Database Track

Presto magic you have just been made the system dba?
Gary M. Noble, LDS Church

What? I thought I was supposed to be the application DBA?
The purpose of this material is to address the immediate needs of those assuming the System DBA responsibilities. In our organization we had individuals that had never started up or shut down a database. Had not touched a listener and never monitored a database. My intent is to give some quick tips to help you cover this area. Some scripts will be provided to make this a less stressful situation. For example, when your manager walks in the office and asks a simple question, “Is the database up?” What is the quickest way for you to find out? If you try to shutdown the database and it never completes, how do you find out what is going on?

Introduction

The motivation to put together this material is that recently two distinct groups in our organization were combined. Previously there was a Systems DBA group and an Application DBA group. The Systems DBA group’s responsibilities included installing the Oracle Database executables, creating the database, providing monitoring and then setting up the RMAN backups. The Application DBA’s were responsible for applications that ran against the database, creating and trouble shooting SQL. Well you know how management likes to reorganize and change how things are done. All of a sudden the two groups were combined. There was an immediate learning curve for the individuals from the two groups. Now they are called Database Engineers and they are responsible for the database from start to finish.

I am going to assume you are working on LINUX or AIX and will supply some scripts made up of Operating System Commands to list the database and listener. My experience has been gained from starting out on HP VMS servers, then moving to IBM AIX servers, and now servers with the LINUX operating system. The examples will be mostly from Korn shell or Bash shell.
DBA responsitilites Overview

As a new Database Administrator you will have many new responsibilities. It is not the intent of the paper to cover all of them. I will try to cover a few items of interest to get you better acquainted and prepared to deal with some basic areas. As a general outline this paper will cover.

· Shutting down and starting up the database instances

· Making sure the database is running

· Connecting to the database

· Checking on the database listener

· Checking the alert log for errors

· Using Crontab to schedule backup jobs

How to get around on the server

Before we get too deep in running some scripts, let me go over some basics. How do I know where I am on the server and how do I navigate around to the different directories. How do find out what is running on the server and how I get around to the different directories to find the different files. And finally how do I get myself back to the original home directory.

Where am I
If the server administrator has created a server account for you and you are now logged in, where are you on the server? If you have an individual account usually you will be place in the /home/user_name directory. If the server administrator has created a generic account and called it “oracle” you could be placed anywhere on the server. At my employment we established that the user “oracle” would have the /opt/oracle as the home directory.

You can look in the /etc/passwd file to see where the home directory is for each server account. But for right now just type the “pwd” command. The “pwd” command will display the path name of the working directory.

pwd

How do I get from here to there

You will eventually want to move from your current directory to where the listener log resides, the alert log, the archive log, etc. The simplest way to do this is by the “cd” command. The “cd” command changes the current directory. I can change to the main directory on the server just by typing “/”. If I need to go to a deeper directory then I can type the full path of the directory structure. For example “cd /opt/oracle/v92”. If I am already at a lower level such as /opt/oracle then all I need to do is type “v92” to go down to the next level.
Is that file on the server

The “ls” command is used to list the files in the directory. A simple “ls” shows the files in the current directory. But do not be confused if you throw in a wild card like “ls *” to see the files, then not only is the current directory displayed but all of the file in the lower directories. If you want to use the wild card “*” then also use the option “-d” to limit the output to just the current directory.
You can use the “find” command to locate any file on the server. Note, since we are not logged on as user root, you will not have privileges to all directories. To look up the definition of any operating system command type “man” and the command name. When I use the “find” command I prefer not to see all of the directories that I do not have privileges to access. So I send the error output to the null bit bucket. For example to find the file name bob.sql I would use the command in this manner.

find / -name “bob.sql” 2>/dev/null

Get me home

Now that we have moved around the server, how do we get back to the original directory quickly? The easiest method is to use the “cd” command. This will take you back to your home directory. Your home directory is the directory assigned by the server administrator. You could also type the path of your home directory. But instead of having to type the path name of the directory you could set up an alias named “home” to get you there quickly.

alias home=’cd’
Is the database up

One of the basic responsibilities of the DBA is know the status of the database instance. Is if up and available for the users. Is the listener up so outside users can log onto the database? To know the answers to these questions in a quick and easy method is the next topic.

Quick is the database running

Let us start out by talking about aliases. Aliases can be used instead of complicated Linux syntax. Making an alias only a few letter commands will save time and be easy to use.

