Oracle 11g

Oracle 11g: Rest of the new features for DBA
Biju Thomas, OneNeck IT Services Corporation
Introduction

Oracle11g introduced more than 400 new features. There are several great new features in Oracle11g and the top features are discussed all over the conferences and blogs. In this paper, we will discuss some of the new features and changes introduced in Oracle11g that may impact your everyday database administration after you create/upgrade to Oracle11g database. This paper also concentrates on the Oracle database features that are available with no additional options installed in Enterprise Edition. According to the Oracle11g architects and experts, the top features of Oracle11g database may be
· Database Replay to perform Real Application Testing
· SQL Performance Analyzer

· Result Cache
· Data Pump compression and OLTP Table compression

· RMAN network duplicate and Recovery Advisor
· Enhanced Partitioning schemes

· Standby Database Active Data Guard
· Snapshot Standby

· Flashback Data Archive

· Encrypted Tablespaces

Let’s review the rest of the features that are easy to implement or are already implemented by default.

Security

Lets review few security related enhancements in Oracle11g.

Case Sensitive Passwords

The passwords are now case sensitive. All new users created in the 11g database have case sensitive password by default. For databases upgraded from earlier releases, the passwords are not case sensitive for existing accounts. They become case sensitive when you change password. A new column PASSWORD_VERSIONS is added to DBA_USERS view. A value ‘10G 11G’ in this column indicates that case sensitivity is enforced for the account.
The PASSWORD column is still available in DBA_USERS view, it is not populated anymore. For external authenticated or global accounts, the PASSWORD column indicates such.

select username, password_versions, password from dba_users;

USERNAME PASSWORD PASSWORD

------------------------------ -------- ---------------

MGMT_VIEW 10G 11G

SYS 10G 11G

SYSTEM 10G 11G

SAMUEL EXTERNAL

BTHOMAS 10G 11G

ANONYMOUS

XDB 10G 11G
Disable Case Sensitive Passwords
Oracle11g has a new parameter to disable the password case sensitivity – SEC_CASE_SENSITIVE_LOGON. This parameter is set to TRUE by default. Change to FALSE for pre-Oracle11g password behavior. This parameter can be changed using ALTER SYSTEM.
SYSDBA/SYSOPER password

The password file created using orapwd utility is also case sensitive by default. To make the password for SYS and SYSDBA/SYSOPER case insensitive, include flag ingnorecase=y in the command line.

$ orapwd file=L11GR1.ora ignorecase=y

Enter password for SYS:

DB Links
When connecting to an Oracle11g database with default SEC_CASE_SENSITIVE_LOGON using a database link from pre-11g database, make sure the database password in Oracle11g database is set up as ALL UPPERCASE. Pre-Oracle11g databases send password in uppercase for db link connections. For 11g to 11g, the password case must be the same; for 11g to pre-11g database, the password case does not matter.
	
	To Pre-Oracle11g
	To Oracle11g

	From Pre-Oracle11g
	Case does not matter
	Uppercase

	From Oracle11g
	Case does not matter
	Same case

Users with default passwords
Oracle11g has a new very useful view to list the database accounts that have default password – DBA_USERS_WITH_DEFPWD. This view has only one column – USERNAME. By default the Oracle system accounts and example accounts are locked in Oracle11g.
select * from dba_users_with_defpwd;

USERNAME

DIP

MDSYS

WK_TEST

CTXSYS

HR

OUTLN

EXFSYS

SCOTT

MDDATA

ORDPLUGINS

ORDSYS

XDB

SI_INFORMTN_SCHEMA

WMSYS

Changes to DEFAULT profile
Three security related resources in the DEFAULT profile are changed from UNLIMITED.

	Resource Name
	New Value
	Purpose

	PASSWORD_LIFE_TIME
	180
	Frequency of password change

	PASSWORD_LOCK_TIME
	1
	Number of days the account will be locked after consecutive number of FAILED_LOGIN_ATTEMPTS (default 10)

	PASSWORD_GRACE_TIME
	7
	Number of days warning the user has to change password before it expires

The FAILED_LOGIN_ATTEMPTS profile resource was 10 in 10g, it is not changed in 11g. The FAILED_LOGIN_ATTEMPTS is used to lock the account after so many unsuccessful login attempts.
The default script from Oracle (?/rdbms/admin/utlpwdmg.sql) to create the PASSWORD_VERIFY_FUNCTION has been improvised to include many checks for the new password. The function name also changed from VERIFY_FUNCTION to VERIFY_FUNCTION_11G.
Related Initialization Parameter

When a user is trying to login to a database, a server process is first started and then the client tries to authenticate with this server process. Oracle11g introduced SEC_MAX_FAILED_LOGIN_ATTEMPTS to prevent potential intruders trying different combination of usernames and passwords with one server process. The default for SEC_MAX_FAILED_LOGIN_ATTEMPTS is 10.
Default Auditing

Oracle11g comes out of the box with default auditing enabled. The AUDIT_TRAIL parameter is set to DB by default, hence audit records are written to SYS.AUD$. The following actions are audited:
	ALTER ANY PROCEDURE
	CREATE ANY JOB
	DROP ANY TABLE

