” method has the execute portion built in and does not need the second step. To illustrate this, look at the following examples.

Prepare method using an insert statement and later being executed by the execute method:

$sth = $dbh->prepare(" insert into big (BIGNO, BNAME)

 values (?,?) ");

$sth->execute($fields[0], $fields[1]);

Do method using an alter statement on the database:

$dbh->do(q{ALTER USER scott identified by tiger});

In the first example, note the use of bind variables in the insert statement. The second example shows the use of the q{} instead of the literal double quotes.

A database transaction can be controlled programmatically in DBI by using the “commit” or “rollback” methods. When the execution of the perl program or script completes, the transactions are commited by default assuming AutoCommit is set to false in the connection string. If AutoCommit is not set or is set to true, the transactions are commited during each execution. The rollback method will simply not work if AutoCommit is set to true so it is import to always set this to false. A commit and rollback method in DBI adds functionality especially in the data load example shown later. Consider the following two examples:

$dbh->commit(); #commits a transaction

$dbh->rollback(); #rolls back a transaction

Take note of the “#” sign in the previous example. Anything after the “#” will not be executed and is considered a comment in Perl.

Disconnecting a database connection is done by default once the program has finished executing. However, it is good practice to issue a disconnect through DBI. On a single line, it looks like this:

$dbh->disconnect();

Perl Solutions for the Real World

Database Monitoring

After looking at Perl and DBI basics, now is a good time to start looking at some code examples. To get started, the first solution will look deeper into Database monitoring. To make it simple, anything available in the Oracle data dictionary can be used to do real time monitoring. The “v$”and “dba_” views in Oracle contain a wealth of data that can be used. Looking specifically at tablespace usage, the following code example will demonstrate how to send an email to a DBA if any of the tablespaces go over 90%. When stepping through the code, follow along through the comments “#” for an explanation of what the program is doing.

 #!/usr/bin/perl -w

#

##

Define the Perl modules to be used

use Env qw(ORACLE_SID); #needed if using environment variable

use strict; #makes perl more strict. optional

use DBI; #make sure DBI is in upper case

use Carp; #needed for croak

use Getopt::Long; #needed for command line options

use Time::localtime;

use Mail::Mailer; #mail tools, module might need to be installed

#

###

Initialize variables

my $Interface = q{dbi};

my $Drv = q{Oracle};

my $Instance;

my $Schema;

my $PassWord;

my @emailAddress;

my ($dbh, $sth, @row);

my $Help;

my $NA = q{NA};

my $tm = localtime;

my $Date = sprintf("%04d-%02d-%02d %02d:%02d:%02d",$tm->year+1900,($tm->mon)+1,$tm->mday,$tm->hour,$tm->min,$tm->sec);

my $MailTo;

my $type;

my %headers;

my $mailprog;

#

##

If command line options are missing, this message is printed

my $Options = <<X;

$0

 --s <schema name>

 --p <password>

 --i <instance>

 --e <email>

 --h : this screen

 NOTE : This scipt requires all command line options for any remote database.

 Examples :

 $0 --s orcl --p password --i oracle --e "email address 1","email address 2"

X

#

###

process command line options

 GetOptions("s=s" => \$Schema,

 "p=s" => \$PassWord,

 "i=s" => \$Instance,

 "e=s" => \@emailAddress,

 "h!" => \$Help);

 croak("$Options") if (! defined($Schema) or $Help or $Getopt::Long::error);

###

Assign the results from the command line options to $Db to be used later

in the DBI connection string.

my $Db = join(":",$Interface,$Drv,$Instance);

###

Variables needed to send mail

my $DbMessage = q{Tablespace Alarm for};

my $MailMessage = join(" ",$DbMessage,$Instance);

needed for sending Unix mail

$type = 'sendmail';

$mailprog = Mail::Mailer->new($type);

###

##

Perform the connection through the Oracle driver

 $dbh = DBI->connect($Db,$Schema,$PassWord,

 {AutoCommit => 0,

 RaiseError => 1,

 PrintError => 1})

 or croak($DBI::errstr);