For example, what would you rather type?

ps –ef | grep –i smon

or

running smon

The above example will show if the background process smon (session monitor) for the database instance is currently running on the server. In fact the alias “running” command can be used to show if any type of process is running on the server.

You may not have noticed but you now know how to quickly show if the database instance in running on the server. The database instance has several background processes such as smon, pmon, lgwr, ckpt, etc. If they are not there then you can assume the database instance is not up and running.

Is the listener running

Your boss then asks, “Well if the database is up then is the listener running? Your next step would be to check for the listener. Again we can use the “check_running” script to check if the listener is running on the server.

running listener

So what is the “check_running” script and how can I set it up on my Linux server.

#!/bin/ksh

Title: check_running G. Mike Noble June 25, 2001

Purpose: Check to see if a process is currently running.

Note: If you run the process in your own session and you have sleep in the

process, you will not find it with check. But if you look for sleep

you will find sleep.

#

process_name=$1

Bash can not handle all options of "typeset". Mike Noble 25jun04

typeset -l process_name_lc=$1

typeset -u process_name_uc=$1

uname -n | read host_name

echo " "

ps -ef 1> /tmp/check_running.tmp

Get rid of line that has check_running in it.

sed '/check_running/d' /tmp/check_running.tmp > /tmp/check_running.tmp1

cat /tmp/check_running.tmp1 | egrep "${process_name}|${process_name_lc}|${process_name_uc}"

process_result="$?"

if [[$process_result != "0"]]

then

 echo " Process $1 is not running on $host_name "

else

 echo " Process $1 is currently running on $host_name "

fi

while [[$1 != ""]]

do

 shift

done

#

First you should create a directory to hold all of the scripts. For example:

mkdir –p /opt/oracle/tools

Place this script in the /opt/oracle/tools directory. But it would seem cumbersome to specify this path each time you ran the script. So let’s talk some more about aliases. The alias command creates or redefines alias definitions. The benefit of an alias is to have a short alias command run a longer script or set of awkward operating system commands. Now let us set up the “check_running” script as an alias called “running”.

alias –x running=’. /opt/oracle/tools/check_running’

You are thinking well that is nice but do I really want to type in the alias string each time I log into the server. So far it looks like I am creating more work for myself and not getting much benefit. The benefit will come when your log in to the server sets up these commands for you. If you are logging into a Linux server with the default shell of ksh (korn shell) the a hidden file name .profile will be run automatically. If the default shell is bsh (bash shell) then a hidden file name .bachrc will automatically run. You can take advantage of this by editing these files to have them run your own personal scripts setting up the aliases. If you do not know what shell is run on your LINUX server then log in and type:

echo $SHELL

These hidden files (.profile .bashrc) are in you home directory. They are not normally displayed. To see them type:

ls –d .*

The above command will display all files in your current directory starting with a “.” period. Another little trick, if everyone is not logging into the same home directory, then have the hidden file such as .bashrc point to another generic file that everyone can access.
For example if your home directory is /home/gmn and you log into the server then inside the .bashrc file in the /home/gmn directory include the command:

. /opt/oracle/.bashrc

Alright now we can have in the /opt/oracle/.bashrc file run a tools command file to set up all of our aliases. For example:

. /opt/oracle/tools.ksh

Now that we have done the preliminary work let’s keep adding to our scripts. It would be nice to have a script to quickly show if several databases are up on the server and if the listener is also up.

#!/usr/bin/ksh

Title: ora_up.ksh Mike Noble/Mark Bush March 24, 2000

Purpose: List what instances are up by just

checking if the "PMON" process monitor exists.

Examples: ora_up.ksh ! List all instances.

ora_up.ksh a105 ! List only a105 instance.

Modified:

#
#

Read in the instance names that are on this server.

