Database - Performance Tuning

Top Ten Techniques To Supercharge Large Database Systems
Chethan Thippeswamy, VeriSign, Inc.

Introduction
Very large databases (VLDB) such as data warehouses have become vital decision support systems for internal management and external customers alike. Building and maintaining such systems becomes a challenging task because of the complexity involved and changing needs of customers. This happens primarily because engineers are constantly faced with frequent source system changes, ever changing reporting requirements coupled with new report development, rapidly increasing data volumes and limited code drops. Over time, maintenance activities override tuning efforts resulting in severe performance degradation leaving end users frustrated.
The Solution to the Problem
The paper describes the Top 10 techniques to ‘super-charge’ your VLDBs by dramatically reducing load times and exponentially improving query performance. Iterative tuning cycles can be eliminated or reduced. Engineers setting up new VLDBs can avoid common pitfalls by implementing techniques described in this paper.

These techniques supplement the usual SQL tuning and b-tree indexing techniques used by DBAs. Most of these techniques are seldom implemented because engineers tend to concentrate overly on SQL tuning.

Performance tuning techniques presented here have been classified into 3 categories, namely –

1. Database Tuning

2. Extract, Transform and Load (ETL) Tuning and

3. Query Tuning

Database Tuning
In most VLDBs, the database typically handles over 80% of the workload when it comes to ETL and Reporting. Given this fact, it is extremely important to ensure the database throughput is consistently maintained at a high level.
Technique #1- Tune Database parameters
Any given system can only run as fast as its slowest subsystem. In a database, typically the slowest component is physical I/O. The main goal of Database tuning is to reduce physical I/O. Following points highlight effective ways to reduce I/O.

Use multiple buffer pools: Frequently accessed data such as reference tables and certain indexes need to remain in memory longer, whereas data from huge tables can be discarded after a single use. To make efficient use of the database buffer cache, database objects should be allocated to different buffer pools.
1. Determine what objects are in cache by using OEM or the following SQL during peak activity.
SELECT o.OBJECT_NAME, s.BUFFER_POOL,COUNT(*) NUMBER_OF_BLOCKS

 FROM DBA_OBJECTS o, DBA_SEGMENTS s,V$BH bh

 WHERE o.DATA_OBJECT_ID = bh.OBJD
 AND o.OWNER = s.OWNER

 AND o.OBJECT_NAME = s.SEGMENT_NAME
 AND o.OWNER = 'DWAPP'

 GROUP BY o.OBJECT_NAME,s.BUFFER_POOL ORDER BY COUNT(*) DESC;
2. Determine the size of KEEP and RECYCLE buffer pool. For smaller objects and indexes use the KEEP pool. For larger objects that are usually accessed in a random fashion, use the RECYCLE pool. Set database parameters as follows.
db_keep_cache_size = 1024M
db_recycle_cache_size = 2048M
3. After multiple buffer caches are defined, objects can be bound to these caches using the following commands.
Alter table ACCOUNTS storage(buffer_pool KEEP);
4. Determine the usage of buffer pools again and re-size the pools to achieve near 100% cache hit ratio in the KEEP pool.
Retain most used procedures to shared pool: Bind most frequently accessed procedures, functions and packages to the shared pool.
Using SQL or OEM, determine the most frequently accessed objects in the shared pool based on number of executions.
Bind those objects to the shared pool as follows.

DBMS_SHARED_POOL.KEEP(‘SCOTT.EMPPKG’);

Avoid disk sorts: Sorting on disk is very expensive. By making use of Oracle’s automatic memory management features, sorting on disk can be reduced.
Determine the amount of sorting going on within the database at any peak time using v$sql_workarea_histogram. Based on memory available that can be allocated to sorts, determine the threshold at which most sorting will be done in memory.
Set the init parameters pga_aggregate_target to the threshold value determined in the previous step. This will ensure that most sorts will be done in memory. Also query the v$pga_target_advice view to determine the optimal setting for pga_aggregate_target.
pga_aggregate_target = 4096M
Performance Statistics:

Consider the following SQL:
insert /*+ append parallel */ into temp1 a

select * from (

select * from sales_stage
order by region_id,transaction_id)

order by transaction_date,transaction_id,region_id;

	Setting\Metrics
	Rows
	Disk sorts
	Elapsed
	Consistent Gets
	Physical reads

	Pga_aggregate_target = 1024M
	4 mill
	2
	00:01:57.08
	95264
	152274

	Pga_aggregate_target = 4096M
	4 mill
	1
	00:01:00.33
	95266
	55182

[image: image1.png]
 Autotrace Statistics with 1024 MB allocated to pga_aggregate_target Autotrace Statistics with 4096MB allocated to pga_aggregate_target

1.1Autotrace Statistics illustrating benefits of in-memory sorting
Technique #2- Tune Object Storage:
Objects have to be suitably stored to best utilize the advanced features of the database.

