Insert focus area name here

Introduction to Utilities for New DBAs
Erik Hobbs, Target Software
Introduction
Oracle Database administration effectiveness can be enhanced by a variety of built in, home grown, and third party utilities, both on the database and server side. In this paper, geared toward the novice DBA, you will be presented with some basic utilities that can enhance DBA effectiveness. Except where noted the utilities presented are based on running Oracle 10g on Linux. Depending on how your environment is set up, you may be able to use many of the utilities presented in the paper ‘as is’, however you should be prepared to modify them as necessary.
Server-Side Utilities
These are the utilities located outside of the database (on the server). Although you can devise ways to run almost anything from within the database, it is often easier to execute certain things at the OS level. If you are responsible for finding or creating server-side utilities, it is highly recommended you become proficient in some scripting language (bash or perl, for example). Additionally, a good knowledge of built in OS utilities is necessary to build efficient and effective utilities. Following are a few server-side utilities we have found invaluable in our environment.
Monitoring the Alert Log

It is a good idea to periodically check your database alert logs for errors or warnings. Better yet, schedule a utility which will check the alert logs for you and report when messages of interest (errors) come up. There are a number of examples that can be found on the internet, which can be used ‘as is’, or customized for a particular environment. When choosing an alert log monitor, several factors should be considered:
· How many databases will be monitored

· How often will the monitor run (or will it be ‘real time’)

· What happens when an alert is identified

· Do you want differentiated response (i.e. different actions depending on the error)

· What else needs to be set up (e.g. do servers need to be set up for outgoing mail)

Here is an example of a Linux based alert log monitor (written in bash shell) that will work in a multiple server, multiple database environment. It accepts the ORACLE_HOME as a command line argument (there is a default) and has categories of alerts that it will take different actions on. It is not a ‘real time’ monitor, but must be scheduled to run at regular time intervals (we run it every 5 minutes). The monitor also keeps the alert log to a reasonable size, periodically sending older information to an archive.
#!/bin/bash

###

Script: check_alertlogs.bsh

Purpose: checks all alertlogs and notified dba team as necessary

Details: This is basically how it works:

* Loops through /etc/oratab to figure out what alert logs to check

* Checks alert logs for ORA- errors

* If errors, first checks for high priority errors (sends a text message)

* Next compares # of 'ignore' errors to total #. If the same, do nothing
* Otherwise only an email is sent

* If alert log gets too big, some of it is archived

* Schedule in cron for whatever time interval alert logs should be checked on

Modified by Date Reason

------------- ----------- ---

E. Hobbs Spring 2007 Created

E. Hobbs 11-FEB-2008 Can now add specific alerts to 'ignore' or 'text' groups

E. Hobbs 22-FEB-2008 Allow ORACLE_BASE as a command line argument

###

MAXSIZE=250000 # keep the alert log a manageable size

LINES_KEPT=1000 # once it hits maxsize, only keep 1000 lines

PREVSIZE=0 # keep track of the size of the old one so we only check new lines

#

#Variables to keep track of errors

TOTAL_ERRORS=0

IGNORE_ERRORS=0 # Errors we don’t care about
TEXT_ERRORS=0 # High priority errors we’ll send a text message about
#

Location variables

ORATAB=/etc/oratab

#

ORACLE_BASE defaults to /export/home/app/oracle unless passed as a command line argument

if [-n "$1"]

then

 ORACLE_BASE=$1

else

 ORACLE_BASE=/export/home/app/oracle

fi

Loop through oratab for each ORACLE_SID

for SID in $(awk -F: '/^[a-z]/ {print $1}' < "$ORATAB")

do

 BDUMP_LOC=$ORACLE_BASE/admin/$SID/bdump

 ALERT_ARCH_LOC=$BDUMP_LOC/alert_archive

 ALERT_LOG=$BDUMP_LOC/alert_$SID.log

 ALERT_LOG_ARCH=$ALERT_ARCH_LOC/alert_$SID.log.arch

 if [! -e $BDUMP_LOC] # if theres no bdump directory

 then

 echo "$BDUMP_LOC does not exist" | mail -s "$SID Alert log errors" dba@test.com

 else

 if [-f $ALERT_LOG.prev] # check for old log

 then

 PREVSIZE=`ls -l $ALERT_LOG.prev | awk '{print $5}'`
 # the current size – compare to PREVSIZE to see if anything changed:
 CURRSIZE=`ls -l $ALERT_LOG | awk '{print $5}'`

 if [["$PREVSIZE" -eq "$CURRSIZE"]]
 # there haven't been any changes in the alert log:

 then

 CHANGES=none

 fi

 dd if=$ALERT_LOG of=/tmp/alert.log bs=$PREVSIZE skip=1

 CHECKFILE=/tmp/alert.log

 else

 mkdir -p $ALERT_ARCH_LOC

 PREVSIZE=0

 CHECKFILE=$ALERT_LOG

 fi

 touch $ALERT_LOG_ARCH

 cat $CHECKFILE >> $ALERT_LOG_ARCH

 # Now we actually do the checking for errors

 # Get the total number of errors

 TOTAL_ERRORS=`grep -c 'ORA-' $CHECKFILE`

 if [$TOTAL_ERRORS -gt 0] # if there are any errors

 then

Count the number of high priority errors.

#+ these are the ones that will trigger a text message

 TEXT_ERRORS=`grep -c 'ORA-16038' $CHECKFILE`

 let "TEXT_ERRORS += `grep -c 'ORA-19502' $CHECKFILE`"

 # For additional errors to trigger texting, add lines here like this:

 # let "TEXT_ERRORS += `grep -c 'ORA-<error number>' $CHECKFILE`"

if there aren't any high priority errors check for errors we want to ignore

 if [$TEXT_ERRORS -eq 0]

 then

 IGNORE_ERRORS=`grep -c 'ORA-02097' $CHECKFILE`

 # For additional errors to ignore, add lines here like this:

 # let "IGNORE_ERRORS += `grep -c 'ORA-<error number>' $CHECKFILE`"

if all the errors are ones we ignore, then do nothing:

 if [$IGNORE_ERRORS -eq $TOTAL_ERRORS]

 then

 DO_NOTHING=Y

otherwise we'll send an email:

 else

 cat $CHECKFILE | mailx -s "$SID Alert log errors" dba@test.com

 fi

high priority errors, send a text message!

 else

 echo "archiving error" | mailx -s "$SID Alert log errors" dbatext@test.com

 cat $CHECKFILE | mailx -s "$SID Alert log errors" dba@test.com

 fi

 else

 ERRORS=none

 fi

 # Done checking, now we will archive some data if the alert log is too big

 if [$PREVSIZE -gt $MAXSIZE]

 then

 tail -$LINES_KEPT $ALERT_LOG > $ALERT_LOG.new

 mv $ALERT_LOG.new $ALERT_LOG

 fi

 # echo "copying alert log"

 cp $ALERT_LOG $ALERT_LOG.prev

 fi

done

exit 0
Cleaning up Trace Files
On any database system, trace files will build up in the various oracle directories over time. Some of these trace file can be quite large, so it is useful to periodically clean up the trace file directories. Here is a bash script that will delete files with a .trc extension that are more than 60 days old.

