Database

CSI Oracle – Investigate Past Performance Problems Using ASH, AWR, ADDM, and Optimizer Statistics
Patty Charlebois, Green Shield Canada

Introduction
The crime has been committed while you were away from the office. Someone broke into your database and changed something and now your application is behaving differently than it did a week ago. While you were sunning yourself in Mexico or the Caribbean, no where near the office, the server, or the database, something went wrong. Now it is your job to return to the office, find the criminal, and tell the world what happened.
Case # 10203 – web page is timing out

The database has recently been upgraded from Oracle 9i to 10g. Automatic statistics gathering has been turned off and the dbms_stats jobs that were run on a schedule when the database was 9i have been retained through the upgrade to 10g. Some optimizer statistics are gathered on a daily basis, some on a weekly basis.

When the users arrive on Monday morning, they find the web page dead. They cannot look up information necessary to answer some of the phone inquiries that are coming in without the web page. When the users try to use the page, the CPU usage is spiking. When several users try to access the page simultaneously, the CPU is maxed out and nothing is getting through. The Web Page performance that has been killed is not a new page nor has it had any recent changes to it. The only thing that has changed is the version of Oracle database software.

The first support officers on the scene quickly re-direct traffic around the crime scene so users can answer their phone calls. There are other Web Pages that are still alive and can provide similar information to answer the phone calls. The support officers then collect as many clues as they can and document their findings. The clues they collect lead them to a reasonable assumption that the crime was caused by something in the Oracle database.
This investigation is definitely a job for CSI: Oracle, otherwise known as the DBA Team. The Senior Investigator/DBA is called to the scene after being away from the office on vacation. Read on to find out how this team will solve this case.
The Crime Scene Investigation toolkit
The best place to start down the path to investigate this crime scene is to understand the tools that you can use to solve this mystery.

Database statistics

Collected database statistics provide analysis, interpretation, and explanation of the type of load on the database and the resources used by the database both internally and externally. Many different types of statistics can be gathered for an Oracle database at the system, session, and SQL statement levels. Statistics are also tracked for segments and services. The statistics are your clues at the crime scene so they must be available to help find the criminal.
Some of the more important database statistics include wait events, time model statistics, active session history (ASH), and system and session statistics.

Wait Events

Wait event data shows various symptoms of problems that might be a clue to help solve your performance crime.

Time Model Statistics
The most important time model clue to help solve your crime is DB Time. This clue represents total time spent in database calls and can help you to understand database workload at the time the crime was committed.
Active Session History (ASH)

The Active Session History (ASH) data is much like a security camera that records events as they happen. Active sessions are sampled every second and stored in a SGA buffer. The V$ACTIVE_SESSION_HISTORY view holds one row for each active session in the database. Much like reviewing the tape from a security camera, viewing the ASH data allows you to examine and analyze current data as well as historical data in the DBA_HIST_ACTIVE_SESS_HISTORY view. These historical views or recordings of what was happening at the scene of the crime may help to solve the mystery.
The data captured by the ‘camera’ includes:

SQL identifier of SQL statement

Object number, file number, and block number

Wait event identifier and parameters

Session identifier and session serial number

Module and action name

Client identifier of the session

Service hash identifier

Session and System statistics
A large number of database clues are accumulated and available at the session and system level to help solve the crime in question.

automatic workload repository (AWR)
The Automatic Workload Repository (AWR) is your security camera mounted in your database, hidden from view and recording everything that is happening around it.
AWR, by default, automatically gathers database statistics every hour. These performance statistics are collected from memory, processed, and maintained for problem detection and self-tuning. The AWR is turned on by default when you create a new database and is controlled by the initialization parameter STATISTICS_LEVEL. The parameter is set to TYPICAL by default. Setting the parameter to BASIC will disable the collection of statistics by the AWR.
The statistics collected and processed by AWR include:

Object statistics

Time model statistics
Some of the system and session statistics
Highest load SQL statements as determined by elapsed time and CPU time

Active Session History (ASH) statistics

Managing the awr

This data is stored in the database in the SYSAUX tablespace. The amount of space used by the AWR is determined by the number of active sessions at any given time, the snapshot interval, and the historical data retention period. Both the snapshot interval and the historical data retention period can be modified. The more frequently you collect the data and the longer you keep it, the more space you will need to store the data. You should adjust these parameters to ensure that you have the data you need to investigate a crime that happened while you weren’t in the office, or just weren’t actively watching the ‘live views’ from your security camera.
To modify the snapshot settings you can either use Oracle Enterprise Manager (OEM) or the command line. In OEM the snapshot settings can be found on the Database Administration page under Statistics Management.
Oracle also provides a stored procedure to change the AWR settings. The values are specified in minutes.
For example, to change the INTERVAL setting to 30 minutes and the RETENTION setting to two weeks for your database you would execute this from SQL*Plus:
EXECUTE DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS(

 interval => 30,

 retention => 20160);
Setting the interval to 0 will disable both automatic and manual snapshots. Setting the retention to 0 will cause the snapshots to be retained indefinitely.
automatic workload repository reports

The data captured in the automatic workload repository can be viewed in reports that show what happened between two points of time. These reports contain detailed data and clues from the crime scene that can lead you to capture the criminal.