	ALTER ANY TABLE
	CREATE ANY LIBRARY
	DROP PROFILE

	ALTER DATABASE
	CREATE ANY PROCEDURE
	DROP USER

	ALTER PROFILE
	CREATE ANY TABLE
	EXEMPT ACCESS POLICY

	AUDIT ROLE BY ACCESS
	CREATE EXTERNAL JOB
	GRANT ANY OBJECT PRIVILEGE

	ALTER SYSTEM
	CREATE PUBLIC DATABASE LINK
	GRANT ANY PRIVILEGE

	ALTER USER
	CREATE SESSION
	GRANT ANY ROLE

	AUDIT SYSTEM
	CREATE USER
	

	AUDIT SYSTEM BY ACCESS
	DROP ANY PROCEDURE
	

If there is no process in place to cleanup the SYS.AUD$ table periodically, the SYSTEM tablespace may fill up quickly (depends on the number of logins and DDL in the database).
DELETE, INSERT, UPDATE, MERGE actions on SYS.AUD$ table are always audited and when you delete SYS.AUD$ table, such records are not deleted. The DELETE statement on SYS.AUD$ table does not delete audit information on the AUD$. TRUNCATE on AUD$ will purge all records – only SYS has the privilege to perform truncate.
DDL Logging to Alert log
To write all DDL command executions to the alert log, set the initialization parameter ENABLE_DDL_LOGGING to TRUE. The default is FALSE.
alter system set enable_ddl_logging = true;
System altered.
create table bthomas.test_table (nn number);
Table created.
alter table bthomas.test_table modify (nn varchar2 (10));
Table altered.
drop table bthomas.test_table;
Table dropped.
The alert log entries corresponding to the above actions are:

Wed Jan 30 11:21:11 2008

create table bthomas.test_table (nn number)

Wed Jan 30 11:27:34 2008

alter table bthomas.test_table modify (nn varchar2 (10))

Wed Jan 30 11:29:43 2008

drop table bthomas.test_table
Configuration
Let’s review some of the changes introduced in the file locations and initialization parameters.
Alert and Trace File Locations
Oracle’s new Automatic Diagnostic Repository (ADR) replaces the BACKGROUND_DUMP_DEST, CORE_DUMP_DEST and USER_DUMP_DEST locations. A new parameter DIAGNOSTIC_DEST specifies the base directory for the ADR. The default for DIAGNOSTIC_DEST is ORACLE_BASE if available, else ORACLE_HOME/log. ADR is a vast topic and is not covered here in its entirety.
The subdirectories under the DIAGNOSTIC_DEST are:
	· DIAGNOSTIC_DEST/diag

· rdbms

· db_name

· instance_name

· alert

· cdump

· hm

· incident

· incpkg

· ir

· lck

· metadata

· stage

· sweep

· trace

	· DIAGNOSTIC_DEST/diag

· tnslsnr

· machine_name

· listener_name

· alert

· cdump

· incident

· incpkg

· lck

· metadata

· stage

· sweep

· trace

Let’s find out where to look for log and trace files in Oracle11g.
	Type of file
	Pre-Oracle11g location
	New location

	Alert log (text)
	BACKGROUND_DUMP_DEST
	<DD>/diag/rdbms/<dbname>/<instance>/trace

	Alert log (xml)
	None
	<DD>/diag/rdbms/<dbname>/<instance>/alert

	Background trace files
	BACKGROUND_DUMP_DEST
	<DD>/diag/rdbms/<dbname>/<instance>/trace

	User trace files
	USER_DUMP_DEST
	<DD>/diag/rdbms/<dbname>/<instance>/trace

	Core dump files
	CORE_DUMP_DEST
	<DD>/diag/rdbms/<dbname>/<instance>/cdump

	Listener log file
	$TNS_ADMIN/log
	<DD>/diag/tnslsnr/<machine>/<listener>/trace

The values for _DUMP_DEST parameters are ignored by Oracle11g. The new view V$DIAG_INFO gives file locations.
select name, value from v$diag_info;

NAME VALUE

------------------------- --

Diag Enabled TRUE

ADR Base c:\oracle

ADR Home c:\oracle\diag\rdbms\w11gr1\w11gr1

Diag Trace c:\oracle\diag\rdbms\w11gr1\w11gr1\trace

Diag Alert c:\oracle\diag\rdbms\w11gr1\w11gr1\alert

Diag Incident c:\oracle\diag\rdbms\w11gr1\w11gr1\incident

Diag Cdump c:\oracle\diag\rdbms\w11gr1\w11gr1\cdump

Health Monitor c:\oracle\diag\rdbms\w11gr1\w11gr1\hm

Default Trace File c:\oracle\diag\rdbms\w11gr1\w11gr1\trace\w11gr1_ora_6036.trc

Active Problem Count 0

Active Incident Count 0

Also notice that most of the trace file (.trc) is accompanied by a corresponding trace map file (.trm). TRM files are used for searching and navigation. ADRCI is a new command line utility to view log and trace files.
Parameter default value changes
The following parameters have a different value than what it had in Oracle10g.