. /oracle/ldsadm/db_names.ksh

if [[$1 != "" && $1 != "all" && $1 != "ALL"]]

then

 db_names=$1

fi

#--

Loop through the instance names to test if currently up.

for ins_name in $db_names

do

ps -ef 1> /tmp/ora_up_processes.tmp

cat /tmp/ora_up_processes.tmp |grep ora_pmon_$ins_name > /dev/null

process_result="$?"

if [[$process_result != "0"]]

then

 instance_message="*** Instance not found $ins_name"

else

 instance_message="Instance up $ins_name"

fi

 # Instance is found so check on listener.

 cat /tmp/ora_up_processes.tmp |grep listener_$ins_name > /dev/null

 process_result="$?"

 if [[$process_result != "0"]]

 then

 listener_message="*** Listener not found $ins_name"

 else

 listener_message="Listener up $ins_name"

 fi

check for databases in nobackup

 if [[-x /oracle/ldsadm/db_nobackup.ksh]]

 then

 . /oracle/ldsadm/db_nobackup.ksh

 backup_message=" "

 for nobackup_name in $db_nobackup

 do

 if [[$ins_name = $nobackup_name]]

 then

 backup_message="-No Backups"

 fi

 done

 fi

#

 echo "$instance_message $listener_message $backup_message"

done

if [[$1 != ""]] then shift

fi

rm /tmp/ora_up_processes.tmp

#

Now we need to set up the above script as an alias and place the alias in our /opt/oracle/tools.ksh script. Remember the object is to create an alias with a few letters to make our job as easy as possible. So let us pick “ou” to represent Oracle databases that have been started up and running.

alias ou=’. /opt/oracle/tools/ora_up.ksh
If you have several accounts on the server such as you own account and an account named oracle that has been assigned group dba (giving it the privilege to shutdown and startup databases), it is nice to know how you are logged in. You can do this by typing whoami. Also to see what directory you are in you can type pwd. But this requires you to repeatedly type these commands. So now let up set it up where this information will be continuously displayed. We can do this by replacing PS1 with the whoami command and displaying $PWD. We might as well throw in the host server that we are logged into. This will be handy if you have separate servers for development, test, and production databases. I surely hope that is the case. You would never want something you are testing out to bring down your production database.

The following commands will detect if you are logging onto the server as an interactive user and set up your prompt as the user, host name, and path.

if [$? = 0] ; then

PS1='

[!] '`whoami`'-'`hostname`'$PWD

$'

fi

Note: A little extra benefit in doing it this way is you drop down to the next line.

In other words a pet peeve of mine is to have the prompt line with so much information on it that when you do type a command it has to wrap around to the next line. Why not start on a new line that gives you lots of columns to enter what you want before wrapping.
Startup and Shutdown

Another basic responsibility of the DBA is to be able to startup and shutdown the database. The following will discuss the easiest method to perform these tasks.

Is anyone on the database

A good way to make a user mad is to take the database down while they are currently logged onto the database. The following is a simple little script to see if anyone is currently in the database.

SET HEADING ON

SET PAGESIZE 40

SET VERIFY OFF

SET FEEDBACK 1

-- SET NUMFORMAT 999,999,999,999

SET NUMFORMAT 999,999,999,999 ;

COLUMN USERNAME FORMAT A20 HEADING "ORACLE|USER ID"

COLUMN OSUSER FORMAT A15 HEADING "OPERATING SYS|USER ID"

COLUMN TYPE FORMAT A4 HEADING "TYPE"

COLUMN SID FORMAT 999 HEADING "ORA|SID"

COLUMN SPID FORMAT 999 HEADING "OPER SYS|PID"

COLUMN VALUE HEADING "ORACLE|LOG READS"

SET TERMOUT ON

SELECT B.USERNAME,

 B.OSUSER,

 DECODE(B.TERMINAL,'Windows ','C/S','','BAT','INT') "TYPE",

 A.SID,

 C.SPID,

 A.VALUE "LOG READS"

 FROM V$SESSTAT A, V$SESSION B, V$PROCESS C

 WHERE A.SID = B.SID

 AND B.PADDR = C.ADDR

 AND A.STATISTIC# = '9'

 AND B.TYPE != 'BACKGROUND'

 AND B.USERNAME NOT IN ('ORADISP','SQLCQR')

 AND UPPER(B.OSUSER) LIKE UPPER('%&1%')

 ORDER BY a.value, B.USERNAME, B.OSUSER, A.SID

/

SET HEADING ON

SET PAGESIZE 24

SET VERIFY ON

SET FEEDBACK 6

CLEAR COLUMN

EXIT
Note – the sql script lists users in the database by the number of logical reads. The user with the most logical reads is listed at the bottom. This script is useful for discovering run away sql that is consuming resources.

