
10g Tuning; Tuning Oracle has Radically Changed

By Rich Niemiec, TUSC

Abstract

Tuning has radically changed in Oracle10g compared to earlier versions and the main tool to use is either Enterprise Manager Grid Control or something very close to it by a third party vendor. In Oracle10g & Oracle9i, if you could choose just two Oracle utilities to monitor and find performance problems of your system, those two utilities would be Enterprise Manager and Statspack or AWR Report. In Oracle9i (as of Oracle 8.1.6), you can use the STATSPACK utility to monitor the performance of your database. STATSPACK replaces the UTLBSTAT/UTLESTAT scripts available with earlier versions of Oracle and offers several significant enhancements to those scripts. In this paper, I would like to focus on some of the solutions to advanced issues regarding tuning Waits and also using Enterprise Manager to run the AWR Report. The waits portion of the paper listed here was a tough section to write and is definitely not for the beginner. Beginners should start with the Oracle documentation or the 10g Performance Tuning Book. See the Oracle Database 10g Performance Tips and Techniques book for a detailed look at this topic.
The Oracle Enterprise Manager (EM) product-suite continues to change over time, but this particular version covered here (10gR2), Oracle has taken a giant leap forward. With the statistics from the Automatic Workload Repository (AWR), this tool is now tremendously powerful. AWR snapshots are taken every hour by default and once the AWR snapshot is taken, the Automatic Database Diagnostic Monitor (ADDM) analysis occurs immediately (STATISTICS_LEVEL must be TYPICAL or ALL) via the MMON background process. The results of ADDM are also stored in the AWR and accessible via EM. The AWR Report uses these statistics. Oracle’s Enterprise Manager standard applications include a central management console and additional packs and many products have an additional cost (please check with Oracle for any price implications of different modules). Accessing the AWR requires the Diagnostics Pack and running SQL Tuning Sets requires the Tuning Pack. While this tool helps you tune things quickly, the benefits are achieved only when you know what’s under the covers. Under the covers are a lot of the same things you looked for related to performance in the past, but now you have a front end to quickly find and solve your problems.
Top 5 Wait Events

This Top 5 Wait Events section of statspack or AWR Report is probably the most revealing section in the entire report when you are trying to quickly eliminate bottlenecks on your system. This section of the report shows the Top 5 Wait Events, the full list of Wait Events, and the Background Wait Events. Identifying major wait events will help you to target your tuning efforts to the most burning issues on your system. If TIMED_STATISTICS is true, then the events are ordered in time waited, if false, then the events are ordered by the number of waits.

In the listing below, we see a large number of waits related to reading a single block (db file sequential reads) and also waits for latches (latch free). We also see some pretty high waits for some of the writing to both datafiles and log files as well as other potential issues with log file contention. To solve these issues (identify which are truly major issues), we must narrow this down these issues by investigating the granular reports within other sections of STATSPACK.

Top 5 Wait Events

~~~~~~~~~~~~~~~~~                                             Wait     % Total

Event                                               Waits  Time (cs)   Wt Time

-------------------------------------------- ------------ ------------ -------

db file sequential read                        18,977,104   22,379,571   82.29

latch free                                      4,016,773    2,598,496    9.55

log file sync                                   1,057,224      733,490    2.70

log file parallel write                         1,054,006      503,695    1.85

db file parallel write                          1,221,755      404,230    1.49

Almost everything that you find in Statspack you will find in the AWR Report, but more of it.  The Top 5 wait events are also displayed in the AWR Report (portion displayed below).  We will look at this more in the later portion of this paper. 

[image: image17.png]
Wait Events Solutions:

Here are some of the most common problems; explanations and potential solutions are given below.

DB File Scattered Read – This is a multiblock read that is scattered into the buffer cache.  It generally indicates waits related to full table scans or index fast full scans.  As full table scans are pulled into memory, they are scattered throughout the buffer cache since it is usually unlikely that they fall into contiguous buffers.  A large number indicates that there may be missing or suppressed indexes.  This could also be preferred since it may be more efficient to perform a full table scan than an index scan and then a full table scan.  Check to ensure full table scans are necessary when you see these waits.  Try to cache small tables to avoid reading them in over and over again.  This can also indicate an index fast full scan.  Also, if the full table scan is greater than 2% of the buffer cache, it is put on the cold end of the buffer cache.  This means it will probably be quickly aged out of the buffer cache which is an even bigger issue if the scan is repeated.