#!/bin/bash

###

Script: delete_old_tracefiles.bsh

Purpose: deletes trace files more than 60 days old

Details: Using Linux 'find' utility, checks all directories under $ORACLE_BASE/admin

+ and deletes any files with a .trc extension that are more than 60 days old

Modified by Date Reason

------------- ----------- ---

E. Hobbs Spring 2007 Created

###

ORACLE_BASE=/export/home/app/oracle/admin # modify this to match your ORACLE_BASE dir

find $ORACLE_BASE -type f -mtime +60 -a \(-name '*.trc' \) -exec rm -f {} \;
Note that the Linux find utility is very flexible. This script could easily be modified to take other action on trace files (or any other files) such as zipping them, moving them, etc.

Filesystem Space Monitor
Monitoring filesystem space will allow you to anticipate problems with space, particularly where you have databases with datafiles set to autoextend or databases that generate a lot of archivlogs. Here is a simple bash script that will check the specified filesystems and send an email warning if space falls below a specified percentage threshold. It could easily be modified to accept the filesystems as arguments and to use physical space (rather than percent) for the threshold.
#!/bin/ksh

###

Script: check_filesystems.sh

Purpose: checks filesystem space and emails dba team if space is running low

Details: Loops through $FILESYSTEMS and checks the percentage of free space

+ for each, sends and email if space is below $WARNINGLIMIT percent

* Schedule in cron to run on appropriate time interval

Modified by Date Reason

------------- ----------- ---

P. Curtin Fall 2007 Created

###

User modifiable variables:

RECIPIENT="dba@wherever.com" # modify this for who you want to email with warnings

FILESYSTEMS="/archivelogs /data" # modify this for the file systems you want to check

WARNINGLIMIT="10" # percent threshold that triggers warning

Do not modify anything below this line:

for FS in $FILESYSTEMS

do

 PERCENT=$(/bin/df -kP $FS | /usr/bin/tail -1 | /usr/bin/awk '{print $5}')

 DFREE=$(/bin/df -kP $FS | /usr/bin/tail -1 | /usr/bin/awk '{printf "%d\n", $4/1024/1024}')

echo $DFREE" "$PERCENT

if ["$DFREE" -le "$WARNINGLIMIT"]

then

 echo $(date "+%D %T") "Filesystem $FS has only $DFREE GB free and is below our threshold of $WARNINGLIMIT GB."|mail -s "ALERT: Fil

esystem $FS is $PERCENT full" "$RECIPIENT"

fi

done

exit 0

Built in Server-Side Utilities

Linux and Unix provide a multitude of built in utilities which the DBA who has some responsibility for server administration will find useful. Windows also has a number of built in utilties that can be used to create a diverse array of scripts. Below is a sample of some of the most useful Linux/Unix built in utilities. You should look at the ‘man’ pages for these and play around with them to discover the various input and output possibilities.
grep

The grep utility will search a file or set of files for a string. Regular expressions are accepted. Using various operators you can put together a very sophisticated search. Examples:

 grep <what> <filename>

 ps –ef | grep pmon (pipes the output of ps –ef to grep, which looks for ‘pmon’

[sbta17 ~]$ ps -ef | grep pmon

ora10 10355 1 0 Feb16 ? 00:00:48 ora_pmon_splc

ora10 10457 1 0 Feb16 ? 00:00:31 ora_pmon_knct

ora10 10507 1 0 Feb16 ? 00:00:36 ora_pmon_kcrw

ora10 10559 1 0 Feb16 ? 00:00:38 ora_pmon_kvie

ora10 10615 1 0 Feb16 ? 00:00:32 ora_pmon_wabe

ora10 10672 1 0 Feb16 ? 00:00:56 ora_pmon_ushmm

ora10 10722 1 0 Feb16 ? 00:00:35 ora_pmon_ushmm07

ora10 10775 1 0 Feb16 ? 00:00:35 ora_pmon_opb

ora10 10829 1 0 Feb16 ? 00:00:42 ora_pmon_ch

tawabe 16590 16568 0 23:36 pts/1 00:00:00 grep pmon

find

The find utility will search a directory for a file based on specifications you define. Above there is a great example of using the find utility to search for and remove old trace files.
df

The df command outputs information about mounted filesystems on the server. It is quite useful for looking at filesystem space and is used in the OS monitoring script above to help identify filesystems that are running low on space. Example:
 df –kh (the ‘kh’ options tell it to output in ‘human readable’ form) outputs:
 Filesystem Size Used Avail Use% Mounted on

 /dev/sda2 13G 4.9G 7.2G 41% /

 /dev/sdb1 17G 5.8G 11G 37% /app/oracle

 /dev/sdc1 135G 108G 21G 84% /backups

 /dev/sda1 99M 33M 61M 36% /boot

 /dev/sdd1 18G 6.0G 11G 36% /SAN/u01

 /dev/sde1 296G 265G 17G 95% /SAN/u02
awk

The awk command is a relatively sophisticated search and output tool.. It is commonly used in conjunction with other utilities to output a particular column of data from a utility which outputs data in tabular form.
In this example, awk is directed to print the second column from the output of df –kh.
 df -kh | awk '{print $2}'

 Size

 13G

 17G

 135G

 99M

 18G

 296G
Scheduling server-side jobs

Scheduling recurring tasks can be a huge time saver for the DBA and can also help the DBA ‘remember’ regular maintenance tasks. All platforms have a utility for scheduling recurring jobs. Unix and Linux have a utility called cron. Windows has Scheduled Tasks that you get to via the Control Panel.
Cron

Cron is the primary scheduling utility for Linux and Unix systems. Each OS user can have a crontab, where the scheduled jobs are stored. Cron looks through users’ crontabs for jobs to run and executes them at the appropriate interval as the user that owns them. To edit a crontab, simply execute:

 crontab –e
at the command line of the OS user you want to execute the job. For jobs that will run in the database or act on files generated from the database, it’s easiest to schedule in the crontab of the user that owns the database. Also, environment variables do not carry over into the crontab, so any required environment variables must either be put in the crontab or included in the script being called.

Here is a sample crontab:

Examples of how to set the runtime:

r----minute

| r-----hour

| | r------day of the month

| | | r------month

| | | | r------day of the week

| | | | | |------ command to run ------------->

| | | | | |

run five minutes after midnight, every day

5 0 * * * $HOME/bin/daily.job >> $HOME/tmp/out 2>?

run at 2:15pm on the first of every month

15 14 1 * * $HOME/bin/monthly

run at 10:00pm Monday - Friday

0 22 * * 1-5 mail -s "It's 10pm" joe%Joe,%%Where are your kids?%

print out the message at 4:05 every sunday.

