Database

Powerful and Efficient SQL Features That are Rarely Used
 Kenneth Naim

DBA’s and developers are faced with many challenges stemming from the growing need for data integration between applications having vastly different data models, as well as operational and analytical reporting. Some of these challenges have historically been solved using procedural code (row-by-row/slow-by-slow processing), whether in the database using PL/SQL or in the application layer using another language such as C, Java, Perl etc. This is due to the incorrect assumption that the business rules do not conform to the Set Theory mindset of SQL, are too difficult to be accomplished using SQL, or that procedural code will be faster. While these reasons may have been true at one point, this is no longer the case. Oracle has enhanced the capabilities of SQL with each release, to the point where even the most complicated query challenge can usually be solved efficiently using SQL – without the use of slow looping constructs. First, one must know that these tools exist to prevent the writing custom procedural code, and then understand how they have been used in the past, and lastly apply some imagination on how to select one or many of these tools to yield a creative solution. This whitepaper will describe some of these tools and illustrate some of the challenges and their solutions.

A partial list of these enhancements is listed in the table below.
	Ordering of Nulls
	Updateable Views

	Regular Expressions
	Full Outer Joins

	Random Number Generator (dbms_random)
	Partitioned Outer Joins

	Case Statements
	Set Operators (Union, Minus, Intersect)

	Nullif
	Hierarchical Queries (Connect By)

	Coalesce
	Global Temporary Tables

	Analytical Functions (Ntile, Row_Number, Rank/Drank, Lead/Lag, Sum/Min/Max/Avg etc.)
	External Tables

	Sub-queries
	Model Clause

	With Clause
	Multi-table Inserts

	Inline Views
	DML with error logging

	Order By Clause Within An Inline View
	Hints

	Merge Statements
	

Sql Clauses

Standard Sql Clauses
The standard SQL clauses we all should be aware of before attempting to write creative SQL are SELECT, FROM, WHERE, AND, OR, GROUP BY, HAVING, and ORDER BY. Every creative sql solution begins with these clauses and uses them to fill our requirements so I am including them here for completeness.
The SELECT clause is used to identify the data and its format we would like returned by the query. The FROM clause identifies the location of where all data points required for the query reside. These locations can be tables, views, and or objects that the user has access to in a local or remote system. The WHERE clause is used to identify the relationships between locations and to identify which data should and should not be returned by the use of a filter. When multiple relationships or filters exist they are included by the use of the AND and OR clauses. The GROUP BY clause is used to identify to what granularity the data should be aggregated, all the fields in select clause that are not aggregated need to specified here, but additional ones can be added. The ORDER BY CLAUSE is then used to order the result set. Any field can be used to order the set whether in the SELECT clause or not unless the link between the query and the base locations has been broken by the use of a distinct, or aggregation function.
SQL Syntax example

select to_char(sum(b.sal),'9,9999.00'), dname

from dept a,

 emp b

where a.deptno=b.deptno

and
 loc!='BOSTON'
group by a.dname

having sum(b.sal)>9000
order by dname;
Note: In the ANSI standard SQL syntax which oracle supports from 10g, the FROM clause can also be used to identify the relationships between locations and replaces the need for them in the WHERE clause. Newer features such as full outer joins are only supported via the ANSI syntax.
SQL Syntax example using ANSI standard
select to_char(sum(b.sal),'9,9999.00'), dname

from dept a inner join

 emp b using (deptno)
where loc!='BOSTON'
group by a.dname

having sum(b.sal)>900
order by dname;
Ordering of Nulls (8i)

Nulls sort as the highest values in ascending order by clauses and to change this behavior prior to 8i required complex order by clauses including nvl and/or decode functions. In 8i and above nulls can now be set to order first or last which can be very useful especially with outer joins.

select *

from scott.emp

order by comm nulls first;
Sql Functions

Regular Expressions - regexp_like, regexp_instr, regexp_substr, regexp_replace
Regular expression functions are a great tool for finding, validating and cleansing data. In my experience bad data has caused more problems than any other single cause whether it was an application built without appropriate constraints, data that were converted into another application, data that was being moved to a data warehouse or data that was provided from a vendor/customer/data entry house.

Prior to regular expression functions finding non-digits within a zip code (a varchar2) field for example required a query similar to the example 1, and with regular expression functions a query similar to example 2. Removing the offending data is just as easy just use the regexp_replace function, see example 3.

Regular expression functions are more flexible, simpler to code, and easier to read. However there is an initial learning curve compared with their standard sql counterparts, especially with ranges of characters and complex patterns. Regular expression functions have an optional match parameter argument that modifies how it behaves. The “i” parameter allows for case insensitive searching, the “.” parameter (match any character wildcard) matches a new line character, and “m” parameter to treat the contents of field as multiple lines instead of a single one. The match parameter is specified as the last argument in each on the regular expression functions.

Example 1

select postal_code from hr.locations
where replace(translate(postal_code,'1234567890~','~~~~~~~~~~x'),'~',null) is not null;
Example 2
select postal_code from hr.locations
where regexp_like(postal_code,'[^[:digit:]]');

Example 3
update hr.locations
set postal_code = regexp_replace(postal_code,'[^[:digit:]]',null)
where regexp_like(postal_code,'[^[:digit:]]')
Random Number Generator - dbms_random
DBMS_RANDOM generates random numbers which I have used for many purposes including picking random promotion winners, ordering ads/content randomly for display on web pages, and segregating customers into target and control groups for marketing promotions.