AWR reports can easily be generated from Oracle Enterprise Manager pages. If you would rather create the reports by running SQL scripts, you can run the following is a list of scripts if you have been granted the DBA role:

The awrrpt.sql script creates a report that displays statistics for a range of snapshot Ids.

The awrrpti.sql script creates a report that displays statistics for a range of snapshot Ids on a specified database and instance.

The awrsqrpt.sql script creates a report that displays statistics of a particular SQL statement for a range of snapshot Ids. Use this report to debug the performance of a SQL statement.

The awrsqrpi.sql script creates a report that displays statistics of a particular SQL statement for a range of snapshot Ids on a specified database and instance.
The awrddrpt.sql script creates a report that compares detailed performance attributes and configuration settings between two selected time periods.
The awrddrpi.sql SQL script creates a report that compares detailed performance attributes and configuration settings between two selected time periods on a specific database and instance.

For example, you could create a basic report for a set of snapshot ids by issuing the following command from SQL*Plus:

@$ORACLE_HOME/rdbms/admin/awrrpt.sql

Specify whether you want an HTML or a text report.

Specify the number of days for which you want to list snapshot Ids.

After the list displays, enter the beginning and ending snapshot Id for the workload repository report.

Next, accept the default report name or enter a report name.

The workload repository report is created and saved in your current directory.

Now you have some detailed information from the crime scene that will help you to discover what happened and what and/or who is responsible for this terrible crime.

Automatic Database diagnostic monitoring (ADDM)

The Automatic Database Diagnostic Monitor (ADDM) analyzes the data in the AWR on a scheduled basis looking for performance problems and suggesting solutions to the issues it finds. This analysis is done every time an AWR snapshot is taken and the results are stored in the SYSAUX tablespace in the database.
The information contained in the ADDM report should be the first thing you look at to determine why the crime was committed and who the possible suspects are. This report will also help you to determine the perfect punishment and rehabilitation for the criminal.
You can either use OEM to view the results from ADDM or you can run a SQL script to produce the report. To manually produce the ADDM report you can run $ORACLE_HOME/rdbms/admin/addmrpt.sql from the SQL*Plus prompt.

You will need to identify the last snapshot that was taken before or at the estimated time of the crime and the first snapshot that was taken at or immediately after the estimated time of the crime. Enter the value of the beginning snapshot and ending snapshot when prompted to do so. You can either accept the default report name or you can choose one of your own. Now the ADDM analysis will take place and the report will be displayed. You can review the report for possible root clues to what was happening at the time of the crime and who the possible suspects are.
Example:

@?/rdbms/admin/addmrpt <enter>

Instance DB Name Snap Id Snap Started Level

------------ ------------ --------- ------------------ -----

fred0 FRED0 5694 19 Jul 2007 08:00 1

 5695 19 Jul 2007 09:00 1

 5696 19 Jul 2007 10:00 1

Specify the Begin and End Snapshot Ids

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Enter value for begin_snap: 5695