5 4 * * sun echo "run at 5 after 4 every sunday"

res2 database weekly export

Setting environment variables:
ORACLE_BASE=/app/oracle

ORACLE_HOME=/app/oracle/product/10.2.0/db_1

ORACLE_SID=prod3

TWO_TASK=prod3

#

Database backup jobs

00 15 * * 5 sqlplus username/pwd @/home/oracle/export_prod3.sql > /dev/null

#

Alert log check: Every 5 minutes

*/5 * * * * /admin/dba_scripts/check_alertlogs.bsh > /dev/null

#

Statspack Purge Job: 3 AM each morning

00 03 * * * sqlplus perfstat/stats @/$ORACLE_BASE/$ORACLE_SID/scripts/purge_snaps.sql
#

Trace file cleanup: 1 AM on the first day of the month

00 01 1 * * /app/oracle/admin/prod3/scripts/delete_old_tracefiles.bsh
Windows Scheduled Tasks

The Windows scheduler is a GUI based utility that has a wizard that walks you through scheduling the script you want to run. It can be accessed from the Control Panel in the Scheduled Tasks sub-directory. Double-click ‘Add Scheduled Task’ and the wizard will walk you through scheduling whatever you want:

[image: image1.png]
Additional Notes on Server-Side Utilities
If you are running databases on multiple servers, script management can become tedious. You may end up with multiple versions of scripts in various places on the different servers. It is recommended that you keep 1 set of scripts (or one set per platform) in a central location, mounted to all the database servers, with scripts being written to accept command line arguments for things that will change from server to server. When scripts need to be modified there will then be only one place to make changes.
Database-Side Utilities
These are the utilities that run out of the database. They include scripts, stored procedures, and Oracle built-in packages.
Scheduling Database-side jobs

There are basically 2 utilities Oracle provides to run database-side jobs: dbms_job and dbms_scheduler. Which one you choose will mainly depend on what version of Oracle you are using and whether or not you need advanced scheduling features.
DBMS_JOB

DBMS_JOB is the basic job scheduling package that has been available in Oracle since at least 8i. If you are running a version below 10g you will have to use dbms_job, since dbms_scheduler was not available prior to Oracle 10g. DBMS_JOB will submit a PL/SQL procedure to run on a regular schedule as defined within the job. The following sections describe the requirements for using DBMS_JOB and the procedures for submitting, querying, and removing jobs.
Requirements for submitting jobs

Schemas that will own jobs must be granted the create job privilege. As a DBA user:

GRANT CREATE JOB TO <schema>;
Submitting jobs
In order to submit jobs to the DBMS_JOB package, I find it easiest to use a template like this (which can be easily turned into a stored procedure for submitting jobs):

 DECLARE
 v_job_sql VARCHAR2(2000); -- what’s being run
 v_job INTEGER; -- job number assigned to job
 BEGIN
 v_job_sql := ‘<what you want to run>’;

 DBMS_JOB.SUBMIT(
 job => v_job, -- what’s being run
 what => v_job_sql, -- job number assigned to job
 next_date => <date>, -- when will it run
 interval => ‘<date interval>’); -— interval between runs
 COMMIT;
 DBMS_OUTPUT.PUT_LINE('JOB NUMBER: ' || v_job); -- output the job number
 END;
 /
For example, if you want to run a statspack snapshot once an hour, your submission to dbms_job (as the perfstat user) might look like this:

 DECLARE

 v_job_sql VARCHAR2(2000);

 v_job INTEGER;

 BEGIN

 v_job_sql :='statspack.snap;';

 DBMS_JOB.SUBMIT(

 job => v_job,

 what => v_job_sql,

 next_date => SYSDATE,

 interval => 'SYSDATE + 1/24');

 COMMIT;

 DBMS_OUTPUT.PUT_LINE('JOB NUMBER: ' || v_job);

 END;

 /
You should note the job number that is output (although you can query dba_jobs to find it again). You will need the job number to modify, fix, or delete the job.
Removing jobs from the scheduler

To remove a job from the scheduler:

EXEC DBMS_JOB.REMOVE(<job number>);

Getting Information on scheduled jobs

The dba_jobs view contains information on scheduled jobs. You can find information on a specific job by querying by the job number. For example:
SET LONG 2000

SELECT WHAT, NEXT_DATE FROM DBA_JOBS WHERE JOB=<JOB#>;
will output what the job is (WHAT) and the next run date. If you want to list all the scheduled jobs, use something like:

SET LONG 200

SELECT JOB, WHAT, NEXT_DATE, INTERVAL FROM DBA_JOBS;
DBMS_SCHEDULER
DBMS_SCHEDULER is the full-featured scheduler utility that became available starting with Oracle 10g. DBMS_SCHEDULER splits the schedule, program, and job functions into separate entities. This allows you to define reusable schedules and program units which can be built into custom jobs. In addition to PL/SQL blocks, DBMS_SCHEDULER also allows you to run stored procedures and server-side executables, thus providing a scheduler solution that could let you schedule all your recurring jobs from within Oracle. Each schedule, program, or job you create can be given a name you choose, so logical naming conventions can be created that work for your organization.
There are many features of DBMS_SCHEDULER not covered in the paper, including the use of event triggers, job chaining, and job classes. For more details you should reference the Oracle Database PL/SQL Packages and Types Reference documentation.
Creating Custom Schedules

The dbms_scheduler.create_schedule procedure can be used to create custom, reusable schedules. Any job can use a schedule, once defined, and PUBLIC has access to all schedules. The procedure call looks like this:
DBMS_SCHEDULER.CREATE_SCHEDULE (

 schedule_name IN VARCHAR2, -- name you give it
 start_date IN TIMESTAMP WITH TIMEZONE DEFAULT NULL,
 repeat_interval IN VARCHAR2, -- same as dbms_job interval
 end_date IN TIMESTAMP WITH TIMEZONE DEFAULT NULL, -- dbms_job doesn’t have this
 comments IN VARCHAR2 DEFAULT NULL); -- or this
Here’s an example of a schedule that will run jobs every 5 minutes:
DECLARE
BEGIN
 dbms_scheduler.create_schedule(
 schedule_name => 'EVERY_5MIN_SCHED',
 start_date => ROUND(SYSDATE-1),
 repeat_interval => 'FREQ=MINUTELY;INTERVAL=5',
 comments => 'Every 5 minutes'
);
END;
/

Note the syntax for the repeat_interval parameter is very different than the syntax used for the interval parameter in dbms_job. It’s pretty basic though, and more intuitive than that used in dbms_job. For details on the syntax, see The Oracle Database PL/SQL Packages and Types Reference documentation. Also note that no end_date was set. The default is to never end, so this particular schedule will run every 5 minutes until it is removed.

Once you have defined a schedule, any schema that has the CREATE JOB privilege can assign a job to that schedule. The schedule will run on its defined repeat_interval and pick up all jobs assigned to it.