For random promotion winners we had a global temporary table with a list of the primary keys associated with each entrant (entrant_id) and their entry number, a sequential number field starting with 1 and ending with the number of entries. The entry number was assigned randomly using a query similar to the following.

insert into entries (entrant_id, entry_number)
select entrant_id, rownum

from (select member_id entrant_id

 from tables...
 where conditions....
 order by dbms_random.random);
We then selected the top number of records corresponding to the number of winners of the promotion plus an additional number for alternates.

select entrant_id, entrant_number from entrants where entrant_number<=50;
For randomly selecting members into experimental and control groups we initially assigned a random number between 1 and 4 with the trunc(dbms_random.value(1,5))function however we noticed that the distribution of values was not exactly equal between the 4 values although it was close. Our need required equal distribution so we applied the ntile function instead to break the set equally into the four groups based on the value returned by dbms_random. Ntile sorts the data and divides the data into the number of groups specified, never allowing a deviation of more than 1 per group with the extras rows (if any) going into the initials groups.

select count(*), grp

from (select a.*, ntile(4) over (order by dbms_random.random) grp

 from dba_objects a where rownum<=999999)
group by grp;
Case Statements (8i)
The Case statement is an enhanced version of the decode statement, which allows for complex logic which normally would be processed in pl/sql or another procedural language. Two forms are available, the first mirrors the logic of the decode statement by comparing one column/value against a specific list of values via equality predicates.
select a.*,
 case comm

 when 300

 then 'Basic'
 when 500

 then 'Mid-Level'
 when 1400

 then 'High'
 else 'None'
 end comm

from scott.emp a;
The second form allows complete flexibility as each when clause is independent.
select a.*,
 case

 when comm is null or comm=0 then 'None'
 when comm between 300 and 499

 then 'Basic'
 when comm between 500 and 1199 and deptno=20

 then 'Mid-Level'
 when comm> 1200

 then 'High'
 else 'Unknown'
 end comm

from scott.emp a;
Nullif

Nullif is a specialized shortened case statement that returns null if the 2 parameters are equal otherwise it returns the first parameter. The equivalent case statement is “CASE WHEN expr1 = expr2 THEN NULL ELSE expr1 END”.
select nullif(comm,0)
from scott.emp;
Nullif is a useful function to reduce the size of function based indexes for values that are not accessed via the index. This occurs when the value is so predominate throughout the column that a full table scan is preferred method to access that data. For example in the case of a column that shows whether a transaction is processed and 95% of the records are set to ‘Y’ (processed) and the other 5% of records are set to ‘N’ (not processed), we could use create and index on nullif(processed,'Y') and used that function within our queries so a plan would be generated to do a full scan on the much smaller index.

In this simple example if we were to create an index on the processed column without the nullif function a range scan option would also be available which most likely would provide adequate performance and would not be worth the overhead associated with the creation and maintenance of a function based index however in a more complex situation this concept can come into play.
Coalesce
Coalesce is function that returns the first parameter of the list that is not null. It can take 2 or more parameters and is very useful for full outer join queries.
select customer_id,
 coalesce(primary_rate_code, secondary_rate_code, tertiary_rate_code)
from customer_rates;
Analytical Functions (row_number, rank/drank, lead/lag, ntile, first_value, last_value, percent_rank, cume_dist, keep first/last, ratio_to_report, sum/avg/count/min/max etc.)

Analytical functions became available in Oracle version 8.1.6 and since then I have wondered how I ever survived without them. These functions along with case statements have revolutionized how sql and pl/sql should be written. Many poorly performing, extremely complicated sql statements and pl/sql procedures can be simplified into short concise and ultra fast sql statements.

Problem:

Relate policies for the same legal_entity where the policy number changed over the years, with the condition that there was no more than a one day gap between the end_date of a previous policy and the new one.

The Old Method:

A few years ago a pl/sql function was written to fulfill this requirement; it was almost a thousand lines of containing multiple cursors and nested loops. It slowed down the execution time for many reports significantly enough to warrant the creation of a table to materialize the data. Each night this table was populated by batch process which took over an hour to run.

Solution:
Rewrite the process using case statements and analytical functions. It now executes in about 0.1 seconds for a policy and 8 seconds for all policies and no longer needs to be materialized.

Details:
The challenge was to check to see if each record was within one day of the previous one for each legal entity, as any policy that did not meet this criteria was not to be linked together. The linking of the policies was accomplished by assigning the value of the first policy_id to all the policies that met the criteria.
The row_number function in the first When clause of the case statement below allowed me to identify the first record and label it with a value indicating it was a beginning of a chain.

The lag function within the second When clause allowed the comparison of the current row’s effective date against the previous row’s end_date. When it was greater than one day the current row number within the subset was assigned, indicating that it was not part of a chain and was a beginning of a new chain. The last case was when the current and previous record was one day or less apart in which case it was assigned a null value.

case when row_number () over (partition by lgl_enty_id order by eff_dt)=1

 then 1

 when eff_dt-lag (end_dt, 1, end_dt)
 over (partition by lgl_enty_id order by eff_dt) >1

 then row_number () over (partition by lgl_enty_id order by eff_dt) --lapsed
else null -- current policy
end rn;
	lgl_enty_id
	Policy_id
	eff_dt
	end_dt
	Rn