##

##

Create Alarm function. This function creates the email message and sends the

results to the email recipient

##

##

sub createAlarm {

my $alarmmsg = "\n

Database: $Instance

Severity: Severe

Problem: Tablespace $row[0] is at $row[1]%

Date: $Date

Action: Contact the Oracle Administrator oncall with above info\n";

Use the print option in place of sending email Uncomment to send to screen

print "$alarmmsg";

loop through the array of email addresses from the

foreach $MailTo (@emailAddress) {

mail headers to use in the message

%headers = (

 'To' => $MailTo,

 'From' => 'Database Administrator',

 'Subject' => $MailMessage

);

$mailprog->open(\%headers);

print $mailprog "$alarmmsg\n";

$mailprog->close;

}

 return;

}

Prepare the sql statement to return all records about tablespace usage

##

 $sth = $dbh->prepare("select fs_ts_name, round((sum_df_blocks - sum_fs_blocks)

 /sum_df_blocks*100,0)

 from (select tablespace_name fs_ts_name, sum(blocks)

 sum_fs_blocks

 from sys.dba_free_space fs

 group by tablespace_name),

 (select tablespace_name df_ts_name, sum(blocks)

 sum_df_blocks

 from sys.dba_data_files df

 group by tablespace_name)

 where fs_ts_name = df_ts_name

 and fs_ts_name <> 'TEMP'");

##

Execute the statement in the database

 $sth->execute();

##

Return rows of data and evaluate if the tablespace is greater than 90%

##

 while (@row = $sth->fetchrow_array()) {

if(($row[1] > 90) && ($row[1] ne $NA)) {

createAlarm(); # if true, call the createAlarm function above.

}

 }

##

Disconnect the database connection

##

 $dbh->disconnect();

exit;

Assuming the script name is tablespace.pl, running the script at the command line would look like this:

$tablespace.pl --s orcl --p password --i oracle --e "email 1","email 2"

The previous line demonstrates the power of perl. Since the script is set up to take command line arguments, our tablespace program is now portable and can be used for multiple databases without changing any of the underlying code.

Building Reports

If a quick report is needed, Perl might be the answer. The next code example will illustrate how to build a report using the scott/tiger schema and print it back to the screen. Upon looking over the next example, notice how the “@” “<” “>” are used in the report. The “@” is used as the place holder and the “< >” symbols are used to format justified left or right depending on the desired direction. When building a report, change the direction of the “< >” and move the place holders “@” for the desired look.

#!/usr/bin/perl -w

#

##

Define the Perl modules to be used

use Env qw(ORACLE_SID);

use strict;

use DBI; #make sure DBI is in upper case

use Carp;

use Getopt::Long;

use Time::localtime;

#

###

Initialize variables

my $Interface = q{dbi};

my $Drv = q{Oracle};

my $Instance;

my $Schema;

my $PassWord;

my ($dbh, $sth, @row);

my $Help;

my $tm = localtime;

my $Date = sprintf("%04d-%02d-%02d",$tm->year+1900,($tm->mon)+1,$tm->mday);

my $Time = sprintf("%02d:%02d:%02d",$tm->hour,$tm->min,$tm->sec);

my $ReportName = q{Total Employee Location Report};

my $Total = 0;

my $i = 0;

#

##

#

my $Options = <<X;

$0

 --s <schema name>

 --p <password>

 --i <instance>

 --h : this screen

 NOTE : This scipt requires all command line options for any remote database.