DB File Sequential Read – This generally indicates a single block read (an index read for example) or multiple index blocks sequentially read into contiguous memory.  A large number could indicate poor joining orders of tables or unselective indexing.  This number will certainly be large (normally) for a high-transaction, well-tuned system.  You should correlate this wait with other known issues within the statspack report such as inefficient SQL.  Check to ensure index scans are necessary and check join orders for multiple table joins.  The DB_CACHE_SIZE will also be a determining factor in how often these waits show up; hash-area joins causing problems should show up in the PGA memory but similarly are memory hogs that could cause high wait numbers for sequential reads or can also show up as direct path read/write waits (potentially increase the PGA_AGGREGATE_TARGET if this is the issue).

Free Buffer Waits  - This indicates your system is waiting for a buffer in memory, because none is currently available. Waits in this category could indicate that you need to increase the DB_BUFFER_CACHE, if all your SQL is tuned. Free buffer waits could also indicate that unselective SQL is causing data to flood the buffer cache with index blocks, leaving none for this particular statement that is waiting for the system to process. This normally indicates that there is a substantial amount of DML (insert/update/delete) is being done and the Database Writer (DBWR) is not writing quickly enough, the buffer cache could be full of multiple versions of the same buffer, causing great inefficiency. To address this, you may want to consider accelerating incremental checkpointing, using more DBWR processes, or increasing the number of physical disks.   

Buffer Busy Wait – This is a wait for a buffer that is being used in an unshareable way or is being read into the buffer cache. Buffer busy waits should not be greater than 1 percent. Check the buffer wait statistics section (or V$WAITSTAT) to find out if the wait is on a segment header. If this is the case, increase the freelist groups or increase the pctused to pctfree gap. If the wait is on an undo header, you can address this by adding rollback segments; if it’s on an undo block, you need to reduce the data density on the table driving this consistent read or increase the DB_CACHE_SIZE. If the wait is on a data block, you can move data to another block to avoid this hot block, increase the freelists on the table, or use Locally Managed Tablespaces (LMT’s). If it’s on an index block, you should rebuild the index, partition the index, or use a reverse key index. To prevent buffer busy waits related to data blocks, you can also use a smaller block size: fewer records fall within a single block in this case, so it’s not as “hot.” When a DML (insert/update/delete) occurs, Oracle Database writes information into the block, including all users who are “interested” in the state of the block (Interested Transaction List (ITL)). To decrease waits in this area, you can increase the initrans, which will create the space in the block to allow multiple ITL slots. You can also increase the pctfree on the table where this block exists (this writes the ITL information up to the number specified by maxtrans, when there are not enough slots built with the initrans that is specified).  These show up an enqueue waits, but this could be a collateral wait according to Metalink.
Latch Free – Latches are low-level queueing mechanisms (they’re accurately referred to as mutually exclusion mechanisms) used to protect shared memory structures in the System Global Area (SGA). Latches are like locks on memory that are very quickly obtained and released. Latches are used to prevent concurrent access to a shared memory structure. If the latch is not available, a latch free miss is recorded. Most latch problems are related to the failure to use bind variables (library cache latch), redo generation issues (redo allocation latch), buffer cache contention issues (cache buffers lru chain) and hot blocks in the buffer cache (cache buffers chain). There are also latch waits related to bugs; check MetaLink for bug reports if you suspect this is the case (oracle.com/support). When latch miss ratios are greater than 0.5 percent, you should investigate the issue.  A section on latch waits follows this section.
Enqueue - An enqueue is a lock that protects a shared resource. Locks protect shared resources such as data in a record, to prevent two people from updating the same data at the same time. It includes a queueing mechanism, which is FIFO (first in, first out). Note that Oracle’s latching mechanism is not FIFO. Enqueue waits usually point to the ST enqueue, HW enqueue, and the TX4 enqueue. The ST enqueue is used for space management and allocation for dictionary-managed tablespaces. Use LMTs, or try to pre-allocate extents or at least make the next extent larger for problematic dictionary-managed tablespaces. HW enqueues are used with the high-water mark of a segment; manually allocating the extents can circumvent this wait. TX4 are the most common enqueue waits. TX4 enqueue waits is usually the result of one of three issues. The first issue is duplicates in a unique index; you need to commit/rollback to free the enqueue. The second is multiple updates to the same bitmap index fragment. Since a single bitmap fragment may contain multiple rowids, you need to issue a commit or rollback to free the enqueue when multiple users are trying to update the same fragment. The third and most likely issue is when multiple users are updating the same block. If there are no free ITL slots, a block level lock could occur. You can easily avoid this scenario by increasing the initrans and/or maxtrans to allow multiple ITL slots and/or by increasing the pctfree on the table. Last, there is a way to get TM locks, which are table locks. If you have foreign keys, be sure to index them to avoid this general locking issue.  When two people are trying to update the exact same record, you will get a TX6 lock (known as a deadlock).  For this type of lock, you must fix the application or code causing the deadlock.
