Development

Analytic SQL for Beginners
Mark Inman, U.S. Navy

Objective Overall

To become acquainted with analytic SQL.

Analytic Syntax

Analytic expressions are placed in the column list of a query.
They cannot be directly referenced in a WHERE clause. Therefore, if you need to reference an analytic expression in a WHERE clause, one must put the SELECT inside an inline view, then the analytic expression can be referenced – in directly.

For example, you have your query (and it works):

select

 t.*

 , some_analytic_expression my_ae

from some_table t;

Figure 1 - Example Analytic Query
Let us try putting the analytic expression in the WHERE clause:
select

 t.*

 , some_analytic_expression my_ae

from some_table t

where some_analytic_expression = some_column_in_some_table

/

where some_analytic_expression = some_column_in_some_table

 *

ERROR at line 5:

ORA-00934: group function is not allowed here

Figure 2 - Example Analytic Expression Referenced in Where Clause
This will work:

select *

from

 (

 select

 t.*

 , some_analytic_expression my_ae

 from some_table t

)

where my_ae = some_column_in_some_table;

Figure 3 - Example Analytic Expression Referenced in Where Clause by way of Inline View
Analytic expressions are in the form of:

· function

· PARTITION BY clause

· ORDER BY clause

· windowing clause

All analytic expressions have a function – but the other three clauses are not required.
Here is a summary of analytic expression types:

	
	Non-Analytic

Available
	PARTITION BY
	ORDER BY
	WINDOWING

	Ranking
	
	(
	(
	

	Windowing Aggregate
	
	(
	(
	(

	Reporting Aggregate
	(
	(
	(
	

	RATIO_TO_REPORT
	
	(
	
	

	LAG/LEAD
	
	(
	(
	

	FIRST/LAST
	(
	(
	(
	

	Linear Regression
	(
	(
	(
	(

	Inverse Percentile
	(
	(
	
	

Table 1 - Analytic Functions and Clause Usage
In this lesson, we plan to cover "Reporting Aggregate", "Ranking", "Windowing Aggregate", and "LAG/LEAD".

First Objective

To get aggregate and detail data in the same query – without selecting the same table twice.
Finding the Maximum of a Column with Traditional and Analytic SQL

In discussing the benefits of analytic SQL, we will use a copy of DBA_OBJECTS as an example table.

create table thing

tablespace users

as

select *

from dba_objects

/

Figure 4 - Example Table
So, if our objective is to show the individual OBJECT_ID values from THING but also show the MAX of the OBJECT_ID values, how do we do that using analytic SQL?

We shall demonstrate a really simple analytic expression below. The expression calculates the maximum of OBJECT_ID over the whole result set.

select

 object_id

 , owner

 , max(object_id) over () as max_object_id /* <-- ANALYTIC EXPRESSION */

from thing

where rownum <= 5

/
 OBJECT_ID OWNER MAX_OBJECT_ID

---------- ----- -------------

 20 SYS 44

 44 SYS 44

 28 SYS 44

 15 SYS 44

 29 SYS 44
Figure 5 - Analytic MAX Over All the Rows
With the normal group by MAX, one cannot aggregate by one column and show a second column in the column list.

01 select

02 object_id

03 , owner

04 , max(object_id)

05 from thing

06 where rownum <= 5

07 group by

08 object_id;

 , owner

 *

ERROR at line 3:

ORA-00979: not a GROUP BY expression
Figure 6 - Normal MAX Attempt 1

If you put both columns in the GROUP BY the result will not be the same. MAX_OBJECT_ID will not look right.

select

 object_id

 , owner

 , max(object_id) max_object_id

from thing

where rownum <= 5

group by

 object_id

 , owner;

 OBJECT_ID OWNER MAX_OBJECT_ID

---------- ----- -------------

 15 SYS 15

 20 SYS 20

 28 SYS 28

 29 SYS 29

 44 SYS 44
Figure 7 - Normal MAX Attempt 2

If you put OWNER in the GROUP BY, the result will not be the same.

select

 object_id

 , owner

 , max(object_id) max_object_id

from thing

where rownum <= 5

group by

 object_id

 , owner;

 OBJECT_ID OWNER MAX_OBJECT_ID

---------- ----- -------------

 15 SYS 15

 20 SYS 20

 28 SYS 28

 29 SYS 29

 44 SYS 44

Figure 8 - Normal MAX Attempt 3
An inline view will work however with the MAX calculation will work however. The query below has an inline view with and alias of "Z" that performs the MAX calculation.

select

 object_id

 , owner

 , z.max_object_id

from

 thing

 , (

 select max(object_id) max_object_id

 from thing

 where rownum <= 5

) z

where rownum <= 5

/
 OBJECT_ID OWNER MAX_OBJECT_ID

---------- ----- -------------

 20 SYS 44

 44 SYS 44

 28 SYS 44

 15 SYS 44

 29 SYS 44
Figure 9 – MAX in an Inline View
The query also returns the result pretty fast so it would seem that there are no performance problems with using this approach.

But, while this query is sufficient for small things -- for big things it might not scale so well.

Let us repeat the query above while using "set autotrace on" .

It might be good however to talk first about SET AUTOTRACE. SET AUTOTRACE is a SQL*Plus command that automatically gives us the statistics and query plan (or explain plan) for any DML statement that gets executed. It is very easy to use and informative.
When we talk about the output of SET AUTOTRACE in this paper, we are really concerned with buffer gets – consistent gets and db block gets – the logical I/O. If that number goes lower that is good. One always needs logical I/O to pull data off the buffer cache – and sometimes needs physical I/O to get data into the buffer cache. Reduce the logical and the physical will follow.

set autotrace on
Figure 10 - SQL*Plus SET AUTOTRACE ON Command
The execution plan shows that a full table scan is run on THING twice – although the two "COUNT (STOPKEY)" steps show that it stops after X number of records – where X is in our case is the number five.