Begin Snapshot Id specified: 5695

Enter value for end_snap: 5696

End   Snapshot Id specified: 5696

Specify the Report Name

~~~~~~~~~~~~~~~~~~~~~~~

The default report file name is addmrpt_1_5695_5696.txt. To use this name,

press <return> to continue, otherwise enter an alternative.

Enter value for report_name: <enter>

…..report is produced and saved into current directory….

Report written to addmrpt_1_5695_5696.txt

 Optimizer Statistics
Another important tool that should be found in your CSI Toolkit is Optimizer Statistics. These statistics are a collection of data that provides more detail about the database and its objects including:

· Table statistics

Number of rows

Number of blocks

Average row length

· Column statistics

Number of distinct values (NDV) in column

Number of nulls in column

Data distribution (histogram)

· Index statistics

Number of leaf blocks

Levels

Clustering factor

· System statistics

I/O performance and utilization

CPU performance and utilization
The objects in a database can be constantly changing, and the statistics may be regularly updated either automatically by Oracle or manually using the DBMS_STATS package. Sometimes these changing statistics are the criminals that need to be found and rehabilitated in order to bring justice to the applications.
Automatic gathering of Optimizer Statistics

Whether you realize it or not, starting in Oracle 10g optimizer statistics are automatically gathered with the job GATHER_STATS_JOB. This job gathers statistics on all objects in the database which have:

Missing statistics

Stale statistics

This job is created automatically at database creation time and is managed by the Scheduler. The Scheduler runs this job when the maintenance window is opened. By default, the maintenance window opens every night from 10 P.M. to 6 A.M. and all day on weekends. To see if this job is currently scheduled and enabled to run in your database run this SQL statement from SQL*Plus:
select enabled from dba_scheduler_jobs where job_name='GATHER_STATS_JOB';
If the job is scheduled to run on a regular basis, this query will return a value of ‘TRUE’ for enabled.

If you would like to disable the automatic gathering of statistics in your database you can execute this from SQL*Plus:

BEGIN

 DBMS_SCHEDULER.DISABLE('GATHER_STATS_JOB');

END;

/

Restoring previous versions of statistics
The most useful Optimizer Statistics tool that you have in relation to solving a crime is the ability to restore previous Optimizer Statistics for objects in your database. Whenever new statistics in the dictionary are gathered, older versions of statistics are saved automatically for future restoring. Statistics can be restored using RESTORE procedures of DBMS_STATS package. If the criminal in this situation is changed Optimizer Statistics, restoring a previous version may provide the proof you need to solve the crime.
To restore the statistics you must first see which statistics are available for you to restore. The RESTORE procedures of the DBMS_STATS package require a timestamp as an argument. To find the timestamps for the saved optimizer statistics you can query DBA_OPTSTAT_OPERATIONS which contains the history of statistics operations performed at schema and database level using DBMS_STATS.
For example:

select operation,start_time from DBA_OPTSTAT_OPERATIONS

order by start_time;

could produce this output:

OPERATION START_TIME

-- ------------------------------------

gather_schema_stats 09-JUL-07 08.19.17.782334 AM -04:00

gather_schema_stats 09-JUL-07 08.42.39.300132 AM -04:00

gather_schema_stats 09-JUL-07 09.04.27.501769 AM -04:00

gather_schema_stats 09-JUL-07 09.08.20.140144 AM -04:00

gather_schema_stats 09-JUL-07 09.11.05.927636 AM -04:00

gather_schema_stats 10-JUL-07 07.04.41.886741 AM -04:00

gather_schema_stats 10-JUL-07 07.08.08.629078 AM -04:00

Now that you have the timestamp information from previous gather stats jobs you can choose the statistics that you want to restore and use the RESTORE procedure to bring them back:
exec dbms_stats.restore_table_stats ('PROD',’ADDRESS’, '20-JUL-07 07.08.43.917606 AM -04:00');
This will restore the statistics from July 20, 2007 7:08 am for the ADDRESS table in the PROD schema.
The Investigation
The Senior DBA/Investigator arrives back at the office on Monday morning, after a two week holiday, only to find several voice mail and e-mail messages regarding the crime. At first she shudders, thinking how difficult it will be to solve a database crime that happened so many days before. Then she remembers how rich the investigation toolkit is with this new version of Oracle, pours a cup of coffee, and digs in.
Step 1 – Review the e-mails and v-mails

The first thing that the investigator did was to read through the notes made by others at the crime scene to get a background of what happened. Important facts were extracted from the scene reports including the estimated time of the crime and any clues that were found. Reviewing this documentation saved hours of time for the investigator.

Step 2 – Review the reports

Once the DBA knew the estimated time of the crime her next step was to produce the Automatic Database Diagnostic Monitor (ADDM) report using the snapshots stored in the Automatic Workload Repository (AWR). This report is the first place she knew to look for the primary clues to solve this crime. For this case the DBA produced the ADDM Report using the command line interface. You can also produce this report using Oracle Enterprise Manager (OEM) pages.

The first thing the DBA noticed when she looked at the reports was that the SQL using a significant amount of database time was a query from the Web Page that was timing out. This must be the suspect SQL that has killed the Web Page! She also sees in this report that this SQL statement has an Average CPU used per execution of 30 seconds. This is way too high for something executing from the Web Page.
Just to understand what else is happening at the time of the crime, the DBA also reviews the AWR history report using the same snapshot ids as were used for the ADDM report. Again she used the command line to do this but is can very easily be done using OEM. She executes @?/rdbms/admin/awrrpt.sql from SQL*Plus, enters the same snapshot ids, and produces the report.