	1

	456
	1/1/2000
	12/31/2000
	1

	1
	456
	1/1/2001
	12/31/2001
	

	1
	640
	2/1/2001
	1/31/2003
	3

	1
	720
	2/15/2003
	2/14/2004
	4

	1
	810
	2/15/2004
	2/14/2005
	

	2
	310
	6/1/2002
	5/31/2003
	1

	2
	367
	7/1/2003
	6/30/2004
	2

	2
	367
	7/1/2004
	6/30/2005
	

	2
	975
	7/1/2005
	6/30/2006
	

I labeled the column RN and nested the query it was in as an inline view. I then used the max function as an analytical function (not as an aggregate function) to return the highest value of RN between the first row and the current row (default method for analytical functions). This function broke each subset based on lgl_enty_id down further into smaller groups which I labeled GRP.

max(rn) over (partition by lgl_enty_id order by eff_dt) grp
	lgl_enty_id
	policy_id
	Eff_dt
	End_dt
	Rn
	Grp

	1

	456
	1/1/2000
	12/31/2000
	1
	1

	1
	456
	1/1/2001
	12/31/2001
	
	1

	1
	640
	2/1/2001
	1/31/2003
	3
	3

	1
	720
	2/15/2003
	2/14/2004
	4
	4

	1
	810
	2/15/2004
	2/14/2005
	
	4

	2
	310
	6/1/2002
	5/31/2003
	1
	1

	2
	367
	7/1/2003
	6/30/2004
	2
	2

	2
	367
	7/1/2004
	6/30/2005
	
	2

	2
	975
	7/1/2005
	6/30/2006
	
	2

The next task was to assign the first policy_id of each lgl_enty_id, grp combination to each record of that combination for which I used the first_value analytical function and partitioned it based on the legal_entity_id and the grp.

first_value(policy_id) over (partition by lgl_enty_id, grp

 order by plcy_prd_eff_dt) group_policy_id
	lgl_enty_id
	policy_id
	Eff_dt
	end_dt
	Rn
	grp
	group_policy_id

	1

	456
	1/1/2000
	12/31/2000
	1
	1
	456

	1
	456
	1/1/2001
	12/31/2001
	
	1
	456

	1
	640
	2/1/2001
	1/31/2003
	3
	3
	640

	1
	720
	2/15/2003
	2/14/2004
	4
	4
	720

	1
	810
	2/15/2004
	2/14/2005
	
	4
	720

	2
	310
	6/1/2002
	5/31/2003
	1
	1
	310

	2
	367
	7/1/2003
	6/30/2004
	2
	2
	367

	2
	367
	7/1/2004
	6/30/2005
	
	2
	367

	2
	975
	7/1/2005
	6/30/2006
	
	2
	367

Sql Statements
Sub-queries

Sub-queries allow the execution of a query almost anywhere a literal value can be placed including case expressions, select and where clauses, values clause of an insert statement, order by clauses, and parameters of a function call. However they cannot be placed in the default values of a column, returning clause, function based index expressions, Check constraints, When conditions of triggers, Group By, Having and Connect By clauses. Sub-queries can be used to combine multiple queries or a cursor that loops through one or more additional queries into a single complex query which can leverage the power of the optimizer to allow a faster execution.

select ename

from scott.emp

where deptno in (select deptno

 from scott.dept

 where dname = 'SALES');-- First we look up the deptno for the Sales

 -- dept and then get a list of all the

 -- employees within that dept
The most common place for a sub-query is the Where clause of a dml (select/insert/update/merge) statements and in this case is also known as a Nested Sub-query. Oracle allows 255 levels of nested sub-queries. When a nested sub-query is used with an In, Not in, Exists, Not exists operator then the sub-query is allowed to return multiple rows as those operators are built to process multiple values. In this case the query can also return multiple columns which is useful for queries that select composite keys.

select policy_id, premium_period_eff_dt, premium_period_end_dt

from premium_periods

where (policy_id, policy_period_eff_dt) in (select policy_id, policy_period_eff_dt

 from policy_periods
 where premium_type='a');
When used in the where clause with operators that expect single values such as =, >, < or basic arithmetic operators such as +, -, *, and / then the query must be scalar and return one finite value (one row, one column) in which case it is not uncommon to see the use of aggregation functions including Sum, Avg, Count etc. or the distinct function.

select *

from scott.emp

where deptno = (select deptno

 from scott.dept

 where dname = 'SALES');

Note: If using a Not in or a not equal (<> , !=) operators in the where clause with a sub-query that returns a null value the parent query will return no records as No value can be not equal to null.

Other locations within the query can also necessitate the use of scalar sub-queries as they also expect one value to be returned such is the case of the select clause.
select dname, (select sum(sal)

 from scott.emp b

 where b.deptno=20) salary

from scott.dept a

where deptno=20;
Sub-queries can also be correlated to the main (parent) query via a join however this is not recommended as in many cases it can cause poor performance and can be commonly replace with an inline view (a sub-query in the From clause).
select dname, (select sum(sal)

 from scott.emp b

 where a.deptno=b.deptno) salary

from scott.dept a;
With Clause – Sub-query Factoring (9ir2)

The With clause is used to materialize and name a sub-query so the result set can be accessed multiple times within the same query without having to re-compute the result set from the original data. The syntax is quite simple which also makes very complex sql much more readable.

with sub_query_alias_1 as (first select statement goes here),
 sub_query_alias_2 as (second select statement goes here),
 sub_query_alias_3 as (third select statement goes here)
select *

from table_1 a,
 sub_query_alias_1 b, sub_query_alias_2 c

where a.col1=b.col1

and b.col2 =c.col2

and b.col3 in (select d.col3 from sub_query_alias_3);