	Parameter
	10g Value
	11g Value

	LOG_ARCHIVE_MAX_PROCESSES
	2
	4

	SESSION_CACHED_CURSORS
	0
	50

	JOB_QUEUE_PROCESSES
	10
	1000

	AUDIT_TRAIL
	NONE
	DB

	UNDO_MANAGEMENT
	MANUAL
	AUTO

Memory configuration
Oracle10g simplified the memory configuration by introducing SGA_TARGET parameter. This parameter managed the DB_CACHE_SIZE, SHARED_POOL_SIZE, JAVA_POOL_SIZE, LARGE_POOL_SIZE and STREAMS_POOL_SIZE. Oracle11g has a new parameter MEMORY_TARGET to manage SGA components and PGA. MEMORY_MAX_TARGET specifies the maximum memory that can be allocated for the instance.
The new view V$MEMORY_TARGET_ADVICE provides advice on the effect of increasing or decreasing the MEMORY_TARGET parameter value. The last 800 memory resize operations can be found in V$MEMORY_RESIZE_OPS view. The V$MEMORY_DYNAMIC_COMPONENTS view shows the summarized information on all resize operations and shows the current sizes of all SGA components.
select component, current_size from v$memory_dynamic_components;

COMPONENT CURRENT_SIZE

-- ------------

shared pool 289406976

large pool 4194304

java pool 12582912

streams pool 0

SGA Target 536870912

DEFAULT buffer cache 222298112

KEEP buffer cache 0

RECYCLE buffer cache 0

DEFAULT 2K buffer cache 0

DEFAULT 4K buffer cache 0

DEFAULT 8K buffer cache 0

DEFAULT 16K buffer cache 0

DEFAULT 32K buffer cache 0

Shared IO Pool 0

PGA Target 318767104

ASM Buffer Cache 0

If you set the MEMORY_TARGET to a non-zero value, Oracle will manage memory automatically. The MEMORY_MAX_TARGET will default to the value of MEMORY_TARGET. If you have also set SGA_TARGET and PGA_AGGREGATE_TARGET parameters, those values will be considered the minimums.
Create parameter file from memory
For databases running for several days/months, the DBA might have made many changes to the parameters. If SPFILE is not used, it is DBA responsibility to document the changes in the init.ora file. Also there may be some parameter changes where the DBA explicitly specified SCOPE=MEMORY. In pre-Oracle11g databases you can create a PFILE only from an SPFILE or create SPFILE from a PFILE. In Oracle11g, you can now create a PFILE or SPFILE from the current system-wide settings. This option is very useful if you accidentally delete the pfile or spfile.
CREATE PFILE FROM MEMORY;

CREATE SPFILE FROM MEORY;

The best part I liked about this feature is the pfile/spfile generated has many undocumented parameters that are active in the database.

RESET does not need SID= anymore

The RESET clause of ALTER SYSTEM statement has some changes.
	10g Syntax
	11g Syntax

	[image: image1.emf]
	[image: image2.emf]

As you can see from the syntax diagram, you can delete a parameter from the spfile without specifying the SID=’*’ or SID=’instance’ clause. Also, notice that you can no longer reset a parameter’s memory value, which was supported in 10g. If you try to do the same in 11g, you get the error
ORA-32029: resetting with SCOPE=MEMORY or SCOPE=BOTH is currently not supported
In Oracle10g, if you omit the SCOPE clause, it defaults to BOTH, in Oracle11g the SCOPE defaults to SPFILE. So, when you reset the parameter, only the SPFILE value is changed, the in-memory value persists.
Administration
There are several administration enhancements in Oracle11g.

Shrink Temporary Tablespaces
Oracle11g ALTER TABLESPACE has a new clause to shrink the size of a locally managed temporary tablespace. This can be accomplished at the tablespace level, not explicitly specifying the file names or you can individually shrink each temp file. The optional KEEP clause is used to specify the minimum size of the tablespace to keep. Remember, the “TEMPFILE .. RESIZE” option works only if the temp file does not have any temporary segments above the resize HWM. The SHRINK SPACE de-allocates the temporary segments if they are free.
select file_name, bytes from dba_temp_files;

FILE_NAME BYTES

-- ----------

C:\ORACLE\ORADATA\W11GR1\TEMP01.DBF 31457280

C:\ORACLE\ORADATA\W11GR1\TEMP02.DBF 31457280

alter tablespace temp shrink space keep 18M;

Tablespace altered.

select file_name, bytes from dba_temp_files;

FILE_NAME BYTES

-- ----------

C:\ORACLE\ORADATA\W11GR1\TEMP01.DBF 18808832

C:\ORACLE\ORADATA\W11GR1\TEMP02.DBF 1114112

alter tablespace temp shrink space;

Tablespace altered.

select file_name, bytes from dba_temp_files;

FILE_NAME BYTES

-- ----------

C:\ORACLE\ORADATA\W11GR1\TEMP01.DBF 1114112

C:\ORACLE\ORADATA\W11GR1\TEMP02.DBF 1114112

To individually shrink temp file

alter tablespace temp shrink tempfile

'c:\oracle\oradata\w11gr1\temp01.dbf' keep 20M;
Tablespace altered.