Shutdown Normal

There are only two things that you need to have set up to take the database down properly. One is to have environment variable ORACLE_HOME set to the correct location for that version of Oracle. The other is to have ORACLE_SID set to the appropriate service name or database name. Also you need the ORACLE_HOME address in your path. You can see what is in your path by typing “echo $PATH”. Then it is a matter of logging on as user “SYS”. For example:

sqlplus “/ as sysdba”

The command shutdown normal will wait for processes to be completed. It will not cut off users but wait for the transactions to be completed. I would only use this method if I knew users had not gotten into the database.

shutdown normal

Shutdown Immediate

I know the Oracle default shutdown parameter is “normal” but I recommend using shutdown immediate. If you use shutdown normal and the instance is waiting for a response over the network, it will continue to wait and wait and wait for that response. I prefer shutdown immediate as the database instance will use a cleanup process and get the database down.

shutdown immediate

Shutdown abort

To me this is a worst case scenario. The database seems to be hung and even shutdown immediate is not bringing down the database. So shutdown abort is like pulling the rug out from underneath the database. Abort waits for no man but gets the database down. I have one more little trick. If for some reason things are really stuck and shutdown abort never brings down the database you can kill off the background process for that instance. Be careful to only kill off the operating process for your database instance.

shutdown abort

Startup

I know this is a repeat of what was said for shutdown but it is imperative that the environment is set up properly before proceeding. There are only two things that you need to have set up to get the database going. One is to have environment variable ORACLE_HOME set to the correct location for the Oracle version. The other is to have ORACLE_SID set to the appropriate service name or database name. Also you need the ORACLE_HOME address in the your path. You can see what is in your path by typing “echo $PATH”. Then it is a matter of logging on as user “SYS”. For example:

sqlplus “/ as sysdba”

startup

Instead of starting up the database by setting up the environment and then logging as “SYS” to use the startup command you could set up a script to do the work for you.

#!/bin/ksh

Title: ora_start.ksh G. Mike Noble/Kathleen Burton January 17, 2000

Purpose: Start up instance.

Pass parameters to start up of Oracle instances:

P1 = Instance (a102 or a103 or etc.)

P2 = Exclusive (EX) or Parallel (PA)

P3 = Restricted (RSTR)

For example to bring the instance up Exclusive Restricted:

Example: ora_start.ksh P1 P2 P3

ora_start.ksh a104 ex rstr

Modified:

#

. /oracle/logical_names.ksh

if [["$1" = 'Help' || "$1" = '']] then

 echo " Pass parameters to start up Oracle instances: "

 echo " P1 = Instance (a102 or a103 or etc.) "

 echo " P2 = Exclusive (EX) or Parallel (PA) "

 echo " P3 = Restricted (RSTR) or (blank for all user access)"

 echo " For example to bring the instance up Exclusive Restricted: "

 echo " Format - ostart P1 P2 P3"

 echo " Example: ostart a102 ex rstr"

 echo " Note: You must enter a Database Name."

else

#

#---------------------------Functions--------------------------------

#---

Function: startup_database

#---

function startup_database {

$ORACLE_HOME/bin/sqlplus "/ as sysdba" <<_MARK

startup;

quit;

_MARK

echo finished starting instance $ORACLE_SID >> $logfile

}

#--

Function: startup_exclusive

#--

function startup_exclusive {

$ORACLE_HOME/bin/sqlplus "/ as sysdba" <<_MARK

startup exclusive;

quit;

_MARK

echo finished starting instance exclusive $ORACLE_SID >> $logfile

}

#--

Function: startup_exclusive_restrict

#--

function startup_exclusive_restrict {

$ORACLE_HOME/bin/sqlplus "/ as sysdba" <<_MARK

startup exclusive restrict;

quit;

_MARK

echo finished starting instance exclusive restrict $ORACLE_SID >> $logfile

}

#--

Function: startup_parallel

#--

function startup_parallel {

$ORACLE_HOME/bin/sqlplus "/ as sysdba" <<_MARK

startup parallel ;

quit;

_MARK

echo finished starting instance parallel $ORACLE_SID >> $logfile

}

#--

Function: startup_parallel_restrict

#--

function startup_parallel_restrict {

$ORACLE_HOME/bin/sqlplus "/ as sysdba" <<_MARK

startup parallel restrict;

quit;

_MARK

echo finished starting instance parallel restrict $ORACLE_SID >> $logfile

}

#--

The first parameter is the Oracle SID

The parameters two and three need to be gotten before eval ora$ORACLE_SID

is called otherwise they are lost!!!