Use large block size: Since the delay involved in reading is approximately the same regardless of the block size, it makes sense to use a block size of 16K or higher. With Oracle 10g and later, it is possible to have tablespaces with a different block size other than the default setting. If you need 32K block size tablespace with a 16 K database default, create the corresponding 32K buffer cache first to take advantage of the higher block size. Such tablespaces can hold large objects in fewer blocks thereby increasing throughput.

db_32k_cache_size=1024M

CREATE TABLESPACE TEST_TBS DATAFILE 'file_1.dbf' SIZE 64M

 BLOCKSIZE 32K

 EXTENT MANAGEMENT LOCAL

 SEGMENT SPACE MANAGEMENT AUTO;
Avoid redo logging: Logging can significantly slow down writes. To reduce logging, tables and indexes can be created using ‘nologging’ mode. Logging is significantly reduced during direct mode inserts. During inserts, for the nologging mode to be effective, use the ‘APPEND’ hint.
ALTER TABLE PURCHASES NOLOGGING;
INSERT /*+ APPEND PARALLEL (a, 8) */ PURCHASES a ….

Partition and sub-partition large tables and indexes: Large objects should not only be partitioned, but also sub-partitioned to take advantage of partition pruning mechanism. Oracle 10g supports 2 kinds of sub-partitions Range-List and Range-Hash and Oracle 11g supports a few additional types as well. For example, a table can be partitioned on date and sub-partitioned by region. This results in additional partition pruning and reduces disk reads when only a particular region for a particular data range is queried upon.

Store data in query sort order: It is sometimes beneficial to store data in sorted order. This can be achieved using the following methods. This results in quicker access to data by eliminating sorts and index reads.
Sorted hash clusters: These tables store data where rows corresponding to each value of the hash function are sorted on a specific columns in ascending order. So response time can be improved on operations with this sorted clustered data.
Index Organized tables: These tables store data in the associated index. They provide better performance due to faster key based access to the data for exact match or range based queries.
Manual re-sequencing using Create table as select … order by.. (CTAS): Here data is sorted first and then stored in a heap table.
Performance Statistics:
Consider the following SQL:
select customer_id,sum(transaction_amount)

from sales_transactions

where customer_id = 8300

group by customer_id;

Following are the performance statistics

	Setting\Metrics
	Cost
	Elapsed Time
	Consistent Gets
	Physical reads

	select from an unsorted table
	402
	00:00:02.20
	14585
	0

	select from a sorted table
	120
	00:00:01.92
	11250
	0

[image: image2.png]
 Autotrace Statistics for query on table with sorted data Autotrace Statistics for query on table with unsorted data

2.1Autotrace Statistics illustrating benefits of storing sorted data
ETL Tuning
In most VLDBs, the Extract, Transform and Load (ETL) processes consume about 70% of the database resources. Hence it is extremely important to tune the ETL process.
Technique #3-Implement Fast Data Transport
It is very important to extract source data in the shortest possible time window to keep the resource consumption on the source system to a minimum. To do this a variety of methods are available.
Implement daily/monthly partitions: Exporting data at the table partition level can be done in direct mode which is faster compared to conventional mode. So implement daily or monthly partitions in the source databases depending on the frequency of load. If partial data has to be extracted from within existing partitions, the WHERE clause of the export command has to be used and that eliminates direct mode export. Data pump can also be used to perform the same operation
Use transportable tablespaces: With transportable tablespaces, datafiles can be moved across Oracle instances. To do this, an export of the tablespace metadata is taken from the source database, corresponding data files are copied and the metadata is imported into the target database. The tablespaces are now available in the target database. This process entirely bypasses the un-load and reload steps and is perhaps the fastest way to transfer huge amounts of data. Data movement limited by how fast data files can be copied from source to target machines.
Use external tables to access file data in SQL: This avoids the load process altogether by making available data in flat files as database tables. Such tables can be used in any SQL statement including joins with other database tables. Small and medium sized tables are good candidates for external tables.
Performance Statistics:

	Setting\Metrics
	Number of rows
	Elapsed Time

	Export direct mode
	14059484
	100 sec

	Import direct mode
	14059484
	310 sec

	Export conventional mode
	14059484
	380 sec

	Import conventional mode
	14059484
	715 sec

	Data Pump Export
	14059484
	80 sec

	Data Pump Import
	14059484
	95 sec

Technique #4 - High Speed ETL
Ensuring the data loads finish quickly to get the required data to end users is vital to the decision making process. Following points illustrate how this can be achieved.