Log Buffer Space – This wait occurs because you are writing the log buffer faster than LGWR can write it to the redo logs (this is the usual cause), or because log switches are too slow. To address this problem, increase the size of the log files, or increase the size of the log buffer, or get faster disks to write to. You might even consider using solid-state disks, for their high speed.

Log File Switch – All commit requests are waiting for ‘logfile switch (archiving needed)’ or ‘logfile switch (chkpt. Incomplete)’.  Ensure that the archive disk is not full or slow.  DBWR may be too slow due to I/O.  You may need to add more or larger redo logs and you may potentially need to add database writers if the DBWR is the problem.

Log File Sync – When a user commits or rolls back data, the session’s redo is flushed to the Redo Logs from the Log Buffer by the LGWR.  This process must wait for this to successfully complete.  To reduce this, try to commit more records (try to commit a batch of 50 instead of one at a time if possible).  Put redo logs on a faster disk, or alternate redo logs on different physical disks, to reduce the archiving effect on LGWR. Don’t use RAID 5 for redo logs, since it is very slow for applications that write a lot; potentially consider using filesystem direct I/O or raw devices, which are very fast at writing information.
Idle Events – There are also several idle wait events listed after the output that can be ignored.  Idle events are generally listed at the bottom of each section and include things like SQL*Net message to/from client and other background related timings.  Idle events are listed in the stats$idle_event table.

Wait Events Quick Reference:

Wait Problem 

Potential Fix
Sequential Read 
Indicates many index reads – tune the code (especially joins)


Scattered Read 
Indicates many full table scans – tune the code; cache small tables

Free Buffer 

Increase the DB_CACHE_SIZE; shorten the checkpoint; tune the code

Buffer Busy 

Segment Header – Add freelists or freelist groups



Buffer Busy 

Data Block – Separate ‘hot’ data; use reverse key indexes; smaller blocks

 

Data Block – Increase initrans and/or maxtrans

Buffer Busy 

Undo Header – Add rollback segments or areas

Buffer Busy 

Undo block – Commit more; Larger rollback segments or areas

Latch Free

Investigate the latch detail (detail in next article)

Enqueue - ST

Use LMT’s or pre-allocate large extents 

Enqueue - HW

Pre-allocate extents above high water mark

Enqueue – TX4
Increase initrans and/or maxtrans on the table or index

Enqueue - TM

Index foreign keys; Check application locking of tables

Log Buffer Space
Increase the Log Buffer; Faster disks for the Redo Logs

Log File Switch
Archive destination slow or full; Add more or larger Redo Logs

Log file sync

Commit more records at a time; Faster Redo Log disks; Raw devices

Idle Event

Ignore it

Common idle Events (type of idle event):

dispatcher timer (shared server idle event)

lock manager wait for remote message (RAC idle event)

Pipe get (User process idle event)

pmon timer (Background process idle event)

PX Idle Wait  (Parallel query idle event)

PX Deq Credit: need buffer (Parallel query idle event)

PX Deq Credit: send blkd (Parallel query idle event)

rdbms ipc message (Background process idle event)

smon timer (Background process idle event)

SQL*Net message from client (User process idle event)

virtual Circuit status (shared server idle event)

Latch Basics

As mentioned earlier, latches are low-level queueing mechanisms used to protect shared memory structures in the SGA (memory).  Latches are used to prevent concurrent access to a shared memory structure.  If the latch is not available, then a latch free miss is recorded.  Most latch problems are related to NOT using bind variables (library cache latch), redo generation issues (redo allocation latch), buffer cache contention issues (cache buffers lru chain) and hot blocks in the buffer cache (cache buffers chain).    There are also latch waits related to bugs, so check Metalink as well.  When latch miss ratios are greater than 0.5%, you should investigate the issue.