#--

 typeset -l ORACLE_SID=$1

 typeset -l ins_name=$1

 typeset -u SERVERMODE=$2

 typeset -u USERMODE=$3

 eval ora$ORACLE_SID

echo "ORACLE_SID= $ORACLE_SID"

export ORACLE_SID

#--

logfile=/tmp/ora_start_$ORACLE_SID.log

echo The output is redirected to /tmp/ora_start_$ORACLE_SID.log

echo In ora_start.ksh `date` >> $logfile

#--

The second parameter is the EX/PA exclusive or parallel mode

The third parameter is RSTR/ALL (restricted) or (blank for all user access)

#--

echo "SERVERMODE= $SERVERMODE"

echo "USERMODE= $USERMODE"

if [[$SERVERMODE = ""]] then SERVERMODE="EX"

fi

if [[$USERMODE = ""]] then USERMODE="ALL"

fi

echo "SERVERMODE= $SERVERMODE"

echo "USERMODE= $USERMODE"

#

if [[$SERVERMODE = ""]] then

 echo Start database in normal mode on `date`

 echo Start database in normal mode on `date` >> $logfile

 startup_database

else

 if [[$SERVERMODE = 'EX']] then

 if [[$USERMODE = 'ALL']] then

 echo Start database in exclusive mode on `date`

 echo Start database in exclusive mode on `date` >> $logfile

 startup_exclusive

 fi

 if [[$USERMODE = 'RSTR']] then

 echo Start database in exclusive restrict mode on `date`

 echo Start database in exclusive restrict mode on `date` >> $logfile

 startup_exclusive_restrict

 fi

 fi

 if [[$SERVERMODE = "PA"]] then

 if [[$USERMODE = 'ALL']] then

 echo Start database in normal mode on `date`

 echo Start database in normal mode on `date` >> $logfile

 startup_database_parallel

 fi

 if [[$USERMODE = 'RSTR']] then

 echo Start database in parallel restrict mode on `date`

 echo Start database in parallel restrict mode on `date` >> $logfile

 startup_parallel_restrict

 fi

 fi

fi

#

###

echo Finished starting instance `date`

echo Finished starting instance $ORACLE_SID >> $logfile

#---

Start up Oracle Listener

#---

Start listener in the background so when logging off the

listener will not be taken down.

$ORACLE_HOME/bin/lsnrctl start listener_name

. /oracle/ldsadm/ora_start_lis.ksh $ins_name

echo Exiting ora_start.ksh on `date`

echo Exiting ora_start.ksh on `date` >> $logfile

fi

--

Now I have made my life a lot easier. I set up an alias called “ostart” to run the ora_start.ksh script. When I want to start up the database instance all I have to do is get on the server and type the “ostart” command to run the script. Say my database name is a999 then I could use the following command:

ostart a999

To startup Real Application Cluster (RAC) databases, you should use the srvctl utility.

Note – that RAC databases need to communicate and coordinate the work between instances therefore it may take several minutes for the instance to be started or shutdown.

The following commands will use a999 as the database name. Replace a999 with the database name you need.

If all instances are down for your RAC database then start them with srvctl:

srvctl start database –d a999

If you only need to start a particular instance, for example instance a9992, use the instance “-i" parameter of srvctl:

srvctl start instance –d a999 –i a9992

To insure that the database instance is running, check the status:

srvctl status database –d a999

To stop all RAC instances for a database a999:

srvctl stop database –d a999

To stop a single RAC instance, for example instance a9991:

srvctl stop instance –d a999 –i a9991

Operating System Environment Variables

Let us talk a little more about setting up our environment. Again let us do it the easy way and quickly. Again one of the basic things you need is to have ORACLE_HOME set to the home address of the Oracle executables. If you have only one database this would seem simple enough but you may have already installed Oracle 9i and are going to Oracle 10g, or 11g. To keep things straight we create a brand new directory install the new version of Oracle and then proceed with trying it out before migrating our database. The point is you may have several oracle homes but want a way to quickly set up the environment to the correct ORACLE_HOME for the database that you are currently using. You also need to set up the ORACLE_SID name. As a standard you may have a database naming convention of axxx. Where xxx is the number of the database. This lends itself to having the set up command as oraaxxx or ora axxx. For example the alias could be:

orao185

or

ora o185

A script called oraa185.ksh could then set up the environment of ORACLE_HOME as

export ORACLE_HOME=/opt/oracle/v92

export ORACLE_SID=a185

You can add to this file all kinds of aliases to make your life easier.