DBA_TEMP_FREE_SPACE

DBA_TEMP_FREE_SPACE is a new view in Oracle11g to display the temporary space usage information at tablespace level. ALLOCATED_SPACE is the space currently allocated and is available for reuse. FREE_SPACE is the space that is currently unallocated.
select * from dba_temp_free_space;

TABLESPACE_NAME TABLESPACE_SIZE ALLOCATED_SPACE FREE_SPACE

-------------------- --------------- --------------- ----------

TEMP 52494336 2162688 51380224
Table Enhancements
The CREATE TABLE and ALTER TABLE statements have been enhanced with a lot of new clauses (features!). Since OLTP compression and interval partitioning are separately licensed components, they are not discussed here.
Read-only tables

In pre-11g databases, the read only option was associated with only tablespaces. Hence, if we had to make a table read-only, we have to move the table to a tablespace that is read-only (make the tablespace read-write, move table, make tablespace read-only) or create a trigger that raises an error when insert/update/delete operations are performed. In Oracle11g, a new clause is introduced in the ALTER TABLE statement to accomplish this.
ALTER TABLE <table_name> READ ONLY;

If you try to perform insert or update or delete on read-only table, you get an ORA-12081 error. The nice part about this feature is you are not able to do TRUNCATE operation on a read-only table. Remember, even if the tablespace is read-only, you can truncate a table. You can perform operations on index associated with read-only tables.
To resume normal update activity on the table, perform ALTER TABLE <table_name> READ WRITE.

A new column READ_ONLY is added to DBA_USERS. To list all the read-only tables in the database, you could do

select owner, table_name, tablespace_name

from dba_tables

where read_only = 'YES';
Add NOT NULL column
There is nothing new here… you are able to add a not null column to the table since very early versions of Oracle. The only restriction is that when NOT NULL is specified, you must also specify the DEFAULT clause.

ALTER TABLE <table_name> ADD <column_properties> DEFAULT <value> NOT NULL;

In pre-Oracle11g databases, when this statement is executed, all the existing rows in the table are updated with the new value and a NOT NULL constraint is created. For tables with multiple million rows, this could run for sometime, using undo and generating lot of redo. Also, you could have row migrations due to this update. In Oracle11g, Oracle is smart enough not to perform the update, but only update the dictionary. When new records are inserted into the table, they get the default value as usual and are verified for NOT NULL. When you query an existing record from the table, Oracle optimizer will apply the filter predicate NVL(<column_name>, <default_value>) before returning the record. The advantage: you do not need to take outage for adding a not null column to a huge table.
Specify Tablespace for Global Temporary Tables

In pre-Oracle11g releases, the global temporary table segments where created in the user’s default temporary tablespace when rows were added. No storage parameters were allowed in the global temporary table creation. In Oracle11g, you can specify a tablespace for global temporary tablespace segments. This is helpful in assigning a tablespace with adequate space and extent sizes.
 create global temporary table customer_stage (

 cust_name number (10),

 col1 varchar2 (40),

 col2 varchar2 (60))

 on commit preserve rows

 tablespace temp;
Invisible Indexes

Oracle11g introduced a new clause in the CREATE INDEX and ALTER INDEX statements to make an index invisible. In the pre-Oracle11g releases, as soon as you create an index, it is visible to the optimizer and execution plans may be affected. If you want to test the implications of creating an index without affecting the application, you can make the index invisible. After testing, you may drop the index or make it visible.
By default all indexes are created visible. To create an invisible index, add the INVISIBLE clause to the CREATE INDEX statement. Invisible indexes are handy for couple of reasons. First, you can create the index to test if the application is badly affected – test your application before you make the index visible to the optimizer and all users. Second, often we wonder if all the indexes on the table are used. We do not have the guts to drop the index and test if it is being used – now we can hide the index from the optimizer and see if the application is affected.
To make the optimizer use invisible index, set the OPTIMIZER_USE_INVISIBLE_INDEXES to TRUE in the session. Once your testing is completed, you can make the index visible by using the ALTER INDEX statement.
SQL> create index hr.employee_test on hr.employee (first_name) invisible;

Index created.

SQL> exec dbms_stats.gather_index_stats('HR','EMPLOYEE_TEST');

PL/SQL procedure successfully completed.