Creating Programs

Programs define what is run (the WHAT in dbms_job). DBMS_SCHEDULER will accept PL/SQL blocks, stored procedures, and external executables to run. The syntax for creating a program is:
 DBMS_SCHEDULER.CREATE_PROGRAM (

 program_name IN VARCHAR2, -- name you give it
 program_type IN VARCHAR2, -- PLSQL_BLOCK | STORED_PROCEDURE | EXECUTABLE
 program_action IN VARCHAR2, -- what will be done.
 number_of_arguments IN PLS_INTEGER DEFAULT 0, -- # of arguments passed to program
 enabled IN BOOLEAN DEFAULT FALSE, -- is program created enabled?
 comments IN VARCHAR2 DEFAULT NULL);
The program_type will be one of the 3 listed. The syntax of the program_action will depend on what type of program it is. For PLSQL_BLOCK the program_action must end with a semi-colon, but could be a simple call to a procedure, or could be a full block of code. For a STORED_PROCEDURE simply list the stored procedure (with dot notation if not being run by the owner). For an EXECUTABLE, the full path to the executable is required, along with any command line arguments. Jobs are created disabled by default. In order to run they must first be enabled, either when created or by running:

 EXEC dbms_scheduler.enable(‘<program name>’)
Also, in order for another user to be able to run a program, they must first be granted EXECUTE permissions on the program.

Here is an example of a program that calls a stored procedure to check the number of sessions logged into the database:
 DECLARE
 BEGIN
 dbms_scheduler.create_program(
 program_name => 'SESSION_COUNT_CHECK',
 program_type => 'STORED_PROCEDURE',
 program_action => 'check_session_count',
 number_of_arguments => 0,
 enabled => TRUE,
 comments => 'Checks number of sessions, emails if count is too high'
);
 END;
 /
Here is an example that calls and executable with one passed parameter:
 DECLARE
 BEGIN
 dbms_scheduler.create_program(
 program_name => 'CHECK_ALERTLOG',
 program_type => 'EXECUTABLE',
 program_action => '/admin/dba_scripts/check_alertlog.bsh testdb’,
 number_of_arguments => 1,
 enabled => TRUE,
 comments => 'Checks the alertlog of testdb for errors'
);
 END;
 /

Creating Jobs

This is where you match a program and schedule. The dbms_scheduler.create_job procedure is overloaded, so there are many options, including:

· Creating the whole job with 1 call to create_job (no pre-existing schedule or program)

· Creating a job using a defined schedule but undefined program

· Creating a job using an undefined schedule but defined program

· Creating a job using a defined schedule and program

· Creating a job that runs based on an event (see documentation)

You should reference the Oracle Database PL/SQL Packages and Types documentation for details. Here is an example using an (above) pre-defined schedule and program:
 DECLARE
 BEGIN
 dbms_scheduler.create_job(
 job_name => 'DB_5MIN_CHECKS',
 program_name => 'SESSION_COUNT_CHECK',
 schedule_name => 'EVERY_5MIN_SCHED',
 enabled => TRUE,
 auto_drop => TRUE,
 comments => 'Runs the db checks that should happen every 5 minutes'
);
 END;
 /
Monitoring Database Space

One of the primary jobs of a DBA is to ensure there is sufficient space available in the database for the natural growth of or creation of new tables and indexes. You can periodically check space ‘by hand’ by running a script such as the following:
-- display total space and free space by datafile, summed by tablespace and total database

cl buff

cl colu

cl break

set linesize 100

set pagesize 300

set feedback off

set verify off

set pause off

set timing off

set echo off

column tspace heading 'Tablespace' format a15

column data_file heading 'data File' format a45

column avail_space heading 'Total|Space (MB)' format 9999999.99

column free_space heading 'Free|Space (MB)' format 9999999.99

column free_pct heading 'Free|%' format 99999.99

break on tspace skip 1 on report skip 2

compute sum of avail_space on tspace

compute sum of free_space on tspace

compute sum LABEL "TOTAL" of avail_space on report

compute sum of free_space on report

SELECT data_files.tablespace_name tspace,

 data_files.file_name data_file,

 data_files.avail avail_space,

 NVL(free_space.free, 0) free_space,

 ROUND(

 NVL(free_space.free, 0) / avail * 100,

 2

) free_pct

 FROM (

 SELECT SUBSTR(file_name, 1, 45) file_name,

 file_id,

 ROUND(

 SUM(bytes / (1024 * 1024)),

 3

) avail,

 tablespace_name

 FROM dba_data_files

 GROUP BY SUBSTR(file_name,1,45),

 file_id,

 tablespace_name

) data_files,

 (

 SELECT tablespace_name,

 file_id,

 ROUND(

 SUM(bytes / (1024 * 1024)),

 3

) free

 FROM dba_free_space

 GROUP BY tablespace_name,

 file_id

) free_space

 WHERE data_files.file_id = free_space.file_id(+)

 ORDER by 1, 2

/

set feedback on

set verify on

cl break
Output looks like:

 Total Free Free

Tablespace data File Space (MB) Space (MB) %

--------------- ------------------------------------- ----------- ----------- ---------
PBDS_INDEX_MS /SAN/data/oradata/npca/ms_idx01.dbf 7951.00 3213.94 40.42

 /SAN/data/oradata/npca/ms_idx02.dbf 3901.00 .94 .02

*************** ----------- -----------

sum 11852.00 3214.88

. . .

USERS /SAN/data/oradata/npca/users01.dbf 20.00 6.94 34.69

*************** ----------- -----------

sum 20.00 6.94

 ----------- -----------

TOTAL 74631.00 15624.89
With a little work you can build a utility that stores this type of information in a table. You can then track the data over time to see trends in database growth and space usage over time.

Monitoring Database Processes

There are a number of GUI tools you can use to monitor sessions and processes within the database. Perhaps the two most common are Oracle Enterprise Manager/Grid Control and Quest Spotlight on Oracle. There are also a multitude of home grown scripts that have been created to output this type of information, many of which can be found by dong a web search. I will present a couple of the home grow type here. Note these are all scripted and run as a call to an SQL script from within Oracle.
@pid.sql: Basic information on sessions running in the database:
set linesize 150

column sid format 9999

column serial# format 9999999

column module format a15

column username format a10

column program format a16

column osuser format a16

column LOGON_TIME format a15

set wrap off

SELECT sid, serial#, USERNAME, OSUSER, PROGRAM,

TO_CHAR(LOGON_TIME, 'MM/DD/YY hh24:mi') LOGON_TIME, PROCESS, STATUS

FROM V$SESSION where nvl(username,'i') <> 'OEM' --and status in ('ACTIVE', 'KILLED')

and (username is not null or program is not null)

order by status,osuser;

set wrap on

Outputs:
PROD1> @pid
 SID SERIAL# USERNAME OSUSER PROGRAM LOGON_TIME PROCESS STATUS

----- -------- ---------- -------- ---------------- --------------- ------------ -------

 164 3721 ACARES Lchandle sqlplus.exe 02/25/08 09:35 1808:2044 ACTIVE

 263 8627 ERIK ehobbs sqlplus.exe 02/25/08 14:36 3108:164 ACTIVE

 280 1 oracle oracle@prodsrv1. 02/16/08 21:40 9697 ACTIVE
. . .
 172 3988 MOD BStevens sqlplus.exe 02/25/08 11:44 1612:2876 INACTIVE

Note that this script will include the Oracle processes.