Execution Plan

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=149 Card=5 Bytes=90)

 1 0 COUNT (STOPKEY)

 2 1 NESTED LOOPS (Cost=149 Card=5 Bytes=90)

 3 2 VIEW (Cost=147 Card=1 Bytes=13)

 4 3 SORT (AGGREGATE)

 5 4 COUNT (STOPKEY)

 6 5 TABLE ACCESS (FULL) OF 'THING' (TABLE) (Cost=147 Card=46254 Bytes=231270)

 7 2 TABLE ACCESS (FULL) OF 'THING' (TABLE) (Cost=2 Card=5 Bytes=25)

Figure 11 - Execution Plan for "MAX in an Inline View"
The statistics show nine buffer gets (db block gets and consistent gets) and no sorts of any kind.
Statistics

--

 0 db block gets

 9 consistent gets

 0 physical reads

 0 sorts (memory)

 0 sorts (disk)

Figure 12 - Statistics for "MAX in an Inline View"
Let us repeat the analytic query above with "autotrace" and review.
The execution plan shows one full table scan of THING. The "WINDOW (BUFFER)" step is where the "MAX(OBJECT_ID) OVER ()" operation takes place.
Execution Plan

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=2 Card=5 Bytes=25)

 1 0 WINDOW (BUFFER) (Cost=2 Card=5 Bytes=25)

 2 1 COUNT (STOPKEY)

 3 2 TABLE ACCESS (FULL) OF 'THING' (TABLE) (Cost=2 Card=5 Bytes=25)

Figure 13 - Execution Plan for "Analytic MAX Over All Rows"
The statistics show four buffer gets and one memory sort. The memory sort below and the "WINDOW (BUFFER)" step above are the same thing.

Statistics

--

 0 db block gets

 4 consistent gets

 0 physical reads

 1 sorts (memory)

 0 sorts (disk)

Figure 14 - Statistics for "Analytic MAX Over All Rows"
So, let us summarize the differences:
	
	Traditional
	Analytic

	Buffer Gets
	9
	4

	Table Scans
	2
	1

	Memory Sorts
	0
	1

	Disk Sorts
	0
	0

Table 2 - Comparison of Traditional versus Analytic
The analytic query is the better query because of (1) the smaller number of blocks obtained from the buffer cache, (2) less table scans, and (3) despite the additional memory sort. Memory sorts are better than disk sorts of course, because memory is much faster.

The analytic query will probably scale better with more rows than the traditional query – and the analytic query is smaller in size.

Let us confirm this hypothesis that the analytic query scales better. Let us try 50, 500 rows, and all the rows.
	
	Traditional

Buffer Gets
	Traditional Memory Sorts
	Analytic

Buffer Gets
	Analytic Memory Sorts

	5
	9
	0
	4
	1

	50
	12
	0
	4
	1

	500
	51
	0
	9
	1

	All Rows (46254)
	4329
	0
	642
	1

Table 3 - Scaling Comparison of Traditional versus Analytic
The analytic query is the clear winner – your database may differ in the results due to (1) version, (2) sort_area_size or pga_aggregate_target, (3) db_block_size, (4) db_block_multiread_count, (5) object counts, (6) arraysize, and (7) other unmentioned factors. SORT_AREA_SIZE and PGA_AGGREGATE_TARGET in particular can affect your analytic query results because there are sort steps – so one or the other of these two parameters should be set sufficiently.

Here are graphs for this data:

[image: image1.emf]Buffer Gets Versus Rows

4 4 9

Analytic, 642

9 12

51

Non-Analytic, 4329

-1000

0

1000

2000

3000

4000

5000

5 50 500 46254

Rows

Figure 15 - Buffer Gets Versus Rows - Linear Vertical Scale

[image: image2.emf]Buffer Gets Versus Rows

4 4

9

Analytic, 642

Non-Analytic, 4329

51

12

9

1

10

100

1000

10000

5 50 500 46254

Rows

Figure 16 - Buffer Gets Versus Rows - Vertical Logarithmic Scale

So far, we have shown the following benefits of analytic expressions:

· Better performance.

· Smaller queries.

· Scales better.

But there are more reasons to use analytic SQL we have not mentioned yet.

Second Objective

To compare traditional ranking and analytic ranking and show why analytic ranking is better.
Ranking with Traditional and Analytic SQL

Suppose we want to get the row that comes out on the top for a given ordering. In the business, this is called a "Top N Query".
For the THING table – which is just a copy of DBA_OBJECTS, let's say we want to find out the first object in a result set ordered by LAST_DDL_TIME. Since we are getting just one, we can call this a top-1 query.
Both ASCENDING and NULLS FIRST are both defaults in ORDER BY statements but we include those explicitly for demonstration sake. Also in this example, we are sorting on just one column – although we can do more. A common approach is shown below – it makes use of an inline view.

set autotrace on

set linesize 500

set trimspool on

col owner for a10

col object_name for a12

col object_type for a10

col last_ddl_time for a9

select

 owner

 , object_name

 , object_type

 , last_ddl_time

 , rownum

from

 (

 select *

 from minman_dba.thing

 ORDER BY

 LAST_DDL_TIME ASC NULLS FIRST

)

where rownum = 1

/

OWNER OBJECT_NAME OBJECT_TYP LAST_DDL_ ROWNUM

---------- ------------ ---------- --------- ----------

MDSYS SDO_REGION TYPE 01-OCT-02 1

Figure 17 - Traditional Top-1 Query
Here are the "execution plan" and "statistics" for the traditional top-1 query:

Execution Plan

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=147 Card=1 Bytes=103)

 1 0 COUNT (STOPKEY)

 2 1 VIEW (Cost=147 Card=46254 Bytes=4764162)

 3 2 SORT (ORDER BY STOPKEY) (Cost=147 Card=46254 Bytes=4301622)

 4 3 TABLE ACCESS (FULL) OF 'THING' (TABLE) (Cost=147 Card=46254 Bytes=4301622)
Statistics

--

 0 db block gets

 642 consistent gets

 0 physical reads

 1 sorts (memory)

 0 sorts (disk)

Figure 18 - Execution Plan and Statistics for Traditional Top-1 Query
Here is the analytic top-1 query:

select

 owner

 , object_name

 , subobject_name

 , object_type

 , MY_ROWNUM

from

 (

 select

 x.*

 , ROW_NUMBER() OVER

 (

 ORDER BY

 LAST_DDL_TIME ASC NULLS FIRST

)

 AS MY_ROWNUM

 from minman_dba.thing x

)

where MY_ROWNUM = 1

/

Figure 19 - Analytic Top-1 Query
Notice the differences between the analytic top-1 query and the previous version in Figure 17:

the analytic query has an additional column – the ROW_NUMBER analytic expression – the expression is given an alias of MY_ROWNUM referenced outside the inline view
the non-analytic query uses the ROWNUM keyword to keep track of what is row number 1 et cetera

Both the non-analytic select and analytic expression have the same ORDER BY clause however.