SQL> select index_name, visibility from dba_indexes

 2 where owner = 'HR' and table_name = 'EMPLOYEE';
INDEX_NAME VISIBILIT

------------------------------ ---------

PK_EMPLOYEE VISIBLE

EMPLOYEE_TEST INVISIBLE

SQL> set autotrace traceonly
SQL> select first_name, last_name from hr.employee

 2 where first_name = 'John';

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 3 | 78 | 3 (0)| 00:00:01 |

|* 1 | TABLE ACCESS FULL| EMPLOYEE | 3 | 78 | 3 (0)| 00:00:01 |

--

SQL> alter session set optimizer_use_invisible_indexes = true;

Session altered.
SQL> select first_name, last_name from hr.employee

 2 where first_name = 'John';

| Id | Operation | Name | Rows | Bytes | Cost (%CPU

| 0 | SELECT STATEMENT | | 3 | 78 | 2 (0

| 1 | TABLE ACCESS BY INDEX ROWID| EMPLOYEE | 3 | 78 | 2 (0

|* 2 | INDEX RANGE SCAN | EMPLOYEE_TEST | 3 | | 1 (0

SQL> alter index hr.employee_test visible;

Index altered.

DDL Lock Timeout

When you have to perform maintenance on a table most likely you need to get an exclusive lock on the table. On busy systems where users are performing frequent updates to the table, getting a lock for maintenance is a trial and error thing… If you’re like me, keep on executing the statement repeatedly until it succeeds. There is an alternative in Oracle11g. Instead of returning the “resource busy” error immediately, you can tell the database to wait so many seconds for the lock before returning the “resource busy” error.

To enable DDL lock timeout, use the DDL_WAIT_TIMEOUT parameter. This can be set at the system level or at the session level. The value is specified in seconds (max 1,000,000 seconds – wait forever).

ALTER SESSION SET DDL_LOCK_TIMEOUT = 60;

The error message associated with “resource busy” is also changed in Oracle11g to reflect the new feature.

ORA-00054: resource busy and acquire with NOWAIT specified or timeout expired

Lock table enhancement

The LOCK TABLE statement is enhanced to include a WAIT clause. You can now specify how many seconds you want the database to wait before returning the “resource busy” error. The WAIT clause specifies the number of seconds to wait.

LOCK TABLE <table_name> IN EXCLUSIVE MODE WAIT 120;

The following statements no longer require exclusive locks (x), but acquire shared exclusive locks (sx).

CREATE INDEX … ONLINE

CREATE MATERIALIZED VIEW LOG

ALTER TABLE … ENABLE CONSTRAINT … NOVALIDATE
DBMS_STATS Enhancements
Oracle11g comes with pre-defined jobs to collect statistics on the database. These jobs are run as part of the automated maintenance task (AutoTask) infrastructure.
SQL> select client_name, status from dba_autotask_client;

CLIENT_NAME STATUS

-- --------

auto optimizer stats collection ENABLED

auto space advisor ENABLED

sql tuning advisor ENABLED

If for any reason, you need to disable the automated statistics collection, perform
execute dbms_auto_task_admin.disable('auto optimizer stats collection',null,null);

Oracle11g improved the algorithm to collect the statistics faster. There are 25 new subprograms added to Oracle11g, compared to Oracle10gR2. These subprograms are added to enhance the statistics collection options and features. Now you have more control over statistics.
· Setup table, schema, database and global preferences

DELETE_DATABASE_PREFS

DELETE_SCHEMA_PREFS

DELETE_TABLE_PREFS

EXPORT_DATABASE_PREFS

EXPORT_SCHEMA_PREFS

EXPORT_TABLE_PREFS

GET_PREFS

IMPORT_DATABASE_PREFS

IMPORT_SCHEMA_PREFS

IMPORT_TABLE_PREFS

RESET_GLOBAL_PREF_DEFAULTS

SET_DATABASE_PREFS

SET_GLOBAL_PREFS

SET_SCHEMA_PREFS

SET_TABLE_PREFS

· Extended statistics
CREATE_EXTENDED_STATS

DROP_EXTENDED_STATS

SHOW_EXTENDED_STATS_NAME

· Non-published statistics (pending statistics)

DELETE_PENDING_STATS

EXPORT_PENDING_STATS

PUBLISH_PENDING_STATS

· Find difference between statistics collection
DIFF_TABLE_STATS_IN_HISTORY

DIFF_TABLE_STATS_IN_PENDING

DIFF_TABLE_STATS_IN_STATTAB

· Resume statistics gathering, in case it was aborted in the middle earlier

RESUME_GATHER_STATS

Statistics Preferences
You can now specify preferences for statistics collection at a global, database, schema or table level so that you do not have to specify repeated clauses when gathering statistics. The procedures used to set preferences are
SET_DATABASE_PREFS (preference_name, value, add_sys)
SET_GLOBAL_PREFS (preference_name, value)
SET_SCHEMA_PREFS (owner, preference_name, value)
SET_TABLE_PREFS (owner, table_name, preference_name, value)
The preference parameters you can set are
· CASCADE: To collect index statistics whenever table statistics gathered.
· DEGREE: Default degree of parallelism
· ESTIMATE_PERCENT: The percentage or rows to estimate statistics. The default value is DBMS_STATS.AUTO_SAMPLE_SIZE, where Oracle determines the appropriate sample size based on data.
· METHOD_OPT: Specify defaults for column statistics and histogram creation. Default is FOR ALL COLUMNS SIZE AUTO.
· NO_INVALIDATE: Controls invalidation of dependent cursors of the tables where statistics gathered. The default value is DBMS_STATS.AUTO_INVALIDATE.
· GRANULARITY: Determines the granularity of stats to collect for partitioned tables. The default is AUTO.
· PUBLISH: Whether to publish statistics after stats gathered.
· INCREMENTAL: Determines whether global statistics for partitioned tables should be maintained without doing full table scans. If new data is loaded to new partitions, global statistics can be updated after collecting stats for new partition. The default is FALSE, means full table scan performed to update global table statistics.
· STALE_PERCENT: The percentage of rows in a table that have to change before statistics gathered again. The default is 10%.
In Oracle10g, the global preferences can be set using SET_PARAM procedure, which is deprecated in 11g. The new parameters that can be set in 11g are PUBLISH, INCREMENTAL and STALE_PERCENT.