Parallelize ETL processes: Run ETL tasks that are independent in parallel. This will ensure better utilization of CPU resources and helps to reduce ETL times.
Use set based processing instead of row-based: When large amount of data is being transformed or loaded, avoid using cursors for processing. Each table should be loaded in one single transaction using ‘insert into a select … from b’ statement. In addition to fast loads, it also simplifies reload of failed processes since there is no need to keep track of how many rows were processed in the previous run.
Disable indexes and constraints during ETL: During ETL, disable constraints and any local indexes on the target table. Constraint checking should be done on the final staging table prior to loading data into the target table. Since the staging tables are small compared to the target table, constraint checks can be done fairly quickly. Once data load is complete, rebuild all local indexes and enable constraints in novalidate mode in parallel

Use Partition-Exchange Loading (PEL): Use PEL to exchange data between an empty partition of a table and a non-partitioned table. This will help avoid any data inserts between the final staging table and the target table, thereby reducing load times.

Performance Statistics:
	Setting\Metrics
	Number of rows
	Elapsed Time
	Consistent Gets
	Physical reads

	Inserts with constraints and Indexes
	3922842
	00:06:19.75
	194460
	84968

	Insert without constraints and without indexes

+ Enable constraints and rebuild indexes post load
	3922842
	00:00:13.62
+

00:02:11.00

=

00:02:24.62
	38033
	32100

[image: image3.png]
Autotrace Statistics for insert with constraints and indexes in place Autotrace Statistics for insert with constraints and indexes disabled

4.1Autotrace output showing performance improvement after disabling constraints and indexes
Technique #5 - Avoid Multi-pass processing
The technique refers to reads involved in processing and transforming data. Resource consumption can be reduced and ETL considerably speeded up if data is read once, repetitive computations performed and the output data is staged for use by later stages of ETL.

Eliminate redundant reads using Staging tables: Use intermediate staging tables to break down ETL into manageable chunks. Such staging tables can be used to avoid repetitive reads involving expensive joins or complicated computations. The initial staging table looks more like the source table and the final staging table has a structure similar to the target table. Data is transformed in stages as it moves from one staging table to the next. This technique is especially useful if any of the staged data will be re-used by other ETL processes down the line.
Implement read-once logic without staging data: Use pipelined table functions in Oracle to simulate a staging table. Table functions produce a set of rows as output. With the PIPE ROW statement, these rows are returned as soon as they are produced. The table functions can be used in place of a regular table in the FROM clause of a SQL statement as shown below. This is highly suitable for ETL processes that do not require re-use of transformed data. Also parallelize the table functions so reads can be parallelized at the table level.

[image: image4]
5.1 Use Staging tables to avoid multipass processing

Technique #6 - Tune Stats Collection
 It is very important to maintain up to date Cost Based Optimizer (CBO) statistics in the database to ensure the Optimizer chooses the most optimal query plan.
Gather Database Statistics

· It is extremely important to collect statistics at the database level to ensure all objects including SYS objects have up to date statistics. So collect statistics at periodic intervals at the database level as shown. Typically database stats are collected once before the load and once after the load.

dbms_stats.gather_database_stats(degree => 32, options => 'GATHER AUTO');
Gather Manual Statistics
· Since VLDBs tend to be batch loaded, gather object statistics after batch loads to bring stats up to date. Automatic stats collection processes usually run within pre-defined time window and will not suffice in batch load environments. Keeping Stats up to date will enable dependent loads and reports to run efficiently.

dbms_stats.gather_table_stats(ownname=> 'APP_USER',
tabname=> p_table_name,

partname => NULL,

estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE,

degree => 24,
cascade=>DBMS_STATS.AUTO_CASCADE);
Targets for manual statistics gathering include the following objects.