She searches for SQL ordered by Elapsed Time and finds the same SQL statement that is executed by w3wp.exe (the Web Page) as the top SQL based on elapsed time. Scrolling down she also sees the same SQL as the top SQL based on CPU Time as well as by Gets. She is now convinced that this is the culprit, the criminal SQL statement that used a large amount of CPU resources to render the Web Page lifeless.

Step 3 – Look for a motive

Now that the DBA had a suspect (the SQL Statement) and a weapon (over-consumption of CPU resources), she needed to find a motive. What caused this application SQL to suddenly go ‘bad’ and kill the Web Page? To answer this question the DBA needed to look at some other information that was available including the Active Session History (ASH) data and the Optimizer Statistics.
To understand what was happening to the SQL statement session at the time of the crime the DBA used the Performance page in Oracle Enterprise Manager (OEM) to create an ASH report, selecting dates and times that related to the crime scene. The ASH report showed the suspect SQL statement as a Top SQL Statement, as well as the top Wait Event was slowing it down, and the Top Object and Files with regards to I/O waits. The report also gave the DBA an idea of what was going on around the crime scene that may have contributed to making the criminal do what it did.

With that information recorded in a report, the DBA decided to create an Explain Plan of the SQL Statement to see if there was anything peculiar happening. Perhaps the SQL Statement went ‘bad’ because of changes to its Optimizer Statistics, maybe an index range scan had turned to a full table scan or a sudden merge join Cartesian had appeared that convinced the SQL Statement to kill the Web Page response time.

The Explain Plan did indeed look different and a possible motive for this crime. A quick background check on the Optimizer Statistics showed that they had changed just before the Web Page was killed. The DBA was quite certain that she now had a motive for this terrible crime.

Step 4 – Re-enactment of the crime

It is beginning to look like this crime has been solved but, just to be absolutely sure before the suspect is charged, the DBA asks to re-enact the crime. For the re-enactment the DBA needs a mock crime scene (test database), and the Optimizer Statistics from the time of the crime.
Fortunately there is a copy of the real production database that is updated on a nightly basis to use as a mock crime scene. Now the DBA just needs to get the Optimizer Statistics back to what they were at the time of the crime. She can do this using the RESTORE procedures of the DBMS_STATS package as described in the toolkit section.

Was the Web Page alive before the estimated time of the crime? Did the SQL Statement really execute better and faster, using less CPU resources with the older version of the Optimizer Statistics?

The DBA decides that she would feel confident that this was true by running the SQL Statement in the test database, with the current Optimizer Statistics, and recording information such as elapsed time, and logical I/Os, then running it with the ‘old’, restored Optimizer Statistics and comparing this information.

She is starting to run out of time as she is being pressured to solve the crime and charge the criminal so that justice can be served. The DBA decides to re-enact the crime at the mock crime scene and record what she sees. She starts a SQL*Plus session, setting AUTOTRACE ON and TIMING ON. Now she executes the SQL Statement and views and records the elapsed time, Consistent Gets, and the explain plan. The next step is to restore the Optimizer statistics from before the time of the crime and execute the SQL Statement again. Sure enough, the output shows a faster elapsed time, a different Explain Plan, and less Consistent Gets. Now the DBA has her proof and knows how she can rehabilitate this criminal.
Sentencing the criminal

The crime is solved but the DBA’s job is not done yet. The criminal must be brought to justice and the public must be ensured that he will not commit the crime again in the future.

The DBA will rehabilitate the ‘bad’ SQL Statement by restoring the Optimizer Statistics in production back to the timestamp before the crime occurred and she will make sure that this doesn’t happen again by ‘locking’ that Optimizer statistics for the tables queried by SQL Statement.
Completing the paperwork

An important aspect of crime scene investigation is the documentation of the crime, how it was solved, and how the criminal was brought to justice. This information can save time for future criminal investigations so that crimes are solved faster and the criminals doing similar crimes get similar punishments and rehabilitation.

The Senior Crime Scene Investigator, or Senior DBA, should ensure that there are processes and procedures for other DBAs to follow in the event that a database crime occurs when he/she is out of the office. The easiest and most reliable way to do this is to create a checklist of clues that need to be collected when the DBA gets to the crime scene. Items such as estimated time of the crime, ASH, ADDM, and AWR reports can be saved. Also, any changes that occurred before, during, or after the estimated time of the crime can be recorded.
During the investigation, the DBA should document what clues and reports were reviewed, and what information led to the solution for the crime. Finally, the punishment and/or rehabilitation of the criminal should be recorded for future reference.

The next time a similar crime happens, these documents will enable the investigator to quickly find the criminal, re-enact the crime, and charge the suspect, possibly even before the public is aware that anything has happened!

Conclusion

In many ways being an Oracle Database Administrator can be like working for a Crime Scene Investigations Unit. Things happen in your Oracle database every minute of the day and you can’t always be there to watch for criminals and catch them in the act. You must learn to use the toolkit that comes with your Oracle database software so that you can quickly and easily solve the crimes after they occur and continue to enjoy your time away from the office!

10

Paper # 338