Here is the execution plan for the analytic top-1 query:
Execution Plan

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=726 Card=46254 Bytes=5735496)

 1 0 VIEW (Cost=726 Card=46254 Bytes=5735496)

 2 1 WINDOW (SORT PUSHED RANK) (Cost=726 Card=46254 Bytes=2312700)

 3 2 TABLE ACCESS (FULL) OF 'THING' (TABLE) (Cost=147 Card=46254 Bytes=2312700)

Figure 20 - Execution Plan for "Analytic Top-1 Query "
Note that the ROW NUMBER() calculation is done in step 2 – where it says "WINDOW (SORT PUSHED RANK)".

Here are the "statistics" for the analytic top-1 query:

Statistics

--

 0 db block gets

 642 consistent gets

 0 physical reads

 1 sorts (memory)

 0 sorts (disk)

Figure 21 - Statistics for "Analytic Top-1 Query"

Note that the 642 buffer gets for the analytic query are no different than the traditional query.

At this point, there is no apparent advantage to the analytic syntax with this top-1 query:

· The analytic query is longer and more complicated.

· The analytic query performs only the same and not better.

Now, let's say we want to get the highest rank or row_number for just two object types – tables and procedures. The non-analytic SQL would look like this …
select

 owner

 , object_name

 , object_type

 , last_ddl_time

 , rownum

from

 (

 select *

 from minman_dba.thing

 where object_type = 'TABLE'

 order by

 last_ddl_time asc nulls first

)

where rownum = 1

union all

select

 owner

 , object_name

 , object_type

 , last_ddl_time

 , rownum

from

 (

 select *

 from minman_dba.thing

 where object_type = 'PROCEDURE'

 order by

 last_ddl_time asc nulls first

)

where rownum = 1

/

Figure 22 – Traditional Top-1 Query for Tables and Procedures
We get the first procedure and table according to our order by in the result set (really two order by's).
OWNER OBJECT_NAME OBJECT_TYP LAST_DDL_ ROWNUM

---------- ------------ ---------- --------- ----------

SYS UNDO$ TABLE 03-FEB-06 1

SYS PSTUBT PROCEDURE 03-FEB-06 1

Figure 23 - Result Set for "Traditional Top-1 Query for Tables and Procedures"
Here is the "execution plan” for the traditional top-1 query for tables and procedures:

Execution Plan

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=329 Card=2 Bytes=206)

 1 0 UNION-ALL

 2 1 COUNT (STOPKEY)

 3 2 VIEW (Cost=180 Card=1331 Bytes=137093)

 4 3 SORT (ORDER BY STOPKEY) (Cost=180 Card=1331 Bytes=123783)

 5 4 TABLE ACCESS (FULL) OF 'THING' (TABLE) (Cost=148 Card=1331 Bytes=123783)

 6 1 COUNT (STOPKEY)

 7 6 VIEW (Cost=149 Card=70 Bytes=7210)

 8 7 SORT (ORDER BY STOPKEY) (Cost=149 Card=70 Bytes=6510)

 9 8 TABLE ACCESS (FULL) OF 'THING' (TABLE) (Cost=148 Card=70 Bytes=6510)

Figure 24 - Execution Plan for "Traditional Top-1 Query for Tables and Procedures"
Here are the relevant statistics for the traditional top-1 query for tables and procedures:
Statistics

--

 0 db block gets

 1284 consistent gets

 0 physical reads

 2 sorts (memory)

 0 sorts (disk)

Figure 25 - Statistics for "Traditional Top-1 Query for Tables and Procedures"
Now, let's try the analytic top-1 query for tables and procedures:
select

 owner

 , object_name

 , object_type

 , last_ddl_time

 , my_rownum

from

 (

 select

 t.*

 , row_number()

 over

 (

 PARTITION BY OBJECT_TYPE

 order by last_ddl_time asc nulls first

) my_rownum

 from minman_dba.thing t

 WHERE OBJECT_TYPE IN ('TABLE','PROCEDURE')

)

where my_rownum = 1

/

Figure 26 - Analytic Top-1 Query for Tables and Procedures
There are only two differences between:

Figure 19 - Analytic Top-1 Query and
Figure 26 - Analytic Top-1 Query for Tables and Procedures immediately above

The differences are:

· PARTITION BY OBJECT_TYPE
· WHERE OBJECT_TYPE IN ('TABLE', 'PROCEDURE')
Syntactically, this is a simpler query than in Figure 22 – Traditional Top-1 Query for Tables and Procedures.

Here is the "execution plan" for tables and procedures analytic top 1 query:

Execution Plan

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=150 Card=1400 Bytes=162400)

 1 0 VIEW (Cost=150 Card=1400 Bytes=162400)

 2 1 WINDOW (SORT PUSHED RANK) (Cost=150 Card=1400 Bytes=67200)

 3 2 TABLE ACCESS (FULL) OF 'THING' (TABLE) (Cost=149 Card=1400 Bytes=67200)

Figure 27 - Execution Plan for "Analytic Top 1 Query for Tables and Procedures"
Note that the ROW_NUMBER calculation takes place in step 2 – WINDOW (SORT PUSHED RANK).

Here are the "statistics" for the tables and procedures analytic top 1 query:
Statistics

--

 0 db block gets

 642 consistent gets

 0 physical reads

 1 sorts (memory)

 0 sorts (disk)
Figure 28 - Statistics for "Analytic Top 1 Query for Tables and Procedures"
Note that the analytic version uses half the gets of the non-analytic version. It also does just one full table scan instead of two.

Suppose that we did all the object types in this database – the non-analytic query would need to have a select for each object_type – whereas with the analytic query all you have to do is take away the WHERE OBJECT_TYPE IN ('TABLES','PROCEDURES').

If one considers the advantages of analytic queries now, we can say the following:

· Better performance in many cases.

· Smaller queries in many cases.

· Scales better in many cases.

· The power of the PARTITION keyword in analytic expressions.
Another way that this query might be accomplished, would be a "multi-column subquery".

select

 owner

 , object_name

 , object_type

 , to_char(last_ddl_time,'yyyymmdd hh24miss') last_ddl_time
from thing

where (object_type, last_ddl_time) in

 (

 select object_type, min(last_ddl_time)

 from thing

 where object_type in ('TABLE','PROCEDURE')
 group by object_type
)

/

Figure 29 - Attempt Duplication with Multi-Column Subquery

But it does not work quite the same, because more than one THING record can have the same exact LAST_DDL_TIME.