export NLS_LANG=AMERICAN_AMERICA.UTF8

export NLS_DATE_FORMAT="DD-MON-FXYYYY:HH24:MI"

 ORA_ADUMP=$ORACLE_HOME/rdbms/audit; export ORA_ADUMP

 ORA_BDUMP=/oracle/dump/a185/bdump; export ORA_BDUMP

 ORA_CDUMP=/oracle/dump/a185/cdump; export ORA_CDUMP

 ORA_UDUMP=/oracle/dump/a185/udump; export ORA_UDUMP

alias -x ora_adump='cd $ORA_ADUMP'

alias -x ora_bdump='cd $ORA_BDUMP'

alias -x ora_cdump='cd $ORA_CDUMP'

alias -x ora_udump='cd $ORA_UDUMP'

 ORA_CONTROL1=/oradata/orasys02/a185/ctl; export ORA_CONTROL1

 ORA_CONTROL2=/oradata/orasys03/a185/ctl; export ORA_CONTROL2

alias -x ora_control1='cd $ORA_CONTROL1'

alias -x ora_control2='cd $ORA_CONTROL2'

 ORAA185_EXP=/inp03/exports; export ORAA185_EXP

 ORA_INIT=/oracle/pfile/a185; export ORA_INIT

alias -x ora_init='cd $ORA_INIT'

 ORAA185_ARV1=/oraarv01/a185; export ORAA185_ARV1

 ORAA185_ARV2=/oraarv02/a185; export ORAA185_ARV2

 ORAA185_ARV3=/oraarv03/a185; export ORAA185_ARV3

 ORAA185_ARV4=/oraarv04/a185; export ORAA185_ARV4

export ORA_NLS33=$ORACLE_HOME/ocommon/nls/admin/data

PATH=$ORACLE_HOME/bin:/usr/lbin:$PATH

export LD_LIBRARY_PATH=$ORACLE_HOME/lib

export LIBPATH=$ORACLE_HOME/lib

alias tnsadmin='cd $ORACLE_HOME/network/admin'

alias ora_db='cd $ORACLE_HOME/dbs'

Now let us set up our alias to the file that will set up all of the environment for our database a185.

alias -x oraa185='. /oracle/ldsuser/oraa185.ksh'

This line will be put in our /opt/oracle/tools.ksh file. Let us now assume you have run the alias oraa185. You have been interrupted by phone calls or meetings and are now getting back to starting up the database. To check on how your environment is set up you could do:

env | grep ORACLE

This would show you any environment variable that has an upper case ORACLE in the line. But instead of typing this command you can set up an alias to cut it down to a four letter command.

oenv=’env | grep ORACLE’

Add this to the /opt/oracle/tools.ksh file that is run when you log onto the server. Now all you need to do is type oenv and ORACLE_HOME and ORACLE_SID will be displayed.

If you do not know where ORACLE_HOME is for a particular database look in the /etc/oratab file. This file should list the databases and the corresponding Oracle Home.

Connecting to the database

Remember that if you connect to the database as user SYS you have more rights than the ordinary user. I like to go into the database as user SCOTT. This account does not have many privileges and therefore is a good test. Also if you are logged onto the server with the database you are not going through the listener. Get onto another server and use the sqlplus scott/tiger@axxx. Where axxx is the database name. As a security precaution change the default password of “tiger” for the scott account. As a standard, change the generic accounts set up by Oracle when the database is created.

Checking on the database listener

The database listener is set up for users connecting to the database coming from the network. In other words, users that are not logged on directly to the database server. Therefore even if the database is up, users may not be able to connect if the listener is not running on the server. A quick check of the listener status is to do listener control command.

lsnrctl status listener_name

Check the alert log for errors

So what is the alert log and why should I pay attention to it. The alert log for the database will show you certain types of activity that is being performed by the database. It does not show user sql errors or application errors. Without going into too much detail, the alert log will show Oracle database errors. Therefore if the database dies your manager will want to know why. A good place to start looking for the cause of the problem is in the in alert log. You need to know beforehand where the alert log is located. So this is a good reason to set up an alias to where the alert log is located. An easy way to do this while the database is up is by logging into the database as SYS then show the parameter background_dump_dest. For example:

sqlplus “/ as sysdba”

show parameter background_dump_dest
NAME TYPE

------------------------------------ ---------------------------------

VALUE

background_dump_dest string

/oracle/dump/a185/bdump/

If you just do a “show parameter dump” you will end up with several dump directories. What we are interested in is the background_dump_dest or bdump directory. Change to that directory and look for the alert log. There will be trace files in this directory created by the Oracle instance background processes. You can get into the editor and look for the error or scan the alert log for errors by using the grep command.

