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Overview
As frequent querying of Oracle's dynamic performance views introduces significant result variability and overhead, several commercial third-party Oracle performance monitoring tools have long-since extracted performance data directly from the SGA.  This paper demonstrates the concepts, techniques, and reasoning behind retrieving session and statement-level performance data directly from the SGA on a UNIX or Linux system.
Introduction

As I’ve never been an Oracle insider, the material in this paper has been based on years of researching Oracle internals as well as analyzing X$ tables, memory dumps, and trace files.  Likewise, while the majority of this paper is based primarily on my own personal research, discussions with Tanel Põder in addition to similar papers and presentations from Kyle Hailey, Anjo Kolk, Jože Senegačnik, Jeremy Schneider, and others have certainly helped pave the way; without their insight, this would’ve taken me significantly longer to rationalize.
Background and Reasoning
Whether it’s the database or an application’s use of the database, as a developer or a DBA, performance-related issues are an all-too-common occurrence.  Similarly, answers to user questions such as, “why is the application/database so slow?”, are not always readily available.  And, contrary to some users’ beliefs, Oracle doesn’t yet have an ALTER SYSTEM SPEEDUP DATABASE command.  As such, one must go through a process of identifying and resolving issues based on information collected from the database.

While Oracle provides an assortment of introspection and monitoring methods to assist in identifying potential issues, some must be licensed separately while others do not work for several types of problems.  Also, without a baseline with which to compare, it’s difficult to differentiate new issues from daily operational behavior.

For comparison purposes, Oracle has provided tools such as BSTAT/ESTAT, Statspack, and now AWR, which not only persist statistical data, but also report on numerous aspects of performance differences.  Using these tools, DBAs are able to quickly pinpoint discrepancies which often lead to problematic areas and bottlenecks such as CPU or I/O-related contention for further investigation.

What these tools do not easily provide is the ability to drill-down into the individual applications, objects, or queries which are responsible for the utilization of system resources in order to ascertain the root cause of performance degradation.  

Similarly, under heavy load, the database does not always have the resources to execute statistics collection queries in a timely fashion, resulting in lost and/or inaccurate data; making a clear-cut diagnosis even more difficult.  It is for this reason that third-party software vendors such as Quest, Veritas, BMC, Embarcadero, and many others have developed their own monitoring and analysis tools.

While many of these tools are great at visualizing performance-related data, their collection methods are in many cases, no better than Oracle’s.  For many, the key differentiator in these tools is how they acquire accurate statistics when they’re most needed.

Statistic Collection Methods

Without a doubt, the simplest and most common sampling method employed to collect Oracle session and system activity data  is by querying the dynamic performance views or the fixed tables they’re based on.  This method can be found in everything from custom scripts to large-scale commercial monitoring applications.  

However, while this method of monitoring is straightforward and simple, the collection queries themselves require additional Oracle resources; making them just as resource-constrained as all other queries on the system.  Often, these queries are neglected when system load is at its highest; the time when statistics are the most important.
One may assume that the response time of the collection query itself is insignificant because, like all other queries, it will return the data as of the time the query started; in the case of querying performance data however, this is incorrect.  If the data returned by these queries were consistent with a transaction snapshot, the query response time wouldn’t be an issue at all.  But, because read-consistency requires substantial overhead in both storage and CPU time, Oracle’s in-memory performance data is not read-consistent.  As a result, the longer a statistic collection query takes to execute, it is possible that the data associated with a single point in time is actually spread over several seconds; introducing considerable variability into the results.
Similarly, as mentioned earlier, query-based statistic collection consumes almost as many resources as a normal query, which slows down your database even more.  It is for this reason that most advanced monitoring systems attempt to sample data as non-intrusively as possible.  In the case of Oracle, this means accessing performance data outside the standard query engine, opting instead to poll the Oracle SGA directly.
Before continuing further, we need to discuss the SGA and several structures in detail.
What is the Oracle SGA?