The view DBA_TAB_STAT_PREFS (or ALL_ or USER_) gives the tables with a preference set. Remember, when you use SET_SCHEMA_PREFS procedure, DBMS_STATS add an entry to this view for each table under the schema. When you use SET_DATABASE_PREFS procedure, DBMS_STATS add an entry to this view for each table in the database except system tables. To include system tables, set the third parameter TRUE.
To give an example of setting table preference, let us discuss the staleness threshold.
Staleness threshold

Since Oracle10g, tables have the default MONITORING enabled. The statistics collection job looks for staleness 10% or more for it to reanalyze the table. In Oracle11g, you can specify the threshold value for each table, if you want to override the 10% default. DBMS_STATS has a new procedure called SET_TABLE_PREFS. The new view DBA_TAB_STAT_PREFS lists all the preferences configured.

SQL> exec dbms_stats.set_table_prefs('SH','CUSTOMERS','STALE_PERCENT','20');

PL/SQL procedure successfully completed.

SQL> desc dba_tab_stat_prefs

 Name Null? Type

 -------------------------- -------- ----------------------------

 OWNER NOT NULL VARCHAR2(30)

 TABLE_NAME NOT NULL VARCHAR2(30)

 PREFERENCE_NAME VARCHAR2(30)

 PREFERENCE_VALUE VARCHAR2(1000)

SQL> select table_name, preference_name, preference_value

 from dba_tab_stat_prefs;

TABLE_NAME PREFERENCE_NAME PREFERENCE_VALUE

-------------- ---------------------- -------------------

CUSTOMERS STALE_PERCENT 20

The function GET_PREFS also can be used to verify the preference value. The function returns the custom defined preference value, if no such value is defined, it returns the default.
SQL> select dbms_stats.get_prefs('STALE_PERCENT','SH','CUSTOMERS')

 2* from dual;
DBMS_STATS.GET_PREFS('STALE_PERCENT','SH','CUSTOMERS')

20

SQL> select dbms_stats.get_prefs('STALE_PERCENT','HR','EMPLOYEES')

 2* from dual;
DBMS_STATS.GET_PREFS('STALE_PERCENT','HR','EMPLOYEES')

--

10

Pending Statistics

In Oracle11g, the statistics gathering is divided into two steps – collect statistics and publish. By default, the behavior is like pre-Oracle11g databases – the statistics will be available (published) to all users as soon as the stats are gathered. If you want to test the implications of the new statistics before making it available to all users in the database, you can do so. This is helpful to test the new statistics to make sure it does not affect the database negatively. To test with the new statistics before making it available to all users, perform these steps.
1. Set the table preference parameter PUBLISH to FALSE. If you’re messing with many tables, you can use the SET_SCHEMA_PREFS or SET_DATABASE_PREFS or SET_GLOBAL_PREFS procedures. For demonstrating the example, the statistics on table HR.EMPLOYEES is deleted.
SQL> select num_rows, last_analyzed from dba_tables

 2 where owner = 'HR' and table_name = 'EMPLOYEES';

 NUM_ROWS LAST_ANAL

---------- ---------

SQL> select dbms_stats.get_prefs('PUBLISH','HR','EMPLOYEES') from dual;

DBMS_STATS.GET_PREFS('PUBLISH','HR','EMPLOYEES')

TRUE

SQL> exec dbms_stats.set_table_prefs('HR','EMPLOYEES','PUBLISH','FALSE');

PL/SQL procedure successfully completed.

2. Gather table statistics. Since the PUBLISH preference is set to false, we do not see the statistics.
SQL> exec dbms_stats.gather_table_stats('HR','EMPLOYEES');

PL/SQL procedure successfully completed.

SQL> select num_rows, last_analyzed from dba_tables

 2 where owner = 'HR' and table_name = 'EMPLOYEES';

 NUM_ROWS LAST_ANAL

---------- ---------

SQL>

3. The pending statistics can be verified by querying DBA_TAB_PENDING_STATS.
SQL> select table_name, num_rows, blocks, sample_size

 2 from dba_tab_pending_stats;

TABLE_NAME NUM_ROWS BLOCKS SAMPLE_SIZE

------------------------------ ---------- ---------- -----------

EMPLOYEES 107 5 107

4. Test your SQL by enabling the pending statistics visible.
SQL> alter session set optimizer_use_pending_statistics = true;
5. When you’re ready to publish the statistics, perform

SQL> exec dbms_stats.publish_pending_stats('HR','EMPLOYEES');

PL/SQL procedure successfully completed.