In the following example assume that sub-query Q is very intensive and if it were to run twice it would significantly slow down the execution of the entire query, so by using the with clause we only process the result set of sub-query Q twice rather the entire query. Also by factoring out the query, it is shorter, easier to read, and when a change to the sub-query is required it will only have to be made in one place rather than 2.

with q as (select policy_period_key

 from policies a, calendar_premium b

 where a.policy_key= b.policy_key

 and policy_period_start_date between to_date('1-jan-2004')
 and to_date('1-jan-2007')-1/86400

 and pl_team in ('A','B')

 group by policy_period_key

 having sum(premium) >=50000)
select claim_number, nvl(total_incurred,0), nvl(total_paid,0)
from (select claim_number, sum(incurred_loss_amount) total_incurred

 from claims a, incurred_losses b

 where a.claim_key=b.claim_key

 and policy_period_key in (select policy_period_key from q)) full outer join
 (select claim_number, sum(paid_loss_amount) total_paid

 from claims a, paid_losses b

 where a.claim_key=b.claim_key

 and policy_period_key in (select policy_period_key from q)) y using claim_number;
Inline Views - sub-query in the from clause
Inline views allow the use of a query as if it were a table in the From clause which allows data to be aggregated prior to be join which can increase performance and prevent joining issues such as fan and chasm traps or when needing to join multiple fact type tables.
Order by Clause in an Inline Views (8i)
The addition of Order by Clause within Inline Views in 8i allowed for the writing of pagination and similar queries.

select ename, sal

from (select ename, sal, rownum rn

 from (select ename, sal

 from scott.emp

 order by sal))
where rn between 5 and 10;
Merge Statements (9i)
The Merge statement also known as the upsert statement allows for the manipulation of the data in one table (set one) based upon the data returned by a query or stored in another table (set two). This statement is very flexible as it allows for set one data to be inserted, updated and deleted based upon whether data exists or does not exists in set two.
The merge statement was used extensively throughout my latest data warehouse project as it simplified coding, provided the flexibility and performance that row by row and bulk processing could not. One example of which was when we needed to determine which records to bring over to data warehouse every night. Each policy had 3 types of records, estimated, reported and audited with only 1 type being allowed to be the current record in the warehouse with audited records having the top priority followed by reported records and then estimated records. This provided us a list of policies in table format that could be joined in each query in the ETL routine to efficiently filter the desired records

First we inserted a list of estimated policy record primary keys along with an ‘e’ flag for estimated that met the appropriate criteria into a global temporary table named policy_lists; after which we would merge in the list of reported policy records that met another criteria set by updating any record that existed in the table from an ‘e’ to an ‘r’ or by inserting the primary key along with an ‘r’ and finally a second merge statement was executed to insert and update records that met the audited record criteria in a similar manor to the reported records.
The legal_entity_id was another piece of data was required for a many of the queries in the ETL process however it was inefficient to access that data for each of the above queries as the joins were complex and it would have to be coded 3 times once for each query and it would have be executed 3 times as well; so the efficient solution presented itself with another merge statement. The global temporary table, policy_lists, was added to the query that obtained the legal_entity_ids as restricting the in query was faster than getting all the legal_entity_ids and then merging them into policy_lists. As the list of policies was complete only an update was needed to set the value of the legal entity_id.

merge into policy_lists x
using (select a.plcy_id, a.plcy_prd_eff_dt, a.prem_typ_cd

from policy_period_premium_drv a

where a.prem_typ_cd='a'

and
a.rt_elem_typ_cd='eap'

and
c_end_of_day_to_process between a.plcy_prd_prem_drv_eff_dtm

 and nvl(a.plcy_prd_prem_drv_end_dtm,'31-dec-2099') y

on (x.plcy_id=y.plcy_id and

 x.plcy_prd_eff_dt=y.plcy_prd_eff_dt)
when matched then update set x.prem_typ_cd=y.prem_typ_cd

when not matched then insert (plcy_id, plcy_prd_eff_dt, prem_typ_cd)

 values (y.plcy_id, y.plcy_prd_eff_dt, y.prem_typ_cd);
Updateable Views

Views, both inline and defined, can be updated as long as only data from one base table from the view is updated and that table is a driving table not a lookup table. All columns that are going to be used for filtering and updating purposes must be specified in the select clause of the view. If the query of the view has any of the following functions/clauses updates will not be allowed.

· Aggregate Functions (SUM, AVG, COUNT, MAX, MIN, etc.)

· Set Operators
· Distinct
· Group by

· Order by
· Connect by

Example:
update (
 select empno, a.deptno, dname, comm

 from scott.emp a, scott.dept b

 where a.deptno=b.deptno)

set comm=comm * 1.1

where dname='SALES';
Full Outer Joins (9i)
Outer joins return the result set of an inner join extended to included all the rows from one table (A) that do not have a corresponding row in a another table (B). Outer Joins do not return rows in table B that do not exist in table A. Outer Joins only work in one direction, however there are cases where an outer join that works in both directions are needed.

Full outer joins return

· Rows that exist in both tables.