 Examples :

 $0 --s orcl --p password --i oracle

X

#

###

process command line options

 GetOptions("s=s" => \$Schema,

 "p=s" => \$PassWord,

 "i=s" => \$Instance,

 "h!" => \$Help);

 croak("$Options") if (! defined($Schema) or $Help or $Getopt::Long::error);

###

Assign the results from the command line options to $Db to be used later

in the DBI connection string.

my $Db = join(":",$Interface,$Drv,$Instance);

###

##

Perform the connection through the Oracle driver

 $dbh = DBI->connect($Db,$Schema,$PassWord,

 {AutoCommit => 0,

 RaiseError => 1,

 PrintError => 1})

 or croak($DBI::errstr);

Prepare the sql statement

##

 $sth = $dbh->prepare("select a.ename, a.job, b.deptno, b.dname, b.loc

 from emp a, dept b

 where a.deptno = b.deptno

 order by deptno");

##

Execute the statement in the database

 $sth->execute();

##

Return rows of data

##

##

Return rows of data

##

 while (@row = $sth->fetchrow_array()) {

 write STDOUT;

 $Total++;

 }

##

Disconnect the database connection

##

 $dbh->disconnect();

##

This section prints the actual report and formats it to the given

specifications using STDOUT_TOP and STDOUT.

format STDOUT_TOP =

@<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Date : @<<<<<<<<<<<<<<<<<<

$ReportName, $Date,

 Time : @<<<<<<<<<<<<<<<<<<

 $Time,

Instance : @<<<<<<<<<<<<< User : @<<<<<<<<<<<<<<<<<<

$Instance, $Schema

Employee Name Job Dept Number Dept Name Location

.

format STDOUT =

@<<<<<<<<<<<<<<<<<<<<< @<<<<<<<<< @>>>>>>>>>> @>>>>>>>>>> @<<<<<<<<

$row[0],$row[1],$row[2],$row[3],$row[4]

.

$= is the lines per page . Normal printers have this as 59

$= = 59;

##

print a line before printing totals

#

$row[0] = "-----------------------";

$row[1] = "";

$row[2] = "";

$row[3] = "";

$row[4] = "---------";

write;

##

print totals

#

$row[0] = "TOTAL Employees";

$row[1] = "";

$row[2] = "";

$row[3] = "";

$row[4] = $Total;

write;

exit 0 ;

Assuming the file name is dbreport.pl, this is what is run at the command line using the “scott/tiger” account and database “orcl”.

$dbreport.pl --s scott --p tiger --i orcl

Results of the report:

Total Employee Location Report Date : 2004-12-15

 Time : 10:20:00

Instance : orcl User : scott

Employee Name Job Dept Number Dept Name Location

CLARK MANAGER 10 ACCOUNTING NEW YORK

KING PRESIDENT 10 ACCOUNTING NEW YORK

MILLER CLERK 10 ACCOUNTING NEW YORK

SMITH CLERK 20 RESEARCH DALLAS

ADAMS CLERK 20 RESEARCH DALLAS

FORD ANALYST 20 RESEARCH DALLAS

SCOTT ANALYST 20 RESEARCH DALLAS

JONES MANAGER 20 RESEARCH DALLAS

ALLEN SALESMAN 30 SALES CHICAGO

BLAKE MANAGER 30 SALES CHICAGO

MARTIN SALESMAN 30 SALES CHICAGO

JAMES CLERK 30 SALES CHICAGO

TURNER SALESMAN 30 SALES CHICAGO

WARD SALESMAN 30 SALES CHICAGO

---------------------- ---------

TOTAL Employees 14

Using Perl to Load Flat Files

Loading flat files is almost always needed at one time or another. Since one of Perl’s greatest strengths is parsing flat files, leveraging this power not only makes sense, but is often times a better solution. Using DBI, our next task is to load the big.txt file into a database table. Inside the big.txt file, we find this:

1,ONE THOUSAND

2,ONE THOUSAND

3,ONE THOUSAND

4,ONE THOUSAND

5,ONE THOUSAND

6,ONE THOUSAND

7,ONE THOUSAND

8,ONE THOUSAND

9,ONE THOUSAND

10,ONE THOUSAND

After working with flat files, the delimiters can be anything from spaces to quotes to commas. In this example, the comma will be used as the delimiter. Make note of how much of the same code is being repeated in each example. In the insert statement, look at the usage of the bind variables. This is really important for big database loads regarding performance. The prepare statement only needs to be run one time during the execution. There are also two subroutines being used, one for parsing the file, the other for doing the insert.