Objects frequently being deleted or truncated and reloaded

Objects where the loads change the object size drastically (> 10%).
Statistics on Partitioned Objects
· For partitioned objects, it is important to collect statistics at the global level as well as the partition/sub-partition level to get the best performance. In the dbms_stats package leave the GRANULARITY parameter at the ‘AUTO’ setting to collect both global and partition level statistics.
Statistics on Bitmap Indexes

· With bitmap indexes it is recommended to compute statistics rather than estimate. Run a separate job to collect statistics on bitmap indexes and set the estimate_percent parameter to 100. This will ensure bitmap indexes get used effectively by the CBO.

Problem Scenario:
ETL processes consumed over 90% CPU when updated statistics were missing indicating wrong query plans were being used.
Solution:
The problem was solved by collecting database statistics for stale objects several times during the ETL process

· After the 1st level staging tables are loaded from the source

· After all dimension tables are loaded
· After all fact tables are loaded.

· After all summary tables and materialized views are created.

In addition statistics are also gathered at the table level, when batch loads insert data into large staging tables during monthly processing.
Query Tuning
Technique #7 - Accelerate queries using Summaries
Summary tables contain frequently used aggregates from transactional tables. Summary tables can be implemented to accelerate known queries. To implement summary tables, follow the steps below
· Based on queries or reports being run on a regular basis, identify the ‘most wanted queries’ across the business unit

· Create summary tables to support these queries. These tables should include the output of all resource consuming computations.
· Create reports to run directly against these tables resulting in fast response times.

· Partition and sub-partition large summary tables if they tend to become overly large.
· Build suitable b-tree and bitmap indexes on the summary tables to obtain better performance.
· If the lookup tables associated with the reports are small, it is not required to de-normalize the summary tables.

· Incrementally refresh the summary table with each load cycle to sync them up with transactional data in an efficient manner. To keep the time window small when the summary table and the transaction table are out of sync, it is important to refresh the summary table quickly.
· Summary tables are not a good fit when data is being loaded throughout the day.
Performance Statistics:
	Source\Metrics
	Cost
	Elapsed time
	Consistent Gets
	Physical reads

	Sales amount from TRANSACTION table
	371
	00:03:06.77
	337367
	327112

	Sales amount from SUMMARY Table
	27
	00:00:00.04
	2884
	0

[image: image5.png]
7.1Autotrace output showing performance improvement with Summary tables

Technique #8 - Exploit Bitmap indexes
Bitmap indexes are special index structures that store data in bitmaps. Each bit in a bitmap corresponds to a possible rowid. A mapping function converts this bit to an actual rowid. These are highly suitable for low cardinality columns and can be built quickly. Usually columns with 1% distinct values or less are suitable candidates for bitmap indexes. Typically bitmap indexes range from 5% to 20% the size of a corresponding b-tree index depending on the cardinality of the column.

Create bitmap index on low cardinality columns that do not get updated frequently.

In a typical Data Warehouse environment, create bitmap indexes on all foreign key columns with 1% or less distinct values.

Because of their relatively small size compared to b-tree indexes, queries on low-distinct value columns are extremely fast in returning results.

On partitioned tables create local bitmap indexes; global bitmap indexes are not allowed.
CREATE BITMAP INDEX SALES_C_STATE_BJIX
ON SALES(CUSTOMERS.CUST_STATE_PROVINCE)
FROM SALES, CUSTOMERS
WHERE SALES.CUST_ID = CUSTOMERS.CUST_ID
LOCAL NOLOGGING COMPUTE STATISTICS;
Bitmap indexes slow down inserts to a certain extent and updates to a large extent. So disable bitmap indexes while loading a table partition. Rebuild the unusable index partitions after the load is complete.

Bitmap indexes are used in joins between dimension or master tables and fact or detail tables. Bitmap join indexes can be created between master-detail tables involving such low distinct value columns. Such indexes improve performance time by eliminating the master detail join.
Bitmap indexes are not suitable for OLTP environments involving large number of concurrent DML operations
Performance Statistics:

Create index command on partitioned table with over 100 partitions and over 400 million rows on column with 1100 distinct values (and over 50 GB in size) and then run the following query.

select customer_name,count(1)
from sales a, customers b

where a.customer_id = b.customer_id

and b.internal_id = '1069'

group by customer_name;

	Source\Metrics
	Creation

Time
	Size
	Cost
	Elapsed
	Consistent Gets
	Physical reads

	B-tree Index
	14 min
	7 GB
	756
	00:00:06.40
	32977
	121288

	Bitmap Index
	9 min
	750 MB
	561
	00:00:04.40
	4135
	6024

[image: image6.png]
8.1 Query plan showing usage of bitmap index

Technique #9 - Star Transform Queries
Star Transformation comes in handy when a large normalized table is queried with a bunch of small lookup tables. With Star Transformation, various queries can run on large tables without requiring any query specific tuning. Oracle has certain pre-requisites for utilizing this feature.
Bitmap indexes must be present on all foreign key columns in the detail or Fact table.
Constraints between the Master-detail tables or between the Dimension and Fact tables should be available. It is ok to have these constraints in enabled but no-validate mode as shown in fig 9.1
Star_Transformation_Enabled database parameter must be set to TRUE or TEMP_DISABLE.