SQL> select num_rows, last_analyzed from dba_tables

 2 where owner = 'HR' and table_name = 'EMPLOYEES';

 NUM_ROWS LAST_ANAL

---------- ---------

 107 15-FEB-08

SQL> select table_name, num_rows, blocks, sample_size

 2 from dba_tab_pending_stats;

no rows selected

The PUBLISH_PENDING_STATS procedure accepts the schema name and table name as the first two parameters. If you specify NULL for the schema name, the default user’s schema will be used. If you specify NULL for the table name, all pending stats on all tables in the schema are published.
Extended statistics – Multicolumn Statistics
In Oracle11g, you can tell the optimizer the relationship between columns by using the extended statistics feature (Multi-column statistics). The extended statistics feature also includes statistics on columns where a function is applied (function-based statistics). By collecting extended statistics on columns, optimizer will be able to estimate the selectivity better.
To collect multi-column statistics (extended histograms), use the GATHER_TABLE_STATS procedure with the METHOD_OPT option, as you would collect normal histogram statistics.

To create multi-column statistics, follow these two steps:
1. Create an extended statistics group using DBMS_STATS.CREATE_EXTENDED_STATS function. The function returns the name of the extended stat group created. This function has three arguments – owner, table name and the extension. The “extension” could be combination of columns, up to 32 or expression on column (for function based statistics, discussed later).
2. Collect histogram statistics on the table using GATHER_TABLE_STATS procedure. “FOR ALL COLUMNS SIZE SKEWONLY” is good option as Oracle collects histograms only on columns with large data distribution.
Let’s demonstrate this with an example. CUSTOMERS table is populated and has about 91000 rows. Statistics collected on the table with the “FOR ALL ROWS SIZE AUTO” option.
SQL> select column_name, num_distinct, histogram

 2 from dba_tab_col_statistics

 3 where owner = 'BTHOMAS' and table_name = 'CUSTOMERS';

COLUMN_NAME NUM_DISTINCT HISTOGRAM

------------------------------ ------------ ---------------

CUST_COUNTRY 3 FREQUENCY

CUST_STATE 6 FREQUENCY

CUST_NAME 47692 NONE
SQL>
SQL> select * from customers where cust_country = 'India' and cust_state = 'TN';

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1447 | 41963 | 137 (1)| 00:00:02 |

|* 1 | TABLE ACCESS FULL| CUSTOMERS | 1447 | 41963 | 137 (1)| 00:00:02 |

Predicate Information (identified by operation id):

 1 - filter("CUST_STATE"='TN' AND "CUST_COUNTRY"='India')

SQL> select dbms_stats.create_extended_stats('BTHOMAS','CUSTOMERS',

 2 '(CUST_COUNTRY, CUST_STATE)') from dual;

DBMS_STATS.CREATE_EXTENDED_STATS('BTHOMAS','CUSTOMERS','(CUST_COUNTRY,CUST_STATE

--

SYS_STUZVS6GX30A0GN_5YRYSD2LPM

SQL>

SQL> exec dbms_stats.gather_table_stats(null, 'customers',
 method_opt=>'for all columns size skewonly');

PL/SQL procedure successfully completed.

SQL> select column_name, num_distinct, histogram

 2 from user_tab_col_statistics

 3* where table_name = 'CUSTOMERS'

SQL> /

COLUMN_NAME NUM_DISTINCT HISTOGRAM

------------------------------ ------------ ---------------

CUST_NAME 47692 HEIGHT BALANCED

CUST_STATE 6 FREQUENCY

CUST_COUNTRY 3 FREQUENCY

SYS_STUZVS6GX30A0GN_5YRYSD2LPM 8 FREQUENCY

SQL> select * from customers where cust_country = 'India' and cust_state = 'TN';

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 86 | 2580 | 137 (1)| 00:00:02 |

|* 1 | TABLE ACCESS FULL| CUSTOMERS | 86 | 2580 | 137 (1)| 00:00:02 |

Predicate Information (identified by operation id):

 1 - filter("CUST_STATE"='TN' AND "CUST_COUNTRY"='India')

You can see in the example, before extended statistics was collected, the estimated number of rows was 1447, whereas after the extended statistics collection, the number of rows optimizer estimated to return is 86.
To drop the extend statistics, use the DROP_EXTENDED_STATISTICS procedure.

SQL> exec dbms_stats.drop_extended_stats(null,'CUSTOMERS',
 '(CUST_COUNTRY, CUST_STATE)');

PL/SQL procedure successfully completed.

SQL>

To define the extension and collect statistics in one step, you can do

SQL> exec dbms_stats.gather_table_stats(null, 'customers',
 method_opt=>'for all columns size skewonly
 for columns (cust_country, cust_state)');

PL/SQL procedure successfully completed.