@userpid.sql: Session information for the user:

SET LINESIZE 114

SET WRAP ON

COLUMN module FORMAT A10

COLUMN username FORMAT A8

COLUMN program FORMAT A10

COLUMN osuser FORMAT A9

COLUMN client_info FORMAT A16

COLUMN spid FORMAT A8

SELECT s.USERNAME,

 s.MODULE,

 s.OSUSER,

 s.PROGRAM,

 TO_CHAR(s.LOGON_TIME, 'MM/DD/YY hh24:mi') LOGON_TIME,

 s.PROCESS,

 p.spid,

 s.STATUS,

 s.CLIENT_INFO

 FROM V$SESSION s, v$process p

 WHERE s.username = '&xuser'

 AND p.addr(+) = s.paddr

 ORDER BY s.status,s.osuser;

Outputs:

PROD1> @userpid

OSUSER PROGRAM LOGON_TIME PROCESS SPID STATUS CLIENT_INFO

--------- ---------- -------------- ------------ -------- -------- ----------------

ehobbs sqlplus.ex 02/25/08 14:54 2600:2152 21429 ACTIVE EHOBBS

 e

redwood sqlplus@pr 02/25/08 14:29 21166 21168 ACTIVE LIST AUTOMATION

 odsrv1.tar EDF 80138 POOL_S

 getsite.co TATS

 m (TNS V1-

 V3)
@sess_sql: Session and SQL information for all session in the database:

set pages 52

set lines 150

set verify off

select 'Sessions connected to ' || upper(value)

 || ' on ' || to_char(SYSDATE, 'MM/DD/YY HH24:MI:SS')

 message

 from v$parameter

 where upper(name) = 'DB_NAME';

column machine format a20

column username format a10

column operation format a32

column sid format 99999

column spid format a6

column serial# format 99999

column process format 99999

select s.sid, p.spid, s.serial#, s.process, s.username, s.machine, s.status,

 nvl(s.client_info,s.program) operation

 from v$session s, v$process p, v$transaction t

 where s.paddr = p.addr(+)

 and s.taddr = t.addr(+)

 order by logon_time;

ACCEPT sid NUMBER PROMPT 'Which SID to examine? '

PROMPT Previous SQL statement for session &sid

select q.sql_text

 from v$session s, v$sqltext q

 where s.prev_hash_value = q.hash_value

 and s.prev_sql_addr = q.address

 and s.sid = &sid

 order by piece;

PROMPT Current SQL statement for session &sid

select q.sql_text

 from v$session s, v$sqltext q

 where s.sql_hash_value = q.hash_value

 and s.sql_address = q.address

 and s.sid = &sid

 order by piece;

Outputs:

PBDS> @SESS_SQL

MESSAGE

Sessions connected to <SID> on 02/25/08 15:03:22
 SID SPID SERIAL# PROCESS USERNAME MACHINE STATUS OPERATION

------ ------ ------- ------------ ---------- -------------------- -------- ------------

 m 01)

 158 10884 18 4527 PBDS sbqueue01 ACTIVE SYSCHRUN,0

 150 10886 15 4595 PBDS sbqueue01 ACTIVE SYSCHRUN,3

 142 10889 18 4644 PBDS sbqueue01 ACTIVE SYSCHRUN,1

 141 10891 7 4673 PBDS sbqueue01 ACTIVE SYSCHRUN,2

 134 13232 29357 6524:19636 MTHORPE TARGETSB\TGTCITRIX01 INACTIVE GMBNAENT

 136 13433 13368 5952:14040 ZSTAPLETON TARGETSB\TGTCITRIX01 INACTIVE AMACCENT

 143 13456 22129 20096:6208 MTHORPE TARGETSB\TGTCITRIX01 INACTIVE MNMENMAN

 133 14609 4436 760:3068 PBDS TARGET\EHOBBS ACTIVE sqlplus.exe
Which SID to examine? 136 (user input

Previous SQL statement for session 136

SQL_TEXT

--

SELECT 'X' FROM BRIEF_NAME_FUNCTIONS WHERE ACCOUNT_ID = :b1

AND NAME_ID = 0 AND BRIEF_NAME_TYPE = 'MATCH_COMPANY'

Current SQL statement for session 136

SQL_TEXT

--

SELECT 'X' FROM BRIEF_NAME_FUNCTIONS WHERE ACCOUNT_ID = :b1

AND NAME_ID = 0 AND BRIEF_NAME_TYPE = 'MATCH_COMPANY'

Backing Up the Database - RMAN

RMAN is Oracle’s built-in backup and recovery software. It is a full-featured solution and includes many features that are useful to the DBA. Command line RMAN has an interface very similar to that of sqlplus, with minor syntax variations. If you are running a multiple database environment it is highly recommended you run backups in conjunction with a recovery catalog. For the rest of this section, unless otherwise noted, assume a recovery catalog is being used and databases are running in archivelog mode.
RMAN Hot Backup to Disk
With RMAN, backing up a database to disk is very simple. Prior to running a backup you must check the following:
SqlNet access to recovery catalog, if being used

Backup location exists and there is sufficient space for required backups
Database(s) running in archivelog mode

db_recovery_file_dest and db_recovery_file_dest_size database parameters are set (10g and on)

database is using an spfile (allows autobackup of controlfile and spfile)

To set up hot backups:
From the database server connect to RMAN (ORACLE_SID environment variable must be set appropriately)

 rman TARGET / CATALOG rman/<password>@<catalog database>

Register the database in the recovery catalog:

 RMAN> REGISTER DATABASE;

Configure RMAN settings. To see what the current (at this point default) setting are execute the SHOW ALL; command. In Oracle 10g RMAN will work ‘out of the box’ with no modifications of the settings. For 9i databases you will be required to configure the backup channels at a minimum. Here are settings typically modified:

 configure retention policy to redundancy 1; -- how many backups to keep
 CONFIGURE BACKUP OPTIMIZATION ON;

 CONFIGURE CONTROLFILE AUTOBACKUP ON;
 Additional 9i settings (format and path to datafile and controlfile backup locations):

 CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT '/<path>/%d_%U';

 CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO '/<path>/%F';
Validate the archivelogs (basically this tells RMAN what archivelogs are currently available):

 CROSSCHECK ARCHIVELOG ALL;

Run the backup:
 backup as compressed backupset incremental level 0 database plus archivelog;
 or for pre-10g:

 backup database plus archivelog;

Once you have run a successful backup it is a good idea to set up an automated job to run them on a regular schedule.