The query is processed in 2 main phases.
1. The first phases retrieves exactly the necessary rows from the fact table by merging (AND operation) the bitmap indexes.
2. The second phase joins this result set to the lookup tables.

[image: image7]
9.1 Foreign Key constraints and Bitmap indexes drive Star Transformation

Benefits of using Star Transformation:

Star Transformation eliminates the need for report specific de-normalized tables by using existing transaction or summary tables.
It also eliminates the need for maintaining application query specific composite b-tree indexes.

Predictable response times may be obtained using Star Transformation.

Consider the following query. The bitmap merge technique is shown below in fig 9.2
select sum(transaction_amount)
from sales a, customers b, products p, regions r, times t

where a.customer_id = b.customer_id

and a.region_id = r.region_id

and a.transaction_date_id=t.time_id

and b.internal_id = '69'

and p.product_name = ’TYRES’
and t.quarter = '2005-Q1'

and r.region_name = ’NORTH AMERICA’;

	Quarter =‘2005-Q1’
	
	Product_name = ‘TYRES’
	
	Region_name = ’NORTH AMERICA’
	Result

	0
	
	0
	
	1
	0

	1
	AND
	0
	AND
	0
	0

	0
	
	0
	
	1
	0

	1
	
	1
	
	1
	1

	1
	
	1
	
	1
	1

9.2 Bitmap merge technique in Star Transformation

· Star queries do not perform well if sufficient conditions are not specified in the Where clause.
· Star Transformation does not work with bind variables.

Performance Statistics:

	Source\Metrics
	Cost
	Elapsed
	Consistent Gets
	Physical reads

	Without Star Transformation
	974
	00:38:27.02
	1891899
	121288

	With Star Transformation
	371
	00:03:06.77
	337367
	6024

[image: image8.png]
9.1Query Plan showing usage of Star Transformation

Technique #10 - Accelerate Queries using Materialized Views (MVs)
Unlike database views, materialized views (MVs) store pre-computed data to accelerate queries using the ‘Query-rewrite’ feature. Although the query runs against the original tables, the optimizer fetches data from the pre-computed MVs to return results quickly. This is transparent to the end-user and can improve performance of queries by several folds.

· Deploy MVs into existing databases with minimal changes to the reporting infrastructure.
· Build MVs on existing summary tables providing another layer of efficiency.

· To enable query rewrite, set the init database parameter query_rewrite_enabled to true
query_rewrite_enabled=TRUE

· Proactively monitor the database for creating new materialized views

Monitor database regularly to detect long running queries. In Oracle 10g and above, use the Automatic Workload repository (AWR) or Statspack to detect resource intensive SQL statements
Deploy new MVs when long running queries that run on a regular basis are detected.

· Tuning MVs: Use the following Oracle procedures to tune and debug MVs.
DBMS_MVIEW.EXPLAIN_REWRITE – this procedure tells you why a query is not being rewritten to use an existing MV.

Sample Output:

select message from rewrite_table order by sequence;
MESSAGE

QSM-01033: query rewritten with materialized view, MV_SALES_METRICS
MESSAGE

QSM-01110: query rewrite not possible with materialized view MV_SALES_METRICS
because it contains a join between tables (SALES and REGIONS) that is not present
in the query and that potentially eliminates rows needed by the query
DBMS_MVIEW.EXPLAIN_MVIEW – this procedure shows you the capabilities of a particular MV.
Sample output:

select capability_name, possible from mv_capabilities_table

where mvname = ‘MV_SALES_METRICS’

CAPABILITY_NAME P

------------------------------ -
REFRESH_COMPLETE Y

REFRESH_FAST Y

REWRITE Y

REWRITE_FULL_TEXT_MATCH Y

REWRITE_PARTIAL_TEXT_MATCH Y

REWRITE_GENERAL Y

REWRITE