OWNER OBJECT_NAME OBJECT_TYP LAST_DDL_TIME

---------- -------------------- ---------- ---------------

SYS UNDO$ TABLE 20060203 212039

SYS PROXY_ROLE_DATA$ TABLE 20060203 212039

SYS FILE$ TABLE 20060203 212039

SYS UET$ TABLE 20060203 212039

SYS SEG$ TABLE 20060203 212039

SYS CLU$ TABLE 20060203 212039

SYS PROXY_DATA$ TABLE 20060203 212039

SYS FET$ TABLE 20060203 212039

SYS PSTUBT PROCEDURE 20060203 212536

SYS PSTUB PROCEDURE 20060203 212536

SYS SUBPTXT2 PROCEDURE 20060203 212536

SYS SUBPTXT PROCEDURE 20060203 212536

12 rows selected.

Figure 30 – Result Set for "Attempt Duplication with Multi-Column Subquery

Now, there are other ranking functions beside ROW_NUMBER, that may be more preferable.
Rank and Dense_Rank

ROW_NUMBER is very similar to ROWNUM. If two records have the same value in the ORDER BY, the two records get different ROW_NUMBER. But RANK and DENSE_RANK do not work like that. If two records have the same value in the ORDER BY, they both get the same RANK or DENSE_RANK. The difference between RANK and DENSE_RANK is how they are counted.

select

 owner

 , object_name

 , object_type

 , last_ddl_time

 , rn, r, dr

from

 (

 select

 t.*

 , row_number() over

 (partition by object_type order by last_ddl_time) RN

 , rank() over

 (partition by object_type order by last_ddl_time) R

 , dense_rank() over

 (partition by object_type order by last_ddl_time) DR

 from minman_dba.thing t

 where object_type in ('PROCEDURE')

)

where rn between 1 and 10;
Figure 31 - ROW_NUMBER, RANK, and DENSE_RANK
DENSE_RANK uses sequential numbers whereas RANK does not. With RANK, if you have four number 1's as shown be low, the next number will be number 5.

	owner
	object_name
	last ddl time
	RN
	R
	DR

	SYS
	PSTUBT
	20060203 212536
	1
	1
	1

	SYS
	PSTUB
	20060203 212536
	2
	1
	1

	SYS
	SUBPTXT2
	20060203 212536
	3
	1
	1

	SYS
	SUBPTXT
	20060203 212536
	4
	1
	1

	SYS
	ODCIINDEXINFOFLAGSDUMP
	20060203 212615
	5
	5
	2

	SYS
	ODCIINDEXINFODUMP
	20060203 212615
	6
	5
	2

	SYS
	ODCIPREDINFODUMP
	20060203 212615
	7
	5
	2

	SYS
	ODCIQUERYINFODUMP
	20060203 212615
	8
	5
	2

	SYS
	ODCICOLINFODUMP
	20060203 212615
	9
	5
	2

	SYS
	ODCISTATSOPTIONSDUMP
	20060203 212615
	10
	5
	2

Figure 32 - Result Set for ROW_NUMBER, RANK, and DENSE_RANK
Third Objective

To show additional flexibility of ROW_NUMBER() analytic expression.
Multiple Sorts in the Same Select

So, let us create an even simpler table than DBA_OBJECTS.

create table another_thing

 (

 first_col char(1)

 , second_col number

)

/

insert into another_thing values ('A',34897324123);

insert into another_thing values ('A',57864511343);

insert into another_thing values ('A',324863274233243);

insert into another_thing values ('A',178234387613423);

insert into another_thing values ('B',433298473219854);

insert into another_thing values ('B',34231);

insert into another_thing values ('B',34093487);

Figure 33 - ANOTHER_THING Creation

Now, let's demonstrate the partition clause.

The query below shows that we can get row number for both "A" and "B" for a given ORDER BY CLAUSE.

select

 first_col

 , second_col

 , ROW_NUMBER() OVER

 (

 PARTITION BY FIRST_COL

 ORDER BY SECOND_COL

)

 MY_FIRST_ROWNUM

from another_thing

/

F SECOND_COL MY_FIRST_ROWNUM

- ---------- ---------------

A 3.4897E+10 1

A 5.7865E+10 2

A 1.7823E+14 3

A 3.2486E+14 4

B 34231 1

B 34093487 2

B 4.3330E+14 3

Figure 34 - One ROW_NUMBER Calculation Query

But, wait there is more!

We can get two sets of row numbers on two different order by clauses within the same select.

select

 first_col

 , second_col

 , row_number() over

 (

 partition by first_col

 order by second_col

)

 my_first_rownum

 , ROW_NUMBER() OVER

 (

 PARTITION BY FIRST_COL

 ORDER BY SECOND_COL DESC NULLS LAST

)

 MY_SECOND_ROWNUM

from another_thing

/
F SECOND_COL MY_FIRST_ROWNUM MY_SECOND_ROWNUM

- ---------- --------------- ----------------

A 3.4897E+10 1 4

A 5.7865E+10 2 3

A 1.7823E+14 3 2

A 3.2486E+14 4 1

B 34231 1 3

B 34093487 2 2

B 4.3330E+14 3 1

Figure 35 - Two ROW_NUMBER Calculations

We can even do another row number with order by clause that is more complex – but the clause we illustrate is not very useful.
select

 first_col

 , second_col

 , row_number() over

 (

 partition by first_col

 order by second_col

)

 my_first_rownum

 , row_number() over

 (

 partition by first_col

 order by second_col desc nulls last

)

 my_second_rownum

 , ROW_NUMBER() OVER

 (

 PARTITION BY FIRST_COL

 ORDER BY MOD(SECOND_COL,10) ASC NULLS FIRST

)

 MY_THIRD_ROWNUM

from another_thing

/

F SECOND_COL MY_FIRST_ROWNUM MY_SECOND_ROWNUM MY_THIRD_ROWNUM

- ---------- --------------- ---------------- ---------------

A 3.4897E+10 1 4 1

A 5.7865E+10 2 3 2

A 1.7823E+14 3 2 4

A 3.2486E+14 4 1 3

B 34231 1 3 1

B 34093487 2 2 3

B 4.3330E+14 3 1 2

7 rows selected.

Figure 36 - Three ROW_NUMBER Calculations

The third row number is kind of random since we are using the MOD function with 10 so we are really ordering by the unit's digit.