RMAN Recoveries

There are a number of different types of recoveries available with RMAN. In the case of a major disaster where many or all datafiles are lost you can do a full point-in-time recovery:
 RMAN> RECOVER DATABASE;

Often, however, you will not need this level of recovery. If you have lost a single datafile, you can easily recover it. First, identify the datafile that was lost. You can probably get this information from the alert log. Alternatively, if the database is open, connect as sysdba and query v$datafile_header:

 SQL> select file#,status,error,recover,tablespace_name name
 2 from v$datafile_header
 3 where recover = 'YES' or (recover is null and error is not null);

 FILE# STATUS ERROR REC NAME
 ---------- ------- ------------------ --- -------
 8 ONLINE CANNOT OPEN FILE
 SQL>
If the database is open, you will need to restart it in mount mode (a shutdown abort may be necessary):

 SQL> STARTUP MOUNT;

 Then, connect to RMAN and recover the datafile:
 rman TARGET / catalog rman/<pwd>@<catalog>

 RMAN> RESTORE DATAFILE <FILE#>;

Once the restore is complete, then execute:

 RMAN> RECOVER DATAFILE <FILE#>;

And then exit RMAN and open the database:
 SQL> ALTER DATABASE OPEN;

There are many more recovery options than those listed here. For more information on RMAN recoveries I recommend Oracle 10g RMAN Backup & Recovery from Oracle Press.

Duplicating a Database with RMAN

In RMAN, the duplicate command is used to 'clone' a database. This clone database can be duplicated to the original location, or to a new location on the same or different server. The new database can have the same name as the original, or can be given a new name. This is a powerful tool that can be used to fully recover a database to its original location, or to create a clone database for purposes of reporting, testing, or backup validation.

In order to clone a database with the RMAN duplicate command the following requirements must be met:

On the server being duplicated to, the backups and archivlogs must be visible and appear to be in the same location as when they were written

The clone, or AUXILIARY database must be started in nomount mode

If datafiles are moving, you must specify the db_file_name_convert parameter in the init.ora file. This parameter maps the locations of the original datafiles to their new location, if it in a different absolute path, and takes the form of:
 db_file_name_convert= (‘<old path>’,’<new path>’,’<old path>’,’<new path>’ . . .)

If redologs are moving or being changed you must either specify the log_file_name_convert parameter (same syntax as db_file_name_convert) in the init.ora file OR specify the redo logs in the duplicate command as described below

The directory structure must be in place in your clone location

The TARGET database (what you are cloning) and RMAN catalog database must be accessible from the location you are executing the duplicate (in tnsnames.ora, LDAP, whatever Oracle Net is using)

Directions for duplicating a database:

Start the clone (AUXILIARY) database in nomount mode

From the AUXILIARY database server, log into RMAN connecting to the TARGET, CATALOG, and AUXILIARY databases (ORACLE_SID must be set to the AUXILIARY db name):
 rman TARGET sys/<pwd>@<database> CATALOG rman/<pwd>@<catalog> AUXILIARY /

Execute the duplicate command (see examples below)

RMAN duplicate examples:

In its simplest form it will do a full up-to-the-minute duplicate of the TARGET database:

 RMAN> DUPLICATE TARGET DATABASE TO <AUXILIARY>;

To restore to a certain point based on an SCN:

 RMAN> run {

 set until scn <SCN>;

 duplicate target database to <AUXILIARY>;

 }

To restore a database by particular date, first set environment variables (OS level):

 NLS_LANG=american

 NLS_DATE_FORMAT='YYYY-MM-DD:HH24:MI:SS'

Then run the duplicate command. For example:

 RMAN> run {

 set until time = '2007-10-13:12:00:00'; — or whatever time you want

 duplicate target database to <AUXILIARY>;

 }

Instead of remapping the log files via the LOG_FILE_NAME_CONVERT parameter in the pfile, you can specify the logfile groups in your RMAN duplicate command. This is useful if you want to change the number or configuration of your redo log groups.

 RMAN> DUPLICATE TARGET DATABASE TO <AUXILIARY>

 LOGFILE

 GROUP 1 ('/<PATH>/redo01.dbf') SIZE 20M REUSE,

 GROUP 2 ('/<PATH>/redo02.dbf') SIZE 20M REUSE;

You can also skip tablespaces in your RMAN duplicate command:

 RMAN> DUPLICATE TARGET DATABASE TO <AUXILIARY>

 SKIP TABLESPACE <tablespace name>;
Validating RMAN backups
RMAN provides a command which will simulate the recovery of a database from backup. This simulated recovery validates that the backups can be recovered from. Validating an RMAN backup does a byte check of the backupset to ensure the database is recoverable. You can do a pint-in-time validate, to a timestamp, or to and SCN. You can validate the entire database, or a subset (like a datafile or controlfile). Validate can be run while the database is in mount mode, or open. It will not affect the operation of the database. Since validate does a byte check, it will take an amount of time comparable to how long the backup itself took. If you just want to ensure all the appropriate backup files exist you should use the command ‘RESTORE DATABASE PREVIEW;’.

To do a full validate, login to RMAN and execute the following:

 RESTORE DATABASE VALIDATE;

ex.

RMAN> restore database validate;
Recovering Lost Data – Flashback Technology

Occasionally the need arises to 'get back' table data mistakenly updated, deleted, or dropped. It can also be useful to simply be able to look at data as it looked sometime in the past. For the most part, backup solutions such as RMAN do not work well on individual objects. Fortunately, Oracle created Flashback technology for just such purposes. Flashback Query, available since Oracle 9i, is technically for querying tables as they looked at some point in the past, but with a little work can be used to recreate past versions of a table. Flashback Table, introduced in Oracle 10g, can be used to physically restore a table to a prior version. Flashback Drop, also introduced in Oracle 10g, is used to restore tables that have been dropped. Finally, Flashback Versions, also a 10g feature, can be used for an in-line view of multiple past versions of table row data.
All the flashback techniques require you to input when to flash back to. In all cases you can either use an SCN or a TIMESTAMP. When using the TIMESTAMP, I find it easies to use the SYSDATE – N notation, for example, SYSDATE – 10/1440 for 10 minutes ago.
Flashback Query

If you would like to query a table as it looked at some time in the past, or if you are running Oracle 9i and need to recover from logical data corruption (bad updates/inserts/deletes), Flashback Query is a good option. Flashback Query uses the data changes recorded in the undo tablespace to ‘turn back the clock’ to a specific point in time. If the data in undo hasn’t been overwritten, committed changes can thus be flashed back. In order to use Flashback Query, the following requirements must be met:
init parameter undo_manangement=AUTO
changes were made within undo_retention time (undo_retention is the limit for how far you can 'flashback')
changes still exist in undo tablespace
schema doing flashback query/recovery must have execute privilege on the dbms_flashback package
In order to make the best use of Flashback features, the undo_retention parameter should be set high. The default for this parameter is 15 minutes (undo_retention=900). In my organization, we typically set it to 3 days (undo_retention=345600). Even so, the undo_retention will be ignored if space in the undo tablespace is required for uncommitted transactions. For this reason you need to size your undo tablespace large enough to meet your undo_retention needs as well as the needs of active transactions.
Using Flashback Query to View Past Data

To view data as it looked in the past a user must first have execute privilege on the dbms_flashback package. As SYSDBA:

 GRANT EXECUTE ON dbms_flashback TO <schema>;
Login to the appropriate schema and enable flashback:

 DBMS_FLASHBACK.ENABLE_AT_TIME(<TIMESTAMP>);

or
 DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER(<SCN>);

This will set your session back to time TIMESTAMP (or SCN), and will apply to all queries in the session. For example:

 DBMS_FLASHBACK.ENABLE_AT_TIME(SYSDATE – 80/1440)
will flash the session back to 80 minutes ago. Any queries run will be as data looked 80 minutes ago.