· Rows that exist in table A that do not exist in table B

· Rows that exist in table B that do not exist in table A
Problem:
Creating transactions in a data warehouse project from a source system that only stored the current balance per category for a particular policy so when the balance changed or a category was added or removed there was no record of it except a date field indicating that it was changed. The data warehouse required these transactions so date based reports could easily be generated.
The Old Method:

· Union together two outer joined sql queries. While 9i+ allows a single sql statement to perform this function the execution plan (and performance) is identical to the old method.
· Use row by row processing

Solution:
1. Generate a list of policies from the source system that had a balance change. Note the use of the With clause to factor out a sub-query that returns a list of policies to process which we later use in inline views A (source) and B (warehouse).
2. Compare the balance records for the policy and category from the source system for all policies in step 1 to the total of all transactions in the warehouse grouped by policy and category using the Full Outer Join and then take the difference. The Policy_id and category_id cannot be referenced by an alias of either inline view as the query is written with the Using syntax which does a Coalesce on those fields returning a not null column with a combined list in the final result set.
with q as (select policy_id from policy_list
 where change_date between trunc(sysdate-1) and
 trunc(sysdate)-1/86400)

select policy_id, category, a.balance, b.transaction_amount,
 nvl(a.balance,0)- nvl(b.transaction_amount,0) new_transaction_amount

from

 (select policy_id, category, balance

 from source_tables

 where policy_id in (select policy_id

 from q)) a
 full outer join

 (select policy_id, category, sum(transaction_amount) transaction_amount

 from warehouse_tables

 where policy_id in (select policy_id

 from q)) b
 using (policy_id, category)

where nvl(balance,0)- nvl(transaction_amount,0) <>0;
Inline View A Result Set

Inline View B result Set

	Policy Id
	Category
	Balance
	
	Policy Id
	Category
	Transaction_amount

	1
	A
	30.00
	
	1
	A
	20.00

	1
	B
	45.00
	
	1
	C
	75.00

	1
	C
	75.00
	
	1
	D
	65.00

	1
	E
	28.00
	
	1
	F
	25.00

	1
	F
	16.00
	
	1
	G
	12.00

Query Result Set
	Policy Id
	Category
	Balance
	Transaction_amount
	New_Transaction_amount

	1
	A
	30.00
	20.00
	10.00

	1
	B
	45.00
	
	45.00

	1
	D
	
	65.00
	-65.00

	1
	E
	28.00
	
	28.00

	1
	F
	16.00
	25.00
	-9.00

	1
	G
	
	12.00
	-12.00

Partitioned Outer Joins

Partitioned outer joins allows the joining of the same result set (query/table) to each subset of another.

We had a case requiring a report illustrated by the following simple example of wanting the sales of products #13 and #14 by quarter for the year 2005 however the data was sparse as every product was not sold in every quarter. At first we wrote the report by creating a query that performed a Cartesian product of the list of quarters to the list of product which when joined to the query of the sales.

select product, sales_quarter, nvl(total_quantity_sold,0) total_quantity_sold

from (select product, sales_quarter

 from (select year_quarter sales_quarter

 from days where end_of_quarter='Yes'

 and year=2005) a,
 (select product

 from products

 where product in (13,14)) b) x,

 (select product, sales_quarter, sum(quantity_sold) total_quantity_sold

 from sales group by product, sales_quarter) y

where x.product=y.product(+)

and x.sales_quarter=y.sales_quarter(+)
 Inline View Y results

Final Results
	Product
	Sales Quarter
	Total Quantity Sold

	13
	2005Q1
	25

	14
	2005Q4
	17

	14
	2005Q3
	44

	13
	2005Q4
	36

	13
	2005Q3
	22

	Product
	Sales Quarter
	Total Quantity Sold

	13
	2005Q1
	25

	13
	2005Q2
	0

	13
	2005Q3
	22

	13
	2005Q4
	36

	14
	2005Q1
	0

	14
	2005Q2
	0

	14
	2005Q3
	44

	14
	2005Q4
	17

Once we learned about the partitioned outer join the query became much simpler and it performed much quicker as the Cartesian join no longer had to be run. The partition by product clause allowed the A inline view to be joined to each product.

select a.product, b.sales_quarter, nvl(total_quantity_sold,0) total_quantity_sold

from (select product, sales_quarter, sum(quantity_sold) total_quantity_sold

 from sales group by product, sales_quarter) b partiton by (product) right outer join
 (select year_quarter sales_quarter

 from days where end_of_quarter='Yes'

 and year=2005) a on b.sales_quarter=a.sales_quarter;

Set Operators (union, minus, intersect)
Set operators are used to combine results sets of two queries into one set. Union returns a unique list of all elements in both sets. If the ALL operator (UNION ALL) is used then all elements are returned including duplicates. The Minus operator is used to return a unique list of elements that are in the first set that are not in the second set. The Intersect operator returns a unique list of all elements common to both sets. The sql engine is designed to process data in sets and is very efficient at it. Set based operations perform faster than any other method of getting the same data.

When multiple set operators exists within the same query they are processed from top to bottom and to change the logical order of processing, parenthesis can be added as operators within the parenthesis are processed first in a similar manor to mathematical order of operations.

The Intersect operator can be used to find all items that meet multiple criteria that require different sql statements.

select policy_id

from policies

where policy_team ='A'

intersect
select policy_id

from claims

where accident_date between trunc(sysdate,'YYYY') and sysdate;
Problem:

Frequently I need to produce a list of items that meet several criteria. Since the data comes from different tables, needing different joins and filters. A detail about each item then needs to be provided which requires another complex sql statement.