#!/usr/bin/perl -w

#

##

Define the Perl modules to be used

use Env qw(ORACLE_SID);

use strict;

use DBI; #make sure DBI is in upper case

use Carp;

use Getopt::Long;

use Time::localtime;

#

###

Initialize variables

my $Interface = q{dbi};

my $Drv = q{Oracle};

my $Instance;

my $Schema;

my $PassWord;

my $FileName;

my (@fields, $line);

my ($dbh, $sth, @row);

my $Help;

my $rc;

my $tm = localtime;

my $Date = sprintf("%04d-%02d-%02d %02d:%02d:%02d",$tm->year+1900,($tm->mon)+1,$tm->mday,$tm->hour,$tm->min,$tm->sec);

#

##

#

my $Options = <<X;

$0

 --s <schema name>

 --p <password>

 --i <instance>

 --f <filename>

 --h : this screen

 NOTE : This scipt requires all command line options for any remote database.

 Examples :

 $0 --s orcl --p password --i oracle --f filename.txt

X

#

###

process command line options

 GetOptions("s=s" => \$Schema,

 "p=s" => \$PassWord,

 "i=s" => \$Instance,

 "f=s" => \$FileName,

 "h!" => \$Help);

 croak("$Options") if (! defined($Schema) or $Help or $Getopt::Long::error);

###

Assign the results from the command line options to $Db to be used later

in the DBI connection string.

my $Db = join(":",$Interface,$Drv,$Instance);

###

##

Perform the connection through the Oracle driver

 $dbh = DBI->connect($Db,$Schema,$PassWord,

 {AutoCommit => 0,

 RaiseError => 1,

 PrintError => 1})

 or croak($DBI::errstr);

###

##

Insert Subroutine

##

sub doInsert {

 $sth = $dbh->prepare(" insert into big (BIGNO, BNAME)

 values (?,?) ");

 $sth->execute($fields[0], $fields[1]);

}

sub parseFile {

open(OF, $FileName) || die "Cannot open $FileName: $!"; #open file handle

while ($line = <OF>) {

 @fields = split(/,/,$line); # split $line, using "," as delimiter

 chomp($fields[1]); #gets rid of return characters

 doInsert();

 }

close(OF) || die "couldn't close $FileName: $!"; #close file handle

}

parseFile();

$rc = $dbh->commit or die $dbh->rollback; #if there is an error, rollback

 #transaction otherwise commit

##

Disconnect the database connection

##

 $dbh->disconnect();

exit;

In the above code, notice the use of the file handle and the split function in the “parseFile” subroutine.

Generation of DDL

Perl DBI in conjunction with the oracle DDL module provides a quick and easy way to generate DDL. When Oracle tools are not available, Perl provides a simple alternative to building DDL. After looking over the following example, notice how DDL is generated using a data dictionary view to build the results. The oracle DDL module has to be installed as a separate component and is not included with the oracle DBD and DBI modules.

#!/usr/bin/perl

use DBI;

use DDL::Oracle;

 my $dbh = DBI->connect(

 "dbi:Oracle:orcl",

 "system",

 "manager",

 {

 PrintError => 1,

 RaiseError => 1,

 AutoCommit => 0

 }

);

 # Use default resize and schema options.

 # query default DBA_xxx tables (could use USER_xxx for non-DBA types)

 DDL::Oracle->configure(

 dbh => $dbh,

);

 # Create a list of one or more objects

 my $sth = $dbh->prepare(

 "SELECT owner, table_name

 FROM dba_tables

 WHERE owner = 'scott'"

);

 $sth->execute;

 my $list = $sth->fetchall_arrayref;

 my $obj = DDL::Oracle->new(

 type => 'table',

 list => $list,

);

 my $ddl = $obj->create; # or $obj->resize; or $obj->drop; etc.

 print $ddl; # Use STDOUT so user can redirect to desired file.

Not only is this a simple solution to creating DDL, it is also practical and incredibly flexible.

Wrapping Up

Perl extras

There are several little extras that are worth mentioning if the job demands more out of Perl. Here are a few odds and ends.