Here is the execution plan for the three ROW NUMBER calculation query:

Execution Plan

--

 0 SELECT STATEMENT Optimizer=CHOOSE

 1 0 WINDOW (SORT)

 2 1 WINDOW (SORT)

 3 2 WINDOW (SORT)

 4 3 TABLE ACCESS (FULL) OF 'ANOTHER_THING'

Figure 37 - Execution Plan for "Three ROW_NUMBER Calculations"

Notice that there are three WINDOW (SORT) steps in the query plan above for each ROW_NUMBER calculation

We can even add a fourth ORDER BY for the whole SELECT not just the analytic expressions. Below, we have added an ORDER BY that ignores the partition clauses.

select first_col, second_col

 , row_number() over

 (partition by first_col order by second_col)

 my_1st_rownum

 , row_number() over

 (partition by first_col order by second_col desc)

 my_2nd_rownum

 , row_number() over

 (

 partition by first_col

 order by mod(second_col,10) asc nulls first

)

 my_3rd_rownum

from another_thing

order by second_col;

Figure 38 - Four ORDER BY -- Three for Analytics -- One for Select
The result set looks weird now, there is no apparent ordering since our SELECT ORDER BY ignores the PARTITION BY clauses. The A's and B's come out in no apparent order and the ranks look scrambled – but they are correct.

F SECOND_COL MY_1ST_ROWNUM MY_2ND_ROWNUM MY_3RD_ROWNUM

- ---------- ------------- ------------- -------------

B 34231 1 3 1

B 34093487 2 2 3

A 3.4897E+10 1 4 1

A 5.7865E+10 2 3 2

A 1.7823E+14 3 2 4

A 3.2486E+14 4 1 3

B 4.3330E+14 3 1 2

Figure 39 - Select ORDER BY
If one considers the advantages of analytic queries now, we can say the following:

· Better performance in many cases.

· Smaller queries in many cases.

· Scales better in many cases.

· The power of the PARTITION keyword in analytic expressions.

· Multiple ORDER BY clauses in a single query.

· Multiple PARTITION clauses in a single query (not demonstrated).

Fourth Objective

Demonstrate windowing clause and some usages.

Mechanical Example Window by ROWS

Here is our example table.
create table window_example_1

 (

 col1 varchar2(30)

 , some_value varchar2(1)

);

insert into window_example_1 values ('Thing','A');

insert into window_example_1 values ('Thing','B');

insert into window_example_1 values ('Thing','C');

insert into window_example_1 values ('Thing','D');

insert into window_example_1 values ('Thing','E');

insert into window_example_1 values ('Thing','F');

Figure 40 - Windowing Example 1 Setup
Windowing in analytic SQL allows you to go beyond PARTITION in that for a single row, you can get data from all the other rows but using a window specification (for the single row).
So, now we will get maximum for everything from the first row to at least two rows behind the current row:
select

 t.*

 , max(some_value)
 over
 (
 partition by col1
 order by some_value
 rows between unbounded preceding and 2 preceding
) max_top_to_2rows_behind

from window_example_1 t;

COL1 S M

------------------------------ - -

Thing A

Thing B

Thing C A

Thing D B

Thing E C

Thing F D

Figure 41 Windowing Example 1 Query
So, for the first row there is nothing 2 rows preceding.

For the second row, there is nothing rows preceding.

For the third row, only one row precedes the current row by 2 rows, and we get a maximum SOME_VALUE of A.

Here is an illustration for how this works for the fifth row. The window applies to the first row (unbounded preceding) to the third row (2 preceding the fifth row).

	Col1
	SOME_VALUE
	MAX_TOP_TO_2ROWS_BEHIND

	Thing
	A
	

	Thing
	B
	

	Thing
	C
	

	Thing
	D
	

	Thing
	E
	C

	Thing
	F
	

Table 4 - Windowing Example 1 - 2 Rows Preceding
We can use the same example table to get t he maximum of everything from the first row to 2 rows ahead.
select

 t.*

 , max(some_value)

 over

 (

 partition by col1

 order by some_value

 rows between unbounded preceding and 2 following
) max_top_to_2rows_ahead

from window_example_1 t;

COL1 S M

------------------------------ - -

Thing A C

Thing B D

Thing C E

Thing D F

Thing E F

Thing F F

Figure 42 - Windowing Example 1 - 2 Rows Following

Here is an illustration for how this works for the third row. The window applies to the first row (unbounded preceding) to the fifth row (2 following the third row).

	Col1
	SOME_VALUE
	MAX_TOP_TO_2ROWS_AHEAD

	Thing
	A
	

	Thing
	B
	

	Thing
	C
	E

	Thing
	D
	

	Thing
	E
	

	Thing
	F
	

Table 5 - Windowing Example 1 - 2 Rows Following
Real Life Example Window by ROWS – Accumulation
A common use of windowing by rows is a running total. For a running total, we will make another table.

create table window_example_2

 (

 xdate date

 , payee varchar2(20)

 , category varchar2(9)

 , amount number

) ;

insert into window_example_2 values
(to_date('20080301','yyyymmdd'),'My Apartment','Rent',1465);

insert into window_example_2 values

(to_date('20080302','yyyymmdd'),'Locksmith','Misc.',145);

insert into window_example_2 values

(to_date('20080302','yyyymmdd'),'Edge','Clothing',102.84);

insert into window_example_2 values
(to_date('20080302','yyyymmdd'),'Whole Foods','Groceries',88.78);

insert into window_example_2 values
(to_date('20080304','yyyymmdd'),'DMV','Auto',150);

insert into window_example_2 values
(to_date('20080304','yyyymmdd'),'My Insurance Company','Insurance',153.10);

Figure 43 - Windowing Example 2 Data

Here is a query that has the running total.
col amount for 9999.99

col running_tot for 9999.99

select

 t.*

 , sum(amount) over

 (order by xdate, category, payee rows between unbounded preceding and current row)

 running_tot
from window_example_2 t;

XDATE PAYEE CATEGORY AMOUNT RUNNING_TOT

--------- -------------------- --------- -------- -----------

01-MAR-08 My Apartment Rent 1465.00 1465.00

02-MAR-08 Edge Clothing 102.84 1567.84

02-MAR-08 Whole Foods Groceries 88.78 1656.62

02-MAR-08 Locksmith Misc. 145.00 1801.62

04-MAR-08 DMV Auto 150.00 1951.62

04-MAR-08 My Insurance Company Insurance 153.10 2104.72
Figure 44 - Windowing Example 2 Query 1
Here is a similar category where we calculate the previous running total. Everything is the same except for the last column.
col amount for 9999.99

col running_tot for 9999.99

col prev_running_tot for 9999.99

select

 t.*

 , sum(amount) over

 (order by xdate, category, payee rows between unbounded preceding and current row)

 running_tot

 , sum(amount) over

 (order by xdate, category, payee rows between unbounded preceding and 1 preceding)

 prev_running_tot

from window_example_2 t;