The Old Method:

1. Coding each query to get the item with details.

2. Include a “Not In” filter to strip duplicate or filter the duplicates on the client side.

Solution:
1. Write each query to return only the primary key of the item (bold queries within parenthesis).

2. Union the list queries together (green caps). – This will eliminate the duplicates.

3. Join the union-ed queries as an inline view to other table to returns the details (pink).

select *

from policies x,

(select plcy_id, plcy_prd_eff_dt, 'e' prem_typ_cd

 from policy_coverage_premium a

 where plcy_prd_eff_dt <= c_start_of_day_to_process

 and (prem_typ_cd = 'e' or

 (prem_typ_cd = 'a' and empl_id_crea = 99))

 UNION

 select plcy_id,

 plcy_prd_eff_dt,

 'e'

 from policy_premium_prd_prem_drv a

 where prem_typ_cd = 'e'

 and plcy_prd_eff_dt <= c_start_of_day_to_process

 and plcy_prem_prd_prem_drv_eff_dtm between c_start_of_day_to_process

 and c_end_of_day_to_process)

 UNION

 select agre_id,

 b.plcy_prd_eff_dt,

'e' prem_typ_cd

 from la_agreement_rule_asgn_hist b

 where b.la_agre_rl_asgn_hist_crea_dtm between

 c_start_of_day_to_process and c_end_of_day_to_process

 and plcy_prd_eff_dt <= c_start_of_day_to_process) y
where x.plcy_id=y.plcy_id

and x.plcy_prd_eff_dt=y.plcy_prd_eff_dt

and x.prem_typ_cd=y.prem_typ_cd;

Hierarchical Queries - connect by

The Connect by clause was a rarely mentioned and promoted feature of Oracle SQL as it technically violates relational database management theory as tree relationships should not exist within a table. However tree relationships do exists and are stored within our databases. Without the Connect by clause it would be very difficult to answer questions based on these relationships.

In 10g the connect by clause was enhanced to provide additional features:

· Connect_by_root – returns the root of the hierarchy for the current row.

· Connect_by_iscycle – flag indicating that the current record is part of an infinite loop (A-B-C-A).

· Connect_by_isleaf – flag identifying that the current row does not have children rows.

· Nocycle – prevents the query from throwing an error if it identifies an infinite loop.

select empno, ename, job, level,

 substr(sys_connect_by_path (ename, '>'),2) path,

 connect_by_isleaf leaf,
 connect_by_iscycle cycle
from scott.emp a
start with job = 'PRESIDENT'
connect by nocycle prior empno = mgr
	empno
	ename
	Job
	level
	Path
	leaf
	cycle

	7839
	KING
	PRESIDENT
	1
	KING
	0
	0

	7566
	JONES
	MANAGER
	2
	KING>JONES
	0
	0

	7788
	SCOTT
	ANALYST
	3
	KING>JONES>SCOTT
	0
	0

	7876
	ADAMS
	CLERK
	4
	KING>JONES>SCOTT>ADAMS
	1
	0

	7902
	FORD
	ANALYST
	3
	KING>JONES>FORD
	0
	0

	7369
	SMITH
	CLERK
	4
	KING>JONES>FORD>SMITH
	1
	0

	7698
	BLAKE
	MANAGER
	2
	KING>BLAKE
	0
	0

	7499
	ALLEN
	SALESMAN
	3
	KING>BLAKE>ALLEN
	1
	0

	7521
	WARD
	SALESMAN
	3
	KING>BLAKE>WARD
	1
	0

	7654
	MARTIN
	SALESMAN
	3
	KING>BLAKE>MARTIN
	1
	0

	7844
	TURNER
	SALESMAN
	3
	KING>BLAKE>TURNER
	1
	0

	7900
	JAMES
	CLERK
	3
	KING>BLAKE>JAMES
	1
	0

	7782
	CLARK
	MANAGER
	2
	KING>CLARK
	0
	0

	7934
	MILLER
	CLERK
	3
	KING>CLARK>MILLER
	1
	0

Database Structures

Global Temporary Tables

Global temporary tables (GTT) are tables that have a persistent definition in the oracle data dictionary however the data within them is only persistent within a transaction (between commits) or within a session (connect to disconnect) based on how they are created. The data for this type of table is stored in memory but will swap down to temporary segments on disk once it gets too large. These tables act like arrays that hold data only for ones session, it will not be accessible from any other session and any data inserted from another session cannot be seen even if it committed. While these tables act like arrays they are accessed like any other table and can be included in any dml statement. GTT’s do not generate redo or undo so when the session ends gracefully or not any data within these tables are lost, if this is not acceptable then regular tables need to be used.
Global temporary tables can speed up long running queries by materializing intermediate result sets allowing the optimizer to devise more efficient plans. I have seen improvements up to an order of magnitude with queries that contain anti-joins. GTT’s are also useful for storing result sets that are going to be accessed by multiple queries within the same session so each query does not need to run the query that produced the data for the GTT.
Global temporary tables are create with the standard create table syntax with the addition of keywords “global temporary” and “on commit preserve/delete rows”. All storage related clauses need to be removed as they have no bearing due to storage being allocated from the users’ temporary tablespace.