There are two types of latches, a willing to wait and not willing to wait latch.  Latches that are willing to wait will try to acquire a latch.  If none are available, it will spin and then request the latch again.  It will continue to do this up to the _SPIN_COUNT initialization parameter (note that spinning costs CPU).  If it can’t get a latch after spinning up to the _SPIN_COUNT, it will go to sleep.  It will then sleep, not doing anything for a while, and then will wake up after one centisecond (one hundredth of a second).  It will then start this process again, spinning up to the _SPIN_COUNT and then sleeping for twice as long (two centiseconds).  After doing this again it will double again.  So the pattern is 1,1,2,2,4,4 etc.  It will do this until it gets the latch.  Every time the latch sleeps, it will create a latch free wait. An example of a “willing to wait” latch is a library cache latch.  Some latches are “not willing to wait.” This type of latch does not wait for the latch to become available. They immediately time out and retry to obtain the latch. A redo copy latch is an example of a “not willing to wait” latch. A not willing to wait latch will generate information for the immediate_gets and the immediate_misses columns of the V$LATCH view and also in the statspack report. The hit ratio for these latches should also approach 99% and the misses should never fall below 1 percent misses.

By viewing this section of statspack or querying the V$LATCH view, you can see how many processes had to wait or sleep and the number of times they had to sleep.  V$LATCHHOLDER, V$LATCHNAME and V$LATCH_CHILDREN are also helpful in investigating latch issues.  Here is a partial listing of the latch activity section; there are three sections (latch activity, latch sleep and latch miss) of the statspack report (this one has a library cache problem):

                                           Pct    Avg   Wait                 Pct

                              Get          Get   Slps   Time       NoWait NoWait

Latch                       Requests      Miss  /Miss    (s)     Requests   Miss

------------------------ -------------- ------ ------ ------ ------------ ------

KCL freelist latch                4,924    0.0                          0

cache buffer handles            968,992    0.0    0.0                   0

cache buffers chains        761,708,539    0.0    0.4          21,519,841    0.0

cache buffers lru chain       8,111,269    0.1    0.8          19,834,466    0.1

library cache                67,602,665    2.2    2.0             213,590    0.8

redo allocation              12,446,986    0.2    0.0                   0

redo copy                           320    0.0                 10,335,430    0.1

user lock                         1,973    0.3    1.2                   0

Things to look for and remember:

Latch Free - When ‘latch free’ is high in the wait events section of the report, then there are problems that need to be investigated in the latch section of the report.  This section will help you look for which latches are a problem.  A sleeping latch (couldn’t get the latch and sleeping until the next try) or spinning latch (waiting and retrying based on spin count) latches.

Library Cache and Shared Pool - The library cache latch serializes access to objects in the library cache.  Every time a SQL or PL/SQL procedure, package, function or trigger is executed, this latch is used (looking for SQL that is the same to share).  It is also used intensively during parse operations.  A single shared pool latch protected the allocation of memory in the library cache in Oracle8i; since Oracle9i, there are 7 children latches for this.  Contention for the ‘shared pool,’ ‘library cache pin,’ or ‘library cache’ latches primarily occur when the shared pool is too small or when statements are not reused.  Statements are not usually reused when bind variables are not used.  Common but not exact SQL floods the Shared Pool.  Increasing the size of the shared pool only makes the latch problem worse. You can also set the CURSOR_SHARING=FORCE (or SIMILAR in 9i) initialization parameter to help fix this issue and to reduce problems when bind variables are not used.  But, the shared pool and library cache latch issues also occur when space is needed in the library cache when it is set too small for the number of SQL statements that need to be processed. While space is being freed up in order to load a SQL or PL/SQL statement, the latch is being held exclusively and other users must wait. You can help to reduce contention by increasing the shared pool or by pinning large SQL and PL/SQL statements in memory using the DBMS_Shared_Pool.Keep procedures.  

Redo Copy - The number of “redo copy” latches has a default of 2*CPU_COUNT, but can be set using the _LOG_SIMULTANEOUS_COPIES initialization parameter. Increasing this parameter may help to reduce contention for the redo copy latch.  The redo copy latch is used to copy redo records from the PGA into the redo log buffer.  