Perl and PL/SQL

In order to illustrate a common issue, it is necessary to run a block of PL/SQL embedded inside a Perl script. The Perl DBI is able to do this by using the “prepare()” method and “func()” method to display the results using DBMS_OUTPUT.PUT.LINE. By looking at a PL/SQL block used in analyzing statistics, the code would look something like the following:

$dbh->func(1_000_000, 'dbms_output_enable'); #needed to enable the output

$sth = $dbh->prepare(q{

DECLARE

TYPE tmp_table_name IS RECORD (

 t_owner varchar2(30),

 t_table_name varchar2(30));

 n_table_name tmp_table_name;

CURSOR table_cursor IS

 SELECT owner,table_name

 FROM DBA_TABLES

 WHERE owner <> 'SYS'

 and owner <> 'SYSTEM'

 and owner <> 'XDB'

 and iot_type is NULL

 and table_name not in(select table_name from dba_external_tables);

BEGIN

 DBMS_OUTPUT.ENABLE (1000000);

 OPEN table_cursor;

 LOOP

 FETCH table_cursor INTO n_table_name;

 EXIT WHEN table_cursor%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(n_table_name.t_owner|| '.' ||n_table_name.t_table_name);

 DBMS_DDL.ANALYZE_OBJECT('table', n_table_name.t_owner,

 n_table_name.t_table_name, 'compute');

END LOOP;

CLOSE table_cursor;

COMMIT;

END;

 });

##

Execute the statement in the database

##

 $sth->execute();

##

Return rows of data

##

print $dbh->func('dbms_output_get'), "\n"; #output the results using print

SYSDBA and Perl

As all DBA’s know, connecting “SYS as SYSDBA” is a necessary foe. When using SQL*Plus, the familiar (or all too familiar) connection string looks like this:

sqlplus “sys/manager as sysdba”

Using Perl, the DBI connection string adds the “ora_session_mode => 2” to the end. In order to illustrate this, consider the following example:

$dbh = DBI->connect(“dbi:Oracle:orcl”,”sys”,”manager”,

 {AutoCommit => 0,

 RaiseError => 1,

 PrintError => 1,

 ora_session_mode => 2})

 or croak($DBI::errstr);

Committing Records

When doing large inserts or bulk inserts, it is sometimes necessary to commit the transactions to the database every so often. There is an easy solution using the “modulus” or “%” operator. Consider the following example where every 5000th record is committed. This code block would normally be placed inside a “while” or “for” loop.

my $commit=5000;

if (($count % $commit) == 0) {

 $dbh->commit();

 }

$count++;

Encryption of Passwords

Encrypting passwords in Perl is possible by using the PDBA (Perl DBA) toolkit available on the web on the O’Reilly web site. The two files out of the toolkit are “pwd.pl” and “pwc.pl”. The “pwd.pl” acts as the password server via a TCP socket, and “pwc.pl” is the client piece that retrieves the encrypted passwords remotely.

White Space in Perl Programming

Normally, Perl does not care about white space. However, keep in mind that generally anything inside double quotes or the equivalent q{} is concerned about white space. After looking at the report that was built above using “STDOUT”, changing the white space will absolutely change the look of the printed output.

Conclusion

Using the power of the Perl DBI, DBA’s have an alternative to deal with real world issues and turn them into real world solutions. By using the framework provided in this session, the power is in your hands. Build upon it, tear it down, make it better, but whatever you do, have fun and enjoy the journey.

About the Author

With over 10 years of Oracle DBA and application development experience from MCI, Channelpoint, DMCare, SAIC, and ITT, Tim Mishek continues to be an active IT professional with consulting, training, and educational projects. He has experience with both database development and production support. Currently Mr. Mishek works as a Systems Database Analyst at ITT.
Resources:

Perl for Oracle DBA’s by Andy Duncan and Jared Still (O’Reilly)

Programming the Perl DBI by Allibator Descartes and Tim Bunce (O’Reilly)

Perl Programmer’s reference by Martin C. Brown (Osborne/McGraw-Hill)

www.ioug.org
Collaborate 2008
www.ioug.org
Collaborate 2008