Ddl can be performed on GTT’s to create indexes, and constraints as long as no session is bound to the table which occurs when data is inserted into the table. To unbind a session from a table the table has to be truncated or the session has to disconnect. Commits will also unbind for GTT’s created with the “delete on commit” option. Views can also be created against GTT’s and can include standard tables as well. Export/Import/Data Pump will extract and create the table definitions of GTT’s however they will not move any data.
CREATE GLOBAL TEMPORARY TABLE OLAPTABLEVELS
(
 SCHEMA_NAME VARCHAR2(30 BYTE),
 DIMENSION_NAME VARCHAR2(30 BYTE),
 DIMENSION_OWNER VARCHAR2(30 BYTE),
 CUBE_NAME VARCHAR2(30 BYTE),
 LEVEL_NAME VARCHAR2(30 BYTE),
 SELECTED NUMBER
)
ON COMMIT PRESERVE ROWS
NOCACHE;
External Tables

External tables are a sql based interface to sql*loader. A table definition is created with the much the same info as a sql*loader control file plus column definitions for the table. It is a tool that allows for cleansing, manipulation and aggregation of the data with all the power of sql functions and operators prior to inserting the data into permanent tables which reduces undo and redo generation as compared with loading them into a permanent table and then processing the data.
create table ext_emp

 (empno number(4),
 ename varchar2(10 byte),
 job varchar2(9 byte),
 mgr number(4),
 hiredate date,
 sal number(7,2),
 comm number(7,2),
 deptno number(2))
 organization external
 (type oracle_loader

 default directory scott_ext

 access parameters
 (records delimited by newline

 fields terminated by '|'
 missing field values are null)
 location ('emp.txt'))
 reject limit 100;
Other Techniques

Model Clause

Complex spreadsheet style calculations can be very difficult to write in sql without the model clause. This clause supports inter-row references, formula dependencies, and large sets of interlinked formulas with the power and optimization of the sql engine behind it so it is manageable, scalable and performs quite well and reduces the need to extract data into spreadsheets and eliminates repetitive manual formula entry which is a major source of error and a large time sink which can now be automated.
Multi-table Inserts(9i)
When moving data from a source (external tables, batch interface tables, data warehouse staging tables etc.) that contains multiple tables’ worth of data within single record (business entity, multiple addresses, contact info etc.), multi table inserts simplify the process by allowing the parent records and all the children records to be inserted at the same time including fields generated at the time of the insert including sequence based primary/foreign keys. The optimizer is smart enough to use the same value for multiple calls to a sequences nextval with the same record even though the data is going to multiple tables but the sequence needs to be in the values clause and not in the select statement.

The multi-table insert can be conditional allowing you to choose which tables will be inserted to dynamically on a record by record basis. Although the Non-conditional insert is more common, where all tables are inserted for each record.
The multi-table insert does not guarantee the order of the inserts so foreign key constraints need to be deferred and will be validated on commit. It does however fire all triggers so if the logic in trigger that are order dependent may need to be rewritten to accommodate this change. Multiple table inserts also support the parallel and append hints to increase performance. One can see dramatic improvements in performance if the original method to inserting the data required multiple passes of the source data, and even more so if the subsequent inserts of the child tables required join to the new parent records to get the parents tables primary key which is used as a foreign key in the child tables.
Multi-table insert can only be performed against local heap (non IOT) tables, views, materialized views and remote tables are not supported. Tables with bitmap indexes are not supported either. A maximum of 999 columns are supported from all the Into clauses. Parallel inserts are not supported in RAC environment. Table Outlines and the use of collection are also restricted.
Hints

Although hints are part of the select clause, they deserve their own section as they can be very useful for tuning the execution of stubborn select statements. The Oracle SQL Engine Optimizer is very powerful at generating optimal execution plans however it is more likely to generate a suboptimal execution plans when faced with either poorly designed schema’s or poorly written queries.

Hints should be used to identify the correct execution plan, it is best not to leave the hints in the query but to correct the fundamental issue that caused the optimizer to generate the wrong plan so that other queries can benefit from the correction. In some cases though hint do need to be left in the query as the statistics that the optimizer basis its decisions off are correct but for some reason the execution plan is still suboptimal. Also one may not have the time or be willing to risk delving into the depths of the database to tune a few queries. In such cases hints that specify goals or provide additional information to the optimizer are preferred over ones that identify a specific action as they allow the optimizer to still choose between different options based upon changes to volume and distribution of the data. The table below lists most of the documented hints available in 10g with the stared ones being the preferred ones. When the desired result cannot be achieved with one of the preferred hints then the other hints come into play.

	Top of Form

All_Rows*
	Hash_Aj
	No_Index
	Ordered_PredicatesBottom of Form

	And_Equal
	Hash_Sj
	No_Index_Ffs
	Parallel*

	Append
	Index
	No_Index_Ss
	Pq_Distribute

	Bitmap
	Index_Asc
	No_Merge
	Push_Pred

	Cache
	Index_Combine
	No_Parallel_Index
	Push_Subq

	Cardinality*
	Index_Desc
	No_Push_Pred
	Qb_Name

	Choose*
	Index_Ffs
	No_Push_Subq
	Rewrite*

	Cluster
	Index_Join
	No_Query_Transformation
	Rowed

	Cpu_Costing
	Index_Ss
	No_Rewrite*
	Rule

	Cursor_Sharing_Exact*
	Index_Ss_Asc
	No_Star_Transformation*
	Selectivity

	Driving_Site*
	Index_Ss_Desc
	No_Unnest
	Spread_Min_Analysis

	Dynamic_Sampling*
	Leading*
	No_Use_Hash
	Star

	Expand_Gset_To_UnionBottom of Form
	Merge
	No_Use_Merge
	Star_Transformation

	Fact
	Merge_Aj
	No_Use_Nl
	Unnest

	First_Rows*
	Nl_Aj
	Noappend*
	Use_Concat

	First_Rows_1*
	Nl_Sj
	Nocache
	Use_Hash

	First_Rows_100*
	No_Cpu_Costing
	No_Parallel*
	Use_Merge

	Full
	No_Expand
	Norewrite*
	Use_Nl

	Hash
	No_Fact
	Ordered*
	Use_Nl_With_Index

	* - Preferred hints as they provide additional info to the optimizer
 without locking it in to a specific action.

Hints are specified in the select clause immediately after the select keyword with a hint followed by a plus (+) sign. Multiple hints can be listed inline however if competing hints are specified oracle will ignore one or all of the hints. Any syntax error within a the hint will cause oracle to ignore the hint entirely.

select /*+ ordered use_nl(a b) */
from policies a,
 premium b,
 days c

where a.policy_key=b.policy_key

and b.day_key=c.day_key

and sysdate between a.record_effective_date and a.record_end_date

and policy_team='A';
Additional Example
Problem:

In order to integrate with a third party product for our actuaries we had to create text files in a format that required a 3 line header row prior to each of 14 blocks (combination of jurisdiction and occurrence_limit_name) of data with specific identifying control elements including the number of unique attributes within the set, and each attribute (ay_qtr) had between 1 and 65 elements (number_of_months) which grew regularly.
The Old Method:

1. Hard coded a “selects from dual” for each of headers.

2. Write a query for each block of data,
3. Repeat steps 1 and 2 for the 14 blocks, each with different hard coded values.
4. Repeat steps 1, 2 and 3 for each type of data to be integrated which in our case was three.

This solution a lot of code to write where many copy and paste errors would creep in and debugging would be a nightmare. Also maintaining the code in future would be problematic as the same logic would have to be updated 14 times.

Solution:
1. Write 3 queries using a case statement with the row_number analytical function to identify the first row per block in which case we pre-pended the required data.

2. Include the number of attributes in the set by using the count analytical function with the distinct clause so that it would not count the number of elements.
3. Add a new line character, chr(10), to break the one row that was returned by the query into 3 lines when spooled to a file.
SELECT
CASE WHEN ROW_NUMBER() OVER (PARTITION BY JURISDICTION, OCCURRENCE_LIMIT_NAME

 ORDER BY NUMBER_OF_MONTHS) =1

 THEN (RPAD('~',8,' ')||'00'||

 RPAD(CASE WHEN JURISDICTION='STATE' THEN 'IST'
 WHEN JURISDICTION='FEDERAL' THEN 'IFE' END ||

 CASE WHEN OCCURRENCE_LIMIT_NAME ='TWENTY FIVE THOUSAND' THEN '25K'
 WHEN OCCURRENCE_LIMIT_NAME ='FIFTY THOUSAND' THEN '50K'
 WHEN OCCURRENCE_LIMIT_NAME ='TWO HUNDRED FIFTY THOUSAND'
 THEN '250'
 WHEN OCCURRENCE_LIMIT_NAME ='FIVE HUNDRED THOUSAND' THEN '500'
 WHEN OCCURRENCE_LIMIT_NAME ='ONE MILLION' THEN '1M'
 WHEN OCCURRENCE_LIMIT_NAME ='TWO MILLION' THEN '2M'
 WHEN OCCURRENCE_LIMIT_NAME ='UNLIMITED' THEN 'UNL'

 END,8,' ') ||

 TO_CHAR(COUNT(DISTINCT NUMBER_OF_MONTHS) OVER

 (PARTITION BY JURISDICTION, OCCURRENCE_LIMIT_NAME),'FM000') ||

 …||'N'||'N'||RPAD(' ',50,' ')||LPAD('~',6,' ')||CHR(10)||

 --00 RECORD ENDS HERE AND 01 RECORD BEGINS HERE
 RPAD('~',8,' ')||'01'||RPAD('ALL CLAIMS BY ACCIDENT QUARTER', 390,' ') ||

 LPAD('~',6,' ')||CHR(10)||
 --01 RECORD ENDS HERE AND 02 RECORD BEGINS HERE
 RPAD('~',8,' ')||'02'||
 RPAD(JURISDICTION||' '|| OCCURRENCE_LIMIT_NAME, 390, ' ') ||

 LPAD('~',6,' ')||CHR(10))
 --02 RECORD ENDS HERE
 ELSE NULL END || … --all other selected columns were concatenated in here.
FROM CAPPED_LOSSES

GROUP BY JURISDICTION, OCCURRENCE_LIMIT_NAME, AY_QTR, NUMBER_OF_MONTHS

ORDER BY JURISDICTION, OCCURRENCE_LIMIT_NAME, AY_QTR, NUMBER_OF_MONTHS;
Summary
Challenges that have historically been solved by using complex procedural code can now be solved by using the enhanced features built into SQL by Oracle. These features reduce the amount of coding that needs to be written, simplify debugging, and execute faster as they are processed by the SQL engine. Analytical Functions allow access to data within the entire result set from each row and Case Statements permit if/then/else logic to be applied making them the most powerful tools that every sql developer should have in his/her toolbox.
About The Author

Kenneth Naim is a Senior Oracle DBA and Developer with over 10 years experience with the Oracle database. He has developed, administered, and tuned several OLTP, batch and data warehousing systems for insurance, defense, point processing, utility, web, and retail companies.
[image: image1.png]

1 of 21

Paper # 303