XDATE PAYEE CATEGORY AMOUNT RUNNING_TOT PREV_RUNNING_TOT

--------- -------------------- --------- -------- ----------- ----------------

01-MAR-08 My Apartment Rent 1465.00 1465.00

02-MAR-08 Edge Clothing 102.84 1567.84 1465.00

02-MAR-08 Whole Foods Groceries 88.78 1656.62 1567.84

02-MAR-08 Locksmith Misc. 145.00 1801.62 1656.62

04-MAR-08 DMV Auto 150.00 1951.62 1801.62

04-MAR-08 My Insurance Company Insurance 153.10 2104.72 1951.62

Figure 45 - Windowing Example 2 Query 2
We can also leave off the AND CURRENT ROW and still get the same result but the former is more clear in meaning.

col amount for 9999.99

col running_tot_1 for 9999.99

col running_tot_2 for 9999.99

select

 t.*

 , sum(amount) over

 (order by xdate, category, payee rows between unbounded preceding and current row)

 running_tot_1

 , sum(amount) over

 (order by xdate, category, payee rows unbounded preceding)

 running_tot_2

from window_example_2 t;

XDATE PAYEE CATEGORY AMOUNT RUNNING_TOT_1 RUNNING_TOT_2

--------- -------------------- --------- -------- ------------- -------------

01-MAR-08 My Apartment Rent 1465.00 1465.00 1465.00

02-MAR-08 Edge Clothing 102.84 1567.84 1567.84

02-MAR-08 Whole Foods Groceries 88.78 1656.62 1656.62

02-MAR-08 Locksmith Misc. 145.00 1801.62 1801.62

04-MAR-08 DMV Auto 150.00 1951.62 1951.62

04-MAR-08 My Insurance Company Insurance 153.10 2104.72 2104.72

Figure 46 - Windowing Example 2 Query 3
Mechanical Example Window by RANGE NUMBERS

Here is the example table for windowing by a number range.

create table window_example_3

 (

 col1 varchar2(10)

 , a_windowing_number number
 , amount number
);

insert into window_example_3 values ('IOUG',1,40);

insert into window_example_3 values ('IOUG',1,32);

insert into window_example_3 values ('IOUG',4,40);

insert into window_example_3 values ('IOUG',4,16);

insert into window_example_3 values ('IOUG',5,32);

insert into window_example_3 values ('IOUG',6,24);

insert into window_example_3 values ('IOUG',7,40);

Figure 47 - Windowing Example 3 Data
The example query sums amount where A_WINDOWING_NUMBER is one below or one above the current number.

select

 t.*

 , sum(amount)

 over

 (

 partition by col1

 order by a_windowing_number

 range between 1 preceding and 1 following

)

 my_windowing_sum

from window_example_3 t;

COL1 A_WINDOWING_NUMBER AMOUNT MY_WINDOWING_SUM

---- ------------------ -------- ----------------

IOUG 1 40.00 72 /* a_windowing_number in (0,1,2) */

IOUG 1 32.00 72 /* a_windowing_number in (0,1,2) */

IOUG 4 40.00 88 /* a_windowing_number in (3,4,5) */

IOUG 4 16.00 88 /* a_windowing_number in (3,4,5) */

IOUG 5 32.00 112 /* a_windowing_number in (4,5,6) */

IOUG 6 24.00 96 /* a_windowing_number in (5,6,7) */

IOUG 7 40.00 64 /* a_windowing_number in (6,7,8) */
Figure 48 - Windowing Example 3 Query
For the first two rows with A_WINDOWING_NUMBER of 1, MY_WINDOWING_SUM should sum everything with A_WINDOWING_NUMBER between 0 and 2. There are two rows with 1 that add up to 72.

For the second two rows with A_WINDOWING_NUMBER of 4, MY_WINDOWING_SUM should sum everything with A_WINDOWING_NUMBER between 3 and 5. There are two rows with 4 and one row with 5 that add up to 88.
And so on.

It is hard to contemplate a real life example for this provided mechanism, so we go on.

Mechanical Example Window by RANGE INTERVAL

INTERVAL is a data type that is related to date and time calculations. There are two INTERVAL date types:

· INTERVAL YEAR TO MONTH

· INTERVAL DAY TO SECOND

When one writes out interval literals, it might look like the following (but this is not complete):

	Syntax
	Meaning
	Select From Dual
	Type

	interval '1' year
	a year
	+01-00
	INTERVAL YEAR TO MONTH

	interval '3' month
	3 months
	+00-03
	INTERVAL YEAR TO MONTH

	interval '7' day
	7 days
	+07 00:00:00
	INTERVAL DAY TO SECOND

	interval '18' hour
	18 hours
	+00 18:00:00
	INTERVAL DAY TO SECOND

	interval '3' minute
	3 minutes
	+00 00:03:00
	INTERVAL DAY TO SECOND

	interval '29' second
	29 seconds
	+00 00:00:29.000000
	INTERVAL DAY TO SECOND

Table 6 - Interval Examples
create table window_example_4

 (

 col1 varchar2(10)

 , xdate date

 , amount number

);

insert into window_example_4 values
('IOUG', to_date('20080204 0600','yyyymmdd hh24mi'),40);

insert into window_example_4 values
('IOUG', to_date('20080205 0559','yyyymmdd hh24mi'),32);

insert into window_example_4 values

('IOUG', to_date('20080206 0601','yyyymmdd hh24mi'),32);

insert into window_example_4 values
('IOUG', to_date('20080206 1632','yyyymmdd hh24mi'),40);

insert into window_example_4 values
('IOUG', to_date('20080206 1734','yyyymmdd hh24mi'),16);

insert into window_example_4 values

('IOUG', to_date('20080207 1800','yyyymmdd hh24mi'),16);

Table 7 - Windowing Example 4 Data
alter session set nls_date_format = 'yyyymmdd hh24mi';

select

 t.*

 , sum(amount)

 over

 (

 partition by col1

 order by xdate

 range between interval '24' hour preceding and current row

)

 my_windowing_sum

from window_example_4 t;