SQL> select extension_name, extension from user_stat_extensions
 2 where table_name = 'CUSTOMERS';
EXTENSION_NAME EXTENSION

------------------------------------ -----------------------------
SYS_STUZVS6GX30A0GN_5YRYSD2LPM ("CUST_COUNTRY","CUST_STATE")

Extended Statistics – Function-based Statistics
Similar to having the multicolumn statistics, having function based statistics help the optimizer estimate the number of rows when functions are applied to columns. I try to demonstrate this using an example as before, the steps are the same. Notice that though there are 65942 rows matching our condition, the optimizer thinks only 917 rows.
SQL> select count(*) from customers where upper(cust_country) = 'USA';

 COUNT(*)

 65942

SQL> select * from customers where upper(cust_country) = 'USA';

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 917 | 27510 | 138 (2)| 00:00:02 |

|* 1 | TABLE ACCESS FULL| CUSTOMERS | 917 | 27510 | 138 (2)| 00:00:02 |

SQL> exec dbms_stats.gather_table_stats(null, 'customers',
 method_opt=>'for all columns size skewonly
 for columns (upper(cust_country))');

PL/SQL procedure successfully completed.

SQL> select extension_name, extension from user_stat_extensions

 2 where table_name = 'CUSTOMERS';

EXTENSION_NAME EXTENSION

----------------------------------- -------------------------

SYS_STUZVS6GX30A0GN_5YRYSD2LPM ("CUST_COUNTRY","CUST_STATE")

SYS_STU8Q0TMW50AJUKBGWHE1HE8#Z (UPPER("CUST_COUNTRY"))

SQL> select * from customers where upper(cust_country) = 'USA';

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 66160 | 2261K| 138 (2)| 00:00:02 |

|* 1 | TABLE ACCESS FULL| CUSTOMERS | 66160 | 2261K| 138 (2)| 00:00:02 |

Predicate Information (identified by operation id):

 1 - filter("CUSTOMERS"."SYS_STU8Q0TMW50AJUKBGWHE1HE8#Z"='USA')

When extended statistics are collected on columns, Oracle behind the scene creates virtual columns. You can verify this by querying the DBA_TAB_COLS view.
SQL> select column_name, virtual_column, hidden_column, histogram

 2 from dba_tab_cols

 3 where owner = 'BTHOMAS' and table_name = 'CUSTOMERS';
COLUMN_NAME VIR HID HISTOGRAM

------------------------------ --- --- ---------------

CUST_NAME NO NO HEIGHT BALANCED

CUST_STATE NO NO FREQUENCY

CUST_COUNTRY NO NO FREQUENCY

SYS_STUZVS6GX30A0GN_5YRYSD2LPM YES YES FREQUENCY

SYS_STU8Q0TMW50AJUKBGWHE1HE8#Z YES YES FREQUENCY

SQL>
Miscellaneous
· In pre-Oracle11g releases, the RMAN detected block corruptions were recorded in V$DATABASE_BLOCK_CORRUPTIONS. In Oracle11g, in addition to RMAN detected block corruptions, live corruptions are also reported in this view.
· DBA_INVALID_OBJECTS lists all the invalid objects in the database. This is a new view built using the DBA_OBJECTS view.

· PL/SQL Triggers can be created in a disabled state. You can also specify trigger firing order as well as create compound triggers.
· Sequences can be assigned directly – no need to use “Select sequence.nextval into variable from dual’.

· CONTINUE statement to skip to the next iteration of the loop.

· SQLPLUSW.EXE is missing on Windows installations; SQL Developer is included as default.
· SQL*Plus supports error logging to a table (default name SPERRORLOG). All ORA-, PLS-, SP2 errors are logged into the table.
What else to read on Oracle11g

· Database Replay - OTN Documentation
· Interval and Reference Partitions – Paper Documentation
· SQL Query Result Cache - OTN Documentation
· SQL Performance Analyzer – OTN Documentation
· SQL Plan Baseline – OTN Documentation
· Automatic SQL Tuning Enhancements - Documentation
· Snapshot Standby - Documentation
· Active Data Guard (Real-time query) - Documentation
· OLTP Table Compression – OTN-OOW Documentation
· AutoTask Infrastructure - Documentation
· Virtual Columns - Documentation
· Flashback Data Archive (Oracle Total Recall) - OTN Documentation
· Flashback Transaction - OTN Documentation
· Automatic Diagnostic Repository & ADRCI - Documentation
· Data Recovery Advisor - OTN Documentation
· Active DB Duplication - Documentation
· Multi-section backups - Documentation
· Lightweight Jobs in Scheduler - Documentation
· Fine grained dependency tracking - Documentation
References

· Oracle11g Documentation – http://tahiti.oracle.com
· Oracle11g New Features Guide

· Oracle11g Administrators Guide

· Oracle11g SQL Reference

· Oracle11g PL/SQL Packages Reference

· Oracle11g Reference

· OTN – OBE Series - http://www.oracle.com/technology
· Metalink Notes

8

Paper #328