When running Flashback Query, you can look at the data, but you can’t do any DDL or DML operations. This mean you can’t, for example, fix an error by updating a table while in flashback mode. You also can’t create a new table ‘AS SELECT * FROM ‘ the flashed back table. Despite those limitations Flashback Query can be a very handy tool, and there is a ‘trick’ you can use to permanently retrieve flashed back data.

Using Flashback Query to Restore Data

Imagine a user calls me you in a panic. She's just made an update to a table, but instead of updating 1 record, she's updated them all. She has, of course, already committed the changes. What to do? Use the dbms_flashback package to recover the data as it looked 80 minutes ago! Cursors opened in Flashback mode will contain data as of the flashback time. Provided the cursor remains open, this data will persist past the disabling of flashback, and can then be used in DML operations. Because of this we are able to recover the table to a point in time prior to the user error. Here’s how to do it:

Create a schema to do the recovery in with the appropriate permissions to do the recovery:

 CREATE USER data_recovery IDENTIFIED BY data_recovery;

 GRANT CONNECT, CREATE SESSION . . . TO data_recovery;

As SYS, give the recovery schema execute privileges on the dbms_flashback pachage:

 GRANT EXECUTE ON dbms_flashback TO data_recovery;

Create a table to hold your restored data:

 CREATE TABLE data_restore AS SELECT * FROM orig_schema.target_table WHERE 1=2;

Write a PL/SQL anonymous block which contains the appropriate flashback time, etc:

declare
 cursor flash_cur is
 select * from orig_schema.target_table;
 flash_rec flash_cur%ROWTYPE;
begin
 DBMS_FLASHBACK.ENABLE_AT_TIME(sysdate - 80/1440);
 OPEN flash_cur;
 DBMS_FLASHBACK.DISABLE;
 loop
 FETCH FLASH_CUR INTO FLASH_REC;
 EXIT WHEN FLASH_CUR%NOTFOUND;
 insert into data_restore
 values
 (
 flash_rec.col_1, -- note, use the real column names here
flash_rec.col_2,
.
.
.
flash_rec.col_n
);
 end loop;
 CLOSE FLASH_CUR;
 commit;
end;
/

Note the line: DBMS_FLASHBACK.ENABLE_AT_TIME(sysdate - 80/1440)

This tells the session to flashback to 80 minutes ago. You should adjust it to whatever time ago is appropriate for your recovery. The rest of the code runs your cursor select and inserts the results into the data_restore table. When the block completes, your restored data will be in the data_restore table, which can then be inserted back into target_table .

Limitations of Flashback Query
Note the following limitations of Flashback Query:
Flashback Query works at the session level. To concurrently view a table as it looked at 2 points in time, 2 sessions will be required.

Flashback Query will not work across a DROP or TRUNCATE operation.

Oracle is not obligated to honor undo_retention. If it needs the undo space for current transactions, it will take it.
 Flashback Table

Flashback Table was introduced in Oracle 10g as a point in time recovery feature for tables. As with Flashback Query it also uses data from the undo tablespace to ‘go back in time’. There are several main differences between Flashback Query and Flashback Table:

Flashback Table is an Enterprise feature, Flashback Query works with all Oracle editions.

Flashback Table affects only the tables specified, not the entire session.

Flashback Table physically restores the data, Flashback Query is ‘read only’.

A user must be granted the FLASHBACK ANY TABLE privilege in order to use it, and row movement must also be enabled on the table being flashed back. Because Flashback Table physically restores the table being flashed back it is an ideal tool to use for point-in-time recovery of individual tables. The syntax is very simple:
 ALTER TABLE <table name> ENABLE ROW MOVEMENT;

 FLASHBACK TABLE <table name> TO <TIMESTAMP|SCN> <value>;
One neat thing about Flashback Table is that you can flashback multiple times (both forward and backward) ‘looking’ for the version you want. Once you find it you need not take any other action to keep the version you want.

Flashback Table has similar limitation to Flashback Query in that you cannot flashback to before a DDL operation (truncate, drop, etc.), and the data must still exist in the undo tablespace in order to work.

 Flashback . . . drop

Another Flashback concept, Flashback Drop, available stating in Oracle 10g, allows you to actually recover an individual table that has been dropped. Flashback Drop relies on a new structure created in Oracle 10g called the recycle bin. Basically this structure is akin to the Windows Recycle Bin concept. When a table is dropped the database actually just renames it and keeps it until the ‘recycle bin’ is purged:
 16:22:56 PROD1.ERIK> drop table fact_sb;

 Table dropped.
Users can view the contents of their recyclebin using the ‘sho recyclebin’ command:
 PROD1.ERIK> sho recyclebin

 ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME

 ---------------- ------------------------------ ------------ -------------------

 FACT_SB BIN$RsXUBMQ1mmXgQDgKcwEpUw==$0 TABLE 2008-02-22:16:23:06.
Tables in the recyclebin all are named starting with ‘BIN$’, and the tables logically still reside in the original schema. Recovery of the table is as simple as:
 FLASHBACK TABLE <table name> TO BEFORE DROP;

By default, oracle does not purge the recyclebin on any regular schedule. Since tables in the recyclebin take up physical space in the database, tables may accumulate there until the database runs out of free space. If additional space is subsequently required, Oracle will purge tables from the recyclebin on an ‘as needed’ basis. You may prefer to control how tables get purged from the recyclebin. For this reason it is recommended that you set up a job to periodically purge tables based on your preferred criteria. Another advantage of periodically purging the recyclebin is that it’s easier to get an accurate read on the amount of ‘real’ free space available in the database. The command for purging the recyclebin is:

 PURGE RECYCLEBIN;
Run as a non-SYS schema this will purge the user’s recyclebin. Run as SYS, this will purge the recyclebins of all users on the database.