The System Global Area (SGA) is a memory context comprised of several shared memory structures, caches, and objects which contain data and control information for an Oracle database instance.  As the SGA must be shared concurrently between multiple users and processes, it is also known as the Shared Global Area.
How is the SGA allocated?
During instance startup, Oracle allocates memory for the SGA.  However, as session and memory allocation strategies are operating system dependent, the Operating System Dependent (OSD) layer of Oracle is responsible for handling this in a cross-platform way.

On UNIX and Linux systems, Oracle is designed to operate primarily as a process-per-user architecture, with backend processes being spawned by the Listener.  In a UNIX environment, backend process creation is handled by the fork() and exec() system calls.

Unlike the Windows version of Oracle, which is multithreaded, UNIX processes execute in completely separate address spaces and do not share the same memory structure.  To overcome this, Oracle creates the SGA using System V IPC Shared Memory; a type of memory child processes can attach to and use as if it were their own memory segment.  As for deallocation, the SGA memory segments are removed and freed upon instance shutdown.

On Windows, Oracle is multithreaded and simply allocates a memory pool which is shared between threads.  As this paper focuses on UNIX-based Oracle, the Windows SGA is not discussed in detail.

How can the SGA be accessed?

Within Oracle, SGA access is performed implicitly for many purposes, such as acquiring buffer cache pages, checking the library cache, allocating space in the log buffer, and updating statistics.  Explicitly, one can access certain Oracle SGA data by querying the V$ or X$ objects.
Externally, as presented in this paper, we can use a separate program to attach to the shared memory segment representing the Oracle SGA and read its data structures directly.

What objects are stored in the SGA?
The SGA consists of several important structures such as:

· The database buffer cache

· The redo log buffer

· The shared pool

· The Java pool

· The large pool (optional)

· The streams pool

· The data dictionary cache

· Other miscellaneous information

In our case, while we can access any component of the SGA, we’re most concerned with what is called the Fixed SGA, specifically the fixed tables which are prefixed with X$.

What are the Fixed (X$) Tables?

Fixed tables, owned by SYS and prefixed with X$, are not real tables.  Instead, fixed tables are memory-resident SQL representations of C programming language data structures defined directly in the Oracle Kernel source code.

When you see an X$ table, you can generally expect it to be based on a similarly-named C structure (i.e. X$KSLEI => struct kslei).

In short, C structures are a collection of variables (members) under a single name.  These variables can be of different types, and each has a name which is used to select it from the structure.  Similar to a table, a structure is simply a convenient way of grouping several pieces of related information together.

A structure can also be defined as a new named type, thus extending the number of available types.  A structure can also use other structures, arrays, and pointers as some of its members.

As with most advanced C applications, the Oracle Kernel makes heavy use of structures.  It is important to understand the concept of structures as we are going to be reading directly from them.  For the purposes of this paper, we’re going to focus on certain structures.  But first, we need to work backwards from what Oracle presents to us, the X$ table.

How are Fixed Tables defined?

You can find how X$ tables map to the SQL interface by querying the fixed views X$KQFTA and K$KQFCO.

SQL> desc X$KQFTA

 Name                                      Null?    Type

 ----------------------------------------- -------- ----------------------------

 ADDR                                               RAW(4)

 INDX                                               NUMBER

 INST_ID                                            NUMBER

 KQFTAOBJ                                           NUMBER

 KQFTAVER                                           NUMBER

 KQFTANAM                                           VARCHAR2(30)

 KQFTATYP                                           NUMBER

 KQFTAFLG                                           NUMBER

 KQFTARSZ                                           NUMBER

 KQFTACOC                                           NUMBER

SQL> desc X$KQFCO

 Name                                      Null?    Type

 ----------------------------------------- -------- ----------------------------

 ADDR                                               RAW(4)

 INDX                                               NUMBER

 INST_ID                                            NUMBER

 KQFCOTAB                                           NUMBER

 KQFCOTOB                                           NUMBER

 KQFCOCNO                                           NUMBER

 KQFCONAM                                           VARCHAR2(30)