COL1 XDATE AMOUNT MY_WINDOWING_SUM

---- ------------- -------- ----------------

IOUG 20080204 0600 40.00 40

IOUG 20080205 0559 32.00 72

IOUG 20080206 0601 32.00 32

IOUG 20080206 1632 40.00 72

IOUG 20080206 1734 16.00 88

IOUG 20080207 1800 16.00 16

Table 8 - Windowing Example 4 Query
We can review the range for each row. The first row only gets the first row. The second row:
	COL1
	XDATE
	AMOUNT
	MY_WINDOWING_SUM

	IOUG
	20080204 0600
	40.00
	40

	IOUG
	20080205 0559
	32.00
	72

	IOUG
	20080206 0601
	32.00
	32

	IOUG
	20080206 1632
	40.00
	72

	IOUG
	20080206 1734
	16.00
	88

	IOUG
	20080207 1800
	16.00
	16

Table 9 - Windowing Example 4 Query Row 2 Perspective
The third row only gets itself because there are no other rows in the preceding 24 hours. The fourth row gets the third row:

	COL1
	XDATE
	AMOUNT
	MY_WINDOWING_SUM

	IOUG
	20080204 0600
	40.00
	40

	IOUG
	20080205 0559
	32.00
	72

	IOUG
	20080206 0601
	32.00
	32

	IOUG
	20080206 1632
	40.00
	72

	IOUG
	20080206 1734
	16.00
	88

	IOUG
	20080207 1800
	16.00
	16

Table 10 - Windowing Example 4 Query Row 4 Perspective
The fifth row gets the previous two rows – they are all on the same day:

	COL1
	XDATE
	AMOUNT
	MY_WINDOWING_SUM

	IOUG
	20080204 0600
	40.00
	40

	IOUG
	20080205 0559
	32.00
	72

	IOUG
	20080206 0601
	32.00
	32

	IOUG
	20080206 1632
	40.00
	72

	IOUG
	20080206 1734
	16.00
	88

	IOUG
	20080207 1800
	16.00
	16

Table 11 - Windowing Example 4 Query Row 5 Perspective
The last row has nothing in the previous 24 hours.

Real Life Example Window by RANGE INTERVAL
Typically, in documentation or books you will see the famous moving average example. Typically, the sample data will look something like this:
create table window_example_5

 (

 stock_symbol varchar2(5)

 , thedate date

 , price number

);

insert into window_example_5 values ('ORCL',to_date('20080321','yyyymmdd'),31);

insert into window_example_5 values ('ORCL',to_date('20080320','yyyymmdd'),30);

insert into window_example_5 values ('ORCL',to_date('20080319','yyyymmdd'),29);

insert into window_example_5 values ('ORCL',to_date('20080318','yyyymmdd'),28);

insert into window_example_5 values ('ORCL',to_date('20080317','yyyymmdd'),27);

insert into window_example_5 values ('ORCL',to_date('20080314','yyyymmdd'),27);

insert into window_example_5 values ('ORCL',to_date('20080313','yyyymmdd'),27);

insert into window_example_5 values ('ORCL',to_date('20080312','yyyymmdd'),27);

insert into window_example_5 values ('ORCL',to_date('20080311','yyyymmdd'),27);

insert into window_example_5 values ('ORCL',to_date('20080310','yyyymmdd'),24);

insert into window_example_5 values ('ORCL',to_date('20080307','yyyymmdd'),21);

Figure 49 - Windowing Example 5 Data

The query for the moving average will look like this:
select

 t.*

 , avg(price)
 over
 (
 partition by stock_symbol
 order by thedate range interval '7' day preceding
) seven_day_avg

from window_example_5 t;

STOCK THEDATE PRICE SEVEN_DAY_AVG

----- ------------- ---------- -------------

ORCL 20080307 0000 21 21 /* 21 / 1 */

ORCL 20080310 0000 24 22.5 /* (21+24) / 2 */

ORCL 20080311 0000 27 24 /* (21+24+27) / 3 */

ORCL 20080312 0000 27 24.75 /* (21+24+27+27) / 4 */

ORCL 20080313 0000 27 25.2 /* (21+24+27+27+27) / 5 */
ORCL 20080314 0000 27 25.5 /* (21+24+27+27+27+27) / 6 */
ORCL 20080317 0000 27 26.5 /* (24+27+27+27+27+27) / 6 */
ORCL 20080318 0000 28 27.1666667 /* (27+27+27+27+27+28) / 6 */
ORCL 20080319 0000 29 27.5 /* (27+27+27+27+28+29) / 6 */
ORCL 20080320 0000 30 28 /* (27+27+27+28+29+30) / 6 */
ORCL 20080321 0000 31 28.6666667 /* (27+27+28+29+30+31) / 6 */
Figure 50 - Windowing Example 5 Query
Real Life Example LAST_VALUE
Suppose you have sparse data points, but you want to turn that into a data set that covers the full spectrum.
For example, the number of people in a population over the month of March:

create table population_samplings
 (

 pop_date date

 , pop_size number

);

insert into population_samplings values (to_date('20080308','yyyymmdd'),4721);

insert into population_samplings values (to_date('20080304','yyyymmdd'),4233);

insert into population_samplings values (to_date('20080301','yyyymmdd'),3821);

Figure 51 - Sparse Data
We will also need a table that has dates for the first ten days of March:

create table histogram_dates
 (

 hist_date date

);

begin

 for i in 0..9 loop

 insert into histogram_dates values (to_date('20080301','yyyymmdd')+ i);

 end loop;

end;

/

Figure 52 – Histogram Dates
We then select histogram dates joined with population samplings:

select

 t1.hist_date

 , t2.pop_size

from

 histogram_dates t1

 left outer join

 population_samplings t2

 on t1.hist_date = t2.pop_date

order by t1.hist_date;

Figure 53 - Outer Join Histogram Dates with Sparse Data
The result set is also sparse looking:

HIST_DAT POP_SIZE

-------- ----------

20080301 3821

20080302

20080303

20080304 4233

20080305

20080306

20080307

20080308 4721

20080309

20080310
Figure 54 - Sparse Result Set
Let us try using LAST_VALUE to fill in the histogram:

select

 t1.hist_date

 , last_value(t2.pop_size ignore nulls)

 over

 (order by hist_date range unbounded preceding)

 pop_size

from

 histogram_dates t1

 left outer join

 population_samplings t2

 on t1.hist_date = t2.pop_date

order by t1.hist_date;

Figure 55 - Last_Value Ignore Nulls Example

The data now goes from sparse to gapless:

HIST_DAT POP_SIZE

-------- ----------

20080301 3821

20080302 3821

20080303 3821

20080304 4233

20080305 4233

20080306 4233

20080307 4233

20080308 4721

20080309 4721

20080310 4721
Figure 56 - Dense Result Set
This is a really nice outcome.