ls alert_*.log

grep “ORA-“ alert_axxx.log

Replace the axxx with the database name. Or if this is a RAC database replace the axxx with the instance name. Note: If the database came down because of an abort situation then there will not be an Oracle error message. If there is no error message then this is a great opportunity to startup the database with sqlplus to see if any error message is displayed while trying to bring up the database.

sqlplus “/ as sysdba”

startup

Use Crontab to schedule backup jobs

The reason I bring up contab is because it is usually set up with the operating system. Crontab is not the most sophisticated job scheduler but it gets the job done. After you have logged onto the server you can list jobs that have been scheduled for that server by simply performing a list command.

crontab –l
And of course to the edit the jobs you simply use the “-e” option, but let me caution against this method. Anyone if they are not careful can make a mistake while editing and wipe out what was already been set up. No use having your fellow employee angry with you destroying what jobs they had set up to run. If there is not a backup of the files on the server then you are in real trouble. Let me recommend making a file to edit for the crontab work and have it in a standard location on all servers. For example:

/opt/oracle/backup/server1/oracle_crontab

Now you can use “vi” to edit the file. When you are finished with the file then use the crontab command to activate it.

crontab /opt/oracle/backup/server1/oracle_crontab

This way you have a better chance of not fouling up what has already been scheduled. If you want to be extra cautious then save this file to a new name with the date added to the end of it for future reference. If you do not want to memorize what the first few columns represent then add the following lines to the top of the file as a reference.
minute hour day_of_month month weekday command

#

minute 0 - 59

hour 0 - 23

day_of_month 1 - 31

month 1 - 12

weekday 0 - 6 for Sun - Sat

#

Ok now you can set up jobs in this file. Crontab can be set up to run daily, weekly, and monthly. The short coming of crontab is it can not be easily set up to run the second Sunday of each month. Here are a couple of examples of setting up jobs to get the archive logs backed up, check for errors if the archive disk is getting full, etc. In the first example the job is run every day of the week on the hour, 10 minutes after, 20 minutes after, etc.
If the archive directory is starting to become full then backup the database archive files.

0,10,20,30,40,50 * * * * /opt/oracle/lds/scripts/check_archive_dir 1> /opt/oracle/backup/chqpvuu8007/log/check_archive_dir.cronlog 2>&1

The next crontab example is for a mandatory backup of the Oracle database archive logs every hour starting at 15 minutes after the hour.

15 * * * * /opt/oracle/lds/scripts/check_archive_dir 1 1> /opt/oracle/backup/chqpvuu8007/log/check_archive_dir.cronlog 2>&1

You should be getting the idea now that you can schedule all kinds of jobs to help you monitor and backing up the database. For example the archive directory is full and the database is stuck until space is provided, etc
Monitor each hour – Archive disk full, Archiver stuck, etc.

0 * * * * /oracle/ldsmon/ora_mon_u8007.ksh 2>&1 1> /tmp/ora_mon_u8007.log

#

Monitor if instance processes are up every 5 minutes.

0,5,10,15,20,25,30,35,40,45,50,55 * * * * /oracle/ldsadm/watch_dog_check_list.ksh

#

Symmary

You can use various scripts to help to startup, shutdown and monitor what is happening. If you plan ahead and set up the appropriate scripts and aliases they will be of great benefit when it comes to crunch time. They will help you to get things done quickly. Even if you forget the aliases, just type “alias” and they will all be listed on the screen. Do not be afraid of trying to organize before the crisis. It may take a bit of time to set everything up the way you want it but late at night when you have the duty phone and someone calls reporting that the database is down it will be worth the effort.
About the Author

Gary M. Noble is a Database Engineer for the LDS Church and works in Salt Lake City, Utah. He has been a computer programmer, and Database Administrator. He has been working with Oracle since 1998. Principally he has been scripting on the various Operating systems to perform backups, monitoring and setting up databases. At first when he came into his working group the databases had just been moved onto DEC VMS servers (now HP), then they were moved to IBM AIX server. Now the operating system of choice is LINUX.

2

Paper # 336