 KQFCODTY                                           NUMBER

 KQFCOTYP                                           NUMBER

 KQFCOMAX                                           NUMBER

 KQFCOLSZ                                           NUMBER

 KQFCOLOF                                           NUMBER

 KQFCOSIZ                                           NUMBER

 KQFCOOFF                                           NUMBER

 KQFCOIDX                                           NUMBER

 KQFCOIPO                                           NUMBER

SQL>

From a SQL standpoint, when we describe an X$ table, we’re presented with what appears to be a normal table and columns, similar to the following:

SQL> desc X$KSUSECST

 Name                                      Null?    Type

 ----------------------------------------- -------- ----------------------------

 ADDR                                               RAW(4)

 INDX                                               NUMBER

 INST_ID                                            NUMBER

 KSSPAFLG                                           NUMBER

 KSUSEFLG                                           NUMBER

 KSUSENUM                                           NUMBER

 KSUSSSEQ                                           NUMBER

 KSUSSOPC                                           NUMBER

 KSUSSP1                                            NUMBER

 KSUSSP1R                                           RAW(4)

 KSUSSP2                                            NUMBER

 KSUSSP2R                                           RAW(4)

 KSUSSP3                                            NUMBER

 KSUSSP3R                                           RAW(4)

 KSUSSTIM                                           NUMBER

 KSUSSACT                                           NUMBER

 KSUSEWTM                                           NUMBER

SQL>

In the Oracle Kernel, fixed tables are defined using KQF (Kernel Query Fixed) macros, which are processed by the C preprocessor, similar to the following:

KQFTABL(ksuse, ksuse_c, "X$KSUSECST", ...)          /* Fixed Table Definition */
KQVCINT(ksuse, ksspaflg, "KSSPAFLG")

KQVCINT(ksuse, ksusenum, "KSUSENUM")

KQVCINT(ksuse, ksuseseq, "KSUSSSEQ")

...

KQVCINT(ksuse, ksusewtm, "KSUSEWTM")

KSFENDT(ksuse)                                        /* End Table Definition */
Because we know that a fixed table is simply a SQL-accessible interface to offsets of a structure in memory, we can begin working backward; building a system capable of accessing these same structures directly.  Knowing what we know now about this X$ table, we can begin building a C structure to represent it, such as the following:

struct ksuse
{

  ub4    *ksspaflg;

  ub4    *ksuseflg;

  ub4    *ksusenum;

  ub4    *ksussseq;

  ub4    *ksussopc;

  ub4    *ksussp1;

  dvoid  *ksussp1r;

  ub4    *ksussp2;

  dvoid  *ksussp2r;

  ub4    *ksussp3;

  dvoid  *ksussp3r;

  ub4    *ksusstim;

  ub4    *ksussact;

  ub4    *ksusewtm;

};

typedef struct ksuse ksuse;

Now that we know how the underlying data is stored, we can look at ways to access it.

Querying the Fixed (X$) Tables

Because the fixed tables in most cases represent individual structures, they must be joined together in order to provide generally understandable information.  While this is not necessarily necessary for a performance monitoring application, this is the least-intrusive query-based method to retrieve performance statistics data from Oracle.
The Dynamic Performance (V$) Views
As mentioned earlier, Oracle has many dynamic performance views which are prefixed with V$.  These views are called Fixed Views and, similar to fixed tables, are defined in the in the Oracle Kernel using macros similar to the following:

KFQVIEW("GV$SESSION_WAIT", ...,

"select s.inst_id,s.indx,s.ksussseq,e.kslednam, e.ksledp1,

        s.ksussp1,s.ksussp1r,e.ksledp2,s.ksussp2,s.ksussp2r,

        e.ksledp3,s.ksussp3,s.ksussp3r, e.ksledclassid, e.ksledclass#,

        e.ksledclass, decode(s.ksusstim,0,0,-1,-1,-2,-2,

        decode(round(s.ksusstim/10000),0,-1,round(s.ksusstim/10000))),

        s.ksusewtm, decode(s.ksusstim, 0, 'WAITING', -2, 'WAITED UNKNOWN TIME',

        -1, 'WAITED SHORT TIME', decode(round(s.ksusstim/10000),

        0,'WAITED SHORT TIME','WAITED KNOWN TIME'))

   from x$ksusecst s, x$ksled e

  where bitand(s.ksspaflg,1)!=0 and bitand(s.ksuseflg,1)!=0 and

        s.ksussseq!=0 and s.ksussopc=e.indx", ...)

KFQVIEW("V$SESSION_WAIT", ...,

"select sid, seq#, event, p1text, p1, p1raw, p2text,p2, p2raw,

        p3text, p3, p3raw, wait_class_id, wait_class#, wait_class,

        wait_time, seconds_in_wait, state

   from gv$session_wait

  where inst_id = USERENV('Instance')", ...)
Examples of these views include:

· PROVIDE DETAILED DESCRIPTIONS OF ALL ASHMON VIEWS/X$ TABLES
Attaching to the Oracle SGA

As mentioned previously, Oracle on UNIX or Linux primarily uses IPC Shared Memory.  In order to attach to the SGA, one needs to call the SYSV shmat (SHared Memory ATtach) function.
/*********************************************************************/

/*                                                                   */

/* FUNCTION:  This program acts as a client to the server program.   */

/*                                                                   */

/*********************************************************************/

#include <stdio.h>

#include <string.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#include <sys/shm.h>

#define SEMKEYPATH "/dev/null"  /* Path used on ftok for semget key  */

#define SEMKEYID 1              /* Id used on ftok for semget key    */

#define SHMKEYPATH "/dev/null"  /* Path used on ftok for shmget key  */

#define SHMKEYID 1              /* Id used on ftok for shmget key    */

#define NUMSEMS 2

#define SIZEOFSHMSEG 50

int main(int argc, char *argv[])

{

    struct sembuf operations[2];

    void         *shm_address;

    int semid, shmid, rc;

    key_t semkey, shmkey;

    /* Generate an IPC key for the semaphore set and the shared      */

    /* memory segment.  Typically, an application specific path and  */

    /* id would be used to generate the IPC key.                     */

    semkey = ftok(SEMKEYPATH,SEMKEYID);

    if ( semkey == (key_t)-1 )

      {

        printf("main: ftok() for sem failed\n");

        return -1;

      }

    shmkey = ftok(SHMKEYPATH,SHMKEYID);

    if ( shmkey == (key_t)-1 )

      {

        printf("main: ftok() for shm failed\n");

        return -1;

      }

    /* Get the already created semaphore ID associated with key.     */

    /* If the semaphore set does not exist, then it will not be      */

    /* created, and an error will occur.                             */

    semid = semget( semkey, NUMSEMS, 0666);

    if ( semid == -1 )

      {

        printf("main: semget() failed\n");

        return -1;

      }

    /* Get the already created shared memory ID associated with key. */

    /* If the shared memory ID does not exist, then it will not be   */

    /* created, and an error will occur.                             */

    shmid = shmget(shmkey, SIZEOFSHMSEG, 0666);

    if (shmid == -1)

      {

        printf("main: shmget() failed\n");

        return -1;

      }

    /* Attach the shared memory segment to the client process.       */

    shm_address = shmat(shmid, NULL, 0);

    if ( shm_address==NULL )

      {

        printf("main: shmat() failed\n");

        return -1;

      }

    /* First, check to see if the first semaphore is a zero.  If it  */

    /* is not, it is busy right now.  The semop() command will wait  */

    /* for the semaphore to reach zero before running the semop().   */

    /* When it is zero, increment the first semaphore to show that   */

    /* the shared memory segment is busy.                            */

    operations[0].sem_num = 0;

                                    /* Operate on the first sem      */

    operations[0].sem_op =  0;