Fifth Objective

Demonstrate LAG/LEAD and a data warehousing usage.

Calculating Last Week Values

One of my customers had an application that summed up charges every Friday. We would get the "actual quantity of work performed" – AQWP – as well as other quantities like "budgeted quantity of work performed" -- BQWP. In the project management world, one could calculate cost variance by subtracting AQWP from BQWP. A positive cost variance would mean you are under budget.

So, let's make some sample data:

create table lag_example

 (

 charge_center varchar2(5)

 , artisan_type varchar2(10)

 , data_date date

 , bqwp number

);

insert into lag_example values ('aaaa', 'Welder', to_date('20080307','yyyymmdd'), 430);

insert into lag_example values ('aaaa', 'Welder', to_date('20080314','yyyymmdd'), 468.7);

insert into lag_example values ('aaaa', 'Welder', to_date('20080321','yyyymmdd'), 508.13);

insert into lag_example values ('aaaa', 'Welder', to_date('20080328','yyyymmdd'), 583.21);

Figure 57 - Lag Example Data
Here is what the data looks like:

select *

from lag_example;

CHARG ARTISAN_TY DATA_DAT BQWP

----- ---------- -------- ----------

aaaa Welder 20080307 430

aaaa Welder 20080314 468.7

aaaa Welder 20080321 508.13

aaaa Welder 20080328 583.21

Figure 58 – Before Lag Result Set
The customer wanted last week values for BQWP – such that for March 28 – BQWP last week would be 583.21 – 508.13 for a calculation of 75.08. So, one could add a column to the table LAG_EXAMPLE, but then you have to maintain it and it takes up space.

One could calculate it on the fly by doing a self-join:

select

 t1.*

 , t1.bqwp – nvl(t2.bqwp, 0)

 as bqwp_last_week

from

 lag_example t1

 left outer join

 lag_example t2

 on

 (

 t1.charge_center = t2.charge_center

 and

 t1.artisan_type = t2.artisan_type

 and

 t1.data_date = t2.data_date + 7

)

order by t1.data_date;

Figure 59 - Self-Join Query
CHARG ARTISAN_TY DATA_DAT BQWP BQWP_LAST_WEEK

----- ---------- -------- ---------- --------------

aaaa Welder 20080307 430 430

aaaa Welder 20080314 468.7 38.7

aaaa Welder 20080321 508.13 39.43

aaaa Welder 20080328 583.21 75.08

Figure 60 - Self-Join Result Set
But, one could easily use the LAG operator instead and select from LAG_EXAMPLE once and get the same result.

select

 t.*

 , t.bqwp
 -
 lag(t.bqwp,1,0) over (partition by charge_center, artisan_type order by data_date)

 bqwp_last_week

from lag_example t;

Figure 61 - Lag Query
The second argument of 1 means lag by one row. The third argument of means return 0 if nothing is found.

The analytic query uses 7 buffer gets whereas the non-analytic query uses twice that.

So, this is an easy place to use analytic SQL – comparing to a previous record – or in this case, a previous week for charge center "aaaa" and welders.

Further
The analytic SQL we have explored are what we call Reporting Functions and Ranking Functions. To see this in the Oracle documentation, do the following:
Go to tahiti.oracle.com.

Choose "Oracle Database documentation, 10g Release 2 (10.2)" link.
Choose "Data Warehousing" tab.

Choose "Data Warehousing Guide" link.

Do a Find on "SQL for Analysis and Reporting".

This white paper covered material under "Reporting Aggregate Functions", "Ranking Functions", "Windowing Aggregate Functions", and "Lead/Lag".

Conclusion
Use analytic SQL to avoid scanning the same table twice. Example cases are self joins and subqueries against the same tables. As you become comfortable with the syntax and gain enthusiasm, you can branch out to some of the other analytic expressions. The data densification example in the online documentation is also very useful.

15

 Paper # 213

_1267681869.xls
Chart1 (2)

		5		5

		50		50

		500		500

		46254		46254

Analytic

Non-Analytic

Rows

Buffer Gets

Buffer Gets Versus Rows

4

9

4

12

9

51

642

4329

Chart2 (2)

		5		5

		50		50

		500		500

		46254		46254

Analytic

Non-Analytic

Rows

Buffer Gets

Buffer Gets Versus Rows

4

9

4

12

9

51

642

4329

Chart2

		5		5

		50		50

		500		500

		46254		46254

Analytic

Non-Analytic

Rows

Buffer Gets

Buffer Gets Versus Rows

4

9

4

12

9

51

642

4329

Chart1

		5		5

		50		50

		500		500

		46254		46254

Analytic

Non-Analytic

Rows

Buffer Gets

Buffer Gets Versus Rows

4

9

4

12

9

51

642

4329

Sheet1

		Rows		Analytic		Non-Analytic

		5		4		9

		50		4		12

		500		9		51

		46254		642		4329

Sheet2

		

Sheet3

		

_1267681916.xls
Chart1 (2)

		5		5

		50		50

		500		500

		46254		46254

Analytic

Non-Analytic

Rows

Buffer Gets

Buffer Gets Versus Rows

4

9

4

12

9

51

642

4329

Chart2 (2)

		5		5

		50		50

		500		500

		46254		46254

Analytic

Non-Analytic

Rows

Buffer Gets

Buffer Gets Versus Rows

4

9

4

12

9

51

642

4329

Chart2

		5		5

		50		50

		500		500

		46254		46254

Analytic

Non-Analytic

Rows

Buffer Gets

Buffer Gets Versus Rows

4

9

4

12

9

51

642

4329

Chart1

		5		5

		50		50

		500		500

		46254		46254

Analytic

Non-Analytic

Rows

Buffer Gets

Buffer Gets Versus Rows

4

9

4

12

9

51

642

4329

Sheet1

		Rows		Analytic		Non-Analytic

		5		4		9

		50		4		12

		500		9		51

		46254		642		4329

Sheet2

		

Sheet3

		