Redo Allocation – The redo allocation latch (allocates the space in the redo log buffer) contention can be reduced by using the NOLOGGING feature which will reduce the load on the redo log buffer.  You should also try to avoid unnecessary commits.

Row Cache Objects - The “row cache objects” latch contention usually means that there is contention in the data dictionary.  This may also be a symptom of excessive parsing of SQL statements that depend on public synonyms.  Increasing the Shared Pool usually solves this latch problem.  You usually increase the shared pool for a library cache latch problem well before this one is a problem

Cache Buffers Chains - Buffers get “hashed to a chain” which means that several buffers can end up on the same chain of buffers going through the same latch.  The ‘cache buffers chains’ latches are used to protect a buffer list in the buffer cache.  These latches are used when searching for, adding or removing a buffer from the buffer cache.  Contention indicates a ‘hot block’ or bad setting for _db_block_hash_buckets prior to 9i.  The “cache buffers chains” latch is needed to scan the SGA buffer cache for database cache buffers.  Hot blocks (often accessed blocks) in the buffer cache causes “cache buffers chains” latch issues.  Hot blocks may also be a symptom of poorly tuned SQL statements. A hot record creates a hot block that can cause issues for other records inside that block as well as any block “hashed” to the same chain.  To find the hot block, query v$latch_children for the address and join it to v$bh to identify the blocks protected by this latch (this will show all blocks that are affected by the hot block).  You can identify the object by querying DBA_EXTENTS based on the file# and dbablk found from v$bh.  Using a reverse key index, if the hot block is on an index, will move sequential records to others blocks so that locked up by they are not locked up by the hot block in the chain.  If the hot block is the index root block, a reverse-key index won’t help.  Setting _DB_BLOCK_HASH_BUCKETS to twice the number of buffers (DB_CACHE_SIZE/DB_BLOCK_SIZE) and then up to the next prime number larger than that will usually eliminate this problem. Prior to Oracle9i, this parameter had a default that caused tremendous contention for this latch; the default is correctly set to a prime number in Oracle9i and in Oracle10g.  

Cache Buffers LRU Chain - The “cache buffers lru chain” latch is used to scan the LRU (least recently used) chain containing all of the blocks in the buffer cache.  A small buffer cache, excessive buffer cache throughput, many cache based sorts, and DBWR not keeping up with the workload are all culprits that can cause this issue.  Try to fix the queries that are causing the excessive logical reads.  You can increase the initialization parameter DB_BLOCK_LRU_LATCHES to have multiple LRU latches will reduce contention.  Generally, non-SMP (symmetric multi processor) machines only need a single LRU latch.  Oracle automatically sets this to ½ the number of CPUs on SMP machines.  You must have at least on LRU latch for each database writer; make sure that you increase this if you add database writers.

Latch Problem 

Potential Fix
Library Cache 


Use bind variables; adjust the shared_pool_size 

Shared Pool


Use bind variables; adjust the shared_pool_size 

Redo allocation

Minimize redo generation and avoid unnecessary commits

Redo copy


Increase the _log_simultaneous_copies Row cache objects





Increase the Shared Pool

Some latch problems have often been bug related in the past, so make sure that you check Metalink for issues related to latches.  Any of the latches that have a hit ratio below 99% should be investigated. 

Running the AWR Report from Enterprise Manager
The Database Administration tab of Enterprise Manager can also be used at the Instance level to run the Automatic Workload Repository (AWR) Report.   An option from Administration Screen only at the instance level is the link to the Automatic Workload Repository (AWR).  Once the AWR option from the Administration screen is clicked, the AWR General information is displayed.  This screen includes information on all Snapshots and Collection Levels.  

[image: image2.png]
Figure 1: Database Administration links Instance level

In the example in Figure 2, there are 40 snapshots with a Retention of 25 days and an interval of 10 minutes (way too often - an hour may be a better interval). 

[image: image3.png]
Figure 2: Automatic Workload Repository (AWR)

By clicking on the “Edit” button (see Figure 3), the interval or retention of the information may be changed.  The collection level can also be edited here.  

[image: image4.png]
Figure 3: Automatic Workload Repository (AWR) Edit Settings

By clicking on the number of snapshots displayed in the AWR General information screen (the number 40 as shown in Figure 2), the 40 snapshots will then be displayed one at a time as shown in Figure 4.  The time that the snapshot was generated is listed along with the collection level.  