                                    /* Wait for the value to be=0    */

    operations[0].sem_flg = 0;

                                    /* Allow a wait to occur         */

    operations[1].sem_num = 0;

                                    /* Operate on the first sem      */

    operations[1].sem_op =  1;

                                    /* Increment the semval by one   */

    operations[1].sem_flg = 0;

                                    /* Allow a wait to occur         */

    rc = semop( semid, operations, 2 );

    if (rc == -1)

      {

        printf("main: semop() failed\n");

        return -1;

      }

    strcpy((char *) shm_address, "Hello from Client");

    /* Release the shared memory segment by decrementing the in-use  */

    /* semaphore (the first one).  Increment the second semaphore to */

    /* show that the client is finished with it.                     */

    operations[0].sem_num = 0;

                                    /* Operate on the first sem      */

    operations[0].sem_op =  -1;

                                    /* Decrement the semval by one   */

    operations[0].sem_flg = 0;

                                    /* Allow a wait to occur         */

    operations[1].sem_num = 1;

                                    /* Operate on the second sem     */

    operations[1].sem_op =  1;

                                    /* Increment the semval by one   */

    operations[1].sem_flg = 0;

                                    /* Allow a wait to occur         */

    rc = semop( semid, operations, 2 );

    if (rc == -1)

      {

        printf("main: semop() failed\n");

        return -1;

      }

    /* Detach the shared memory segment from the current process.    */

    rc = shmdt(shm_address);

    if (rc==-1)

      {

        printf("main: shmdt() failed\n");

        return -1;

      }

return 0;

}
The NAEVIUS Tool

NAEVIUS, Native Access for External Visibility and Investigation of User Statistics, is a third-party application written in C which attaches directly to the Oracle SGA and continuously monitors database performance in the style of ASH. In addition to active session statistic collection, NAEVIUS provides the ability to persist historical session data over time, enabling a DBA to perform AWR-like snapshots and reporting.
NAEVIUS Architecture

INSERT ARCHITECTURE GRAPHIC
Collecting Performance Data

The current approach is to attach to the server, query the base X$ tables for offsets, build an internal pointer-based representation of the C structures, detach from the server, and continue monitoring.  For the connection itself, I debated between UPI, OCI7, and OCI8, but we ended up deciding against supporting Oracle 7 and as such, chose OCI8.

Persisting Performance Data

DECIDE WHETHER TO DISTRIBUTE CSV OR SQLITE PLUG-IN
Minimizing the Observer Effect

The Observer effect states that the act of observing a phenomenon will itself change the phenomenon being observed.

Minimizing CPU Overhead

NAEVIUS utilizes multithreading and cache optimization to reduce the number of CPU cycles required to collect and persist performance data.
Minimizing I/O Overhead

In order to reduce the I/O requirements of persisting data, NAEVIUS is designed to use batched sequential writes.
Overhead Comparison

The following graph illustrates the CPU and memory overhead differences of Direct SGA over in-database queries.
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Collection Accuracy Comparison

The following graph illustrates the accuracy of samples collected externally to those from within the database itself.

[image: image2.emf]0

10

20

30

40

50

60

70

80

90

100

1st Qtr2nd Qtr3rd Qtr4th Qtr

East

West

North


Accurate Samples (based on collection response time)
Insert Graph Explanation

Statistic Visualization

A modified version of Kyle Hailey’s ASHMON utility was used to query data from the SQLite persistence database.
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ASHMON v2 visualization of NAEVIUS-collected data
Other Reference Material

For more information on this topic, I would recommend that you find a copy of the following documents:

· Direct Oracle SGA Memory Access by Kyle Hailey

· Direktni dostop do SGA by Jože Senegačnik

· Reading and Storing Data Directly From Oracle SGA using Pro*C/C code by Miladin Modrakovic

· Jeremy Schneider’s orasga

NAEVIUS SOURCE CODE

· INSERT CURRENT NAEVIUS SOURCE CODE CURRENT AS OF IOUG
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