Flashback Versions
Flashback version is a tool used for viewing how data rows have changed over time. Like Flashback Query and Flashback Table it uses the undo tablespace to retrieve past data. The syntax of Flashback Versions is:
 SELECT <column list> FROM <table name> AS OF <scn> WHERE <where clause>;
Where scn is the scn you want to go back from. For example:
 SELECT versions_startscn , versions_endscn, versions_operation OPERATION,

 EMPLOYEE_NAME,EMPLOYEE_MANAGER EMP_MGR,SALARY, HIREDATE

 FROM TEST_EMP VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE

 AS OF SCN 202511227359 WHERE employee_no=34234;
VERSIONS_STARTSCN VERSIONS_ENDSCN O EMPLOYEE_NAM EMP_MGR SALARY HIREDATE

----------------- --------------- - ------------ ---------- ---------- ---------

 202507498107 U Erik Hobbs 77777 80000 25-SEP-00

 202507495947 202507498107 U erik hobbs 77777 80000 25-SEP-00

 202507492712 202507495947 U erik hobbs 77777 80000 27-JUN-07

 202507492712 erik hobbs 77777 1000000 27-JUN-07
Note that Flashback Versions will only go back as far as the available data in the undo tablespace.
Tracing SQL
Sometime the need arises to ‘see what is going on’ when code is run. DBAs are often asked to help tune some piece of code, or to see why something is ‘running slow’. There are a number of useful utilities for viewing SQL in the database.
SQL_TRACE and TKPROF

SQL_TRACE and TKPROF are utilities that allow you to trace the SQL in the database and generate a trace file and report with detailed information on how that SQL performs. They are commonly used together in development and troubleshooting to identify problematic SQL and tuning opportunities in database applications.

SQL_TRACE: tracing SQL at the database or session level

 SQL_TRACE can be turned on at the database level by setting the following in the database parameter file:
 sql_trace=TRUE
In general setting this is not recommended for production systems due to the overhead associated with tracing all SQL in the database.
SQL_TRACE can be turned on within a session by executing one of the following (user must have ALTER SESSION privilege):

 ALTER SESSION SET SQL_TRACE=TRUE;

 ALTER SESSION SET EVENTS '10046 trace name context forever, level 12';
SQL_TRACE can be turned on in a DIFFERENT session by executing the following (connected user must have EXECUTE privilege on dbms_system package):

 EXEC dbms_system.set_sql_trace_in_session(<sid>,<serial#>,TRUE);
You must turn tracing off for the session (or exit your session) for the trace file to be fully output. You can turn it off by:

 ALTER SESSION SET SQL_TRACE=FALSE;

 EXEC dbms_system.set_sql_trace_in_session(<sid>,<serial#>,FALSE);
Trace files will be found in the directory defined by the user_dump_dest database parameter.

TKPROF: formatting the output
While the trace files generated by a SQL_TRACE can be read, they tend to be cryptic and quite large. The TKPROF utility will take a raw trace file generated by SQL_TRACE and format it into an easily read report. Specifying built in options you can choose to display the statistics you want, and sort by various criteria.

To create a TKPROF report, execute at the command line:

 tkprof <trace file> <output file> <list of options>
options in the list are separated by a space and take the following form:

 <option>=<value>
Here is an example using the options I most commonly choose:

 tkprof prod1_ora_21200.trc prod1_test.trc sys=no explain=system/<pwd> waits=yes sort=exeela,fchela,prsela

 sys=no omits SQL generated by the SYS user (so you only get the user sql)

 waits=yes will put the wait events in the report

 sort=exeela,fchela,prsela will sort the sql by elapsed time

Statspack

Statspack is a free Oracle utility used to collect statistics and report on database performance metrics. It takes point-in-time 'snapshots' of a wide array of database metrics. The snapshots can be taken via regularly recurring jobs (through dbms_scheduler or dbms_job) and also can be run ad hoc. Reports can then be generated showing how the database 'looked' between any two saved snapshots.

There are two primary uses of Statspack. Perhaps the most frequent use of Statspack is as a diagnostic tool to troubleshoot performance issues. When the database is ‘running slow’, a series of snapshots can be taken and reports can be run to look at performance between snapshots. These reports can be compared to baseline reports run that were taken when the database was running well to determine what the cause of the poor performance is. This, of course, requires that baseline snapshots were run and saved. The other primary use of Statspack is as a tool to determine where to focus development. By looking at reports generated over a period of time, top resource consuming code can be identified. These can be passed along to the development team for possible tuning or re-coding.
Other Database-side Utilities
These utilities are all of the ‘home grown’ variety and may be adapted from various sources.

@lock_query: identifying blocking locks in the database
select s1.username || '@' || s1.machine

 || ' (SID=' || s1.sid || ') is blocking '

 || s2.username || '@' || s2.machine || ' (SID=' || s2.sid || ') ' AS blocking_status

 from v$lock l1, v$session s1, v$lock l2, v$session s2

 where s1.sid=l1.sid and s2.sid=l2.sid

 and l1.BLOCK=1 and l2.request > 0

 and l1.id1 = l2.id1

 and l2.id2 = l2.id2 ;
Outputs:
SQL> @lock_query
BLOCKING_STATUS

--

ERIK@TARGET\EHOBBS (SID=234) is blocking ERIK@TARGET\EHOBBS (SID=226)

SQL>
Where to Get Utilities

There are many, many sources from which to get utilities, including websites, professional journals, technical books, and writing your own. The following is by no means an attempt at a comprehensive list, but more of a place to start.

Writing your Own

Two things I highly recommend all beginning DBAs develop are their SQL and SQLPlus skills. In the course of regular DBA work, there are many time we need to concoct a query to get some piece of information from the database. A good strategy for building a utility library is to save any of these queries you think might be useful in the future to a utilities directory. Over time, queries can be fine-tuned to output precisely the information required, and as SQLPlus skill improves, the output can be made to look quite fine indeed.
Professional Journals
There are many professional journals and newsletters dedicated to Oracle. Most of these will have articles about Oracle utilities and scripts, complete with code samples and explanations. Two fine examples are the IOUG Select magazine and Oracle magazine. Serious Oracle professional should consider reading at least one or two of these on a regular basis.

Technical Books

Technical books are a great source of information on built-in Oracle Utilities, such as RMAN, as well as ad-hoc queries and scripts. A search on any of the online bookstores will reveal a long list of titles. A few of my favorites:
Oralce Database 10g RMAN Backup & Recovery by Matthew Hart and Robert G. Freeman (Oracle Press)
Everyday Oracle DBA by April Wells (Oracle Press)
Expert One-on-One Oracle by Tom Kyte (Wrox Press)
Oracle PL/SQL Programming by Steven Feuerstein (O’Reilly)

Expert Oracle 9i Database Administration by Sam Alapati (Apress)

A Practical Guide to Red Hat Linux by Mark Sobell (Prentice Hall)
Websites

The web is also a great source of information for utilities and scripts. Often a Google search will supply an ample list of places to look for what you’re interested in. Some of my favorite sites for finding scripts and utilities:

www.asktom.oracle.com Tom Kyte answering Oracle questions

www.metalink.oracle.com (account required) Oracle’s support site

www.orapub.com (some free tools here)
www.oracle.com/technology Oracle Technology Network (lots of technical stuff and downloads here)
http://puschitz.com/ Lots of Oracle on Linux information

24

Paper #