[image: image5.png]
Figure 4: Automatic Workload Repository (AWR) Snapshot Listing

Clicking on any specific snapshot to begin and end with will generate some basic snapshot details listed in Figure 5 (like a very mini-statspack), or we can run a report by clicking on Report.  This will run and display the AWR Report (Figure 6).  

[image: image6.png]
Figure 5: Automatic Workload Repository (AWR) Snapshot Listing 

[image: image7]
Figure 6: AWR Report Output 
Managing the Grid

One of the best screens to manage the grid is displayed below (See Paper or Presentation on Tuning the Grid, Rich Niemiec, 2008).  It’s the screen to click on a cluster and see whether the nodes are up or down as well as see the individual nodes.  Here is the cluster “ioug” showing six nodes that are all up.  To get to this screen, I just went to the Targets tab and clicked on the ioug cluster.


[image: image8]
Figure 7: Looking at the IOUG Cluster Database under Targets/Databases

If you move down the page a bit, you can see the instances (all using ASM) that are associated with this cluster as shown in Figure 8.


[image: image9]
Figure 8: Further down the page of Figure 1 we see the individual Nodes 1-6

If I click on the topology tab (see Figure 9), we can see the topology for all six instances (each instance is on a separate node, so there are also six separate nodes.  Notice that my mouse if over one of the instances and additional information about the instance is provided.


[image: image10]
Figure 9: Looking at the Topology of the 6 Nodes in the IOUG Cluster

If I click on the Performance tab and then click onto the CPU Used chart (see Figure 10), I can see performance all nodes in the “ioug” cluster, each in a different color.


[image: image11]
Figure 10: Looking at CPU for 4 of the selected nodes in the IOUG Cluster

There are many other Grid related screens that are available.  See Chapter 5 in Oracle Database 10g Performance Tuning Tips & Techniques, Rich Niemiec, 2007 for a whole chapter on Grid Control.  

This article has focused on three things to remember when using Statspack, AWR Report and when using Enterprise Manager’s ability to run AWR Report.

1. AWR Report has almost everything that Statspack has and more.

2. Use the Top Waits section of either Statspack or AWR Report to find/fix issues.
3. Enterprise Manager dramatically changes tuning and also makes it easy to run and view AWR Report.

For more information on Statspack, AWR Report or Enterprise Manager, please refer to the Oracle Tuning book listed in the references.

References:

Oracle10g Performance Tuning Tips and Techniques; Niemiec, 2007
Oracle9i Performance Tuning Tips and Techniques, Niemiec, 2003

Oracle Performance Tuning Tips and Techniques, Niemiec, 1999

Oracle8i Internal Services for Waits, Latches, Locks, and Memory Steve Adams (excellent) 

Oracle Doc ID: 61998.1, 39017.1

Performance Tuning with Statspack White Paper, 2000; Connie Dialeris & Graham Wood

Notes from Richard Powell, Cecilia Gervasio, Russell Green and Patrick Tearle

Statspack checklist; Kevin Loney, Randy Swanson, Bob Yingst, 2002

IOUG Masters Tuning Class, Rich Niemiec, 2002

Author Biography

Rich Niemiec is the author of the Oracle Press book Oracle10g Performance Tuning Tips and Techniques.  He is also the President of TUSC, the Chicago based Oracle Expert database integrator (www.tusc.com).  TUSC is a wholly owned subsidiary of Rolta International, Inc.  Rich is the President of the Midwest Oracle Users Group and the former president of the International Oracle Users Group - IOUG (www.ioug.org).  Rich can be reached at rich@tusc.com.

TUSC is an expert level consultancy that helps companies optimize their investment in Oracle technology. We provide integrated functional and technical solutions since 1988 in the areas of Oracle’s E-Business Suite, Business Intelligence/Data Warehousing, Custom Development, Managed Services/Remote DBA, Database Services, Training & Mentoring and Oracle Licensing.  Please report errors in this article to rich@tusc.com.  Neither TUSC nor the author warrants that this document is error-free. TUSC © 2008.  This document cannot be reproduced without expressed written consent from an officer of TUSC except Collaborate 2008 may make copies and make this paper available as needed for the conference and proceedings.


4-


[image: image1][image: image12.png][image: image13.png][image: image14.png][image: image15.png][image: image16.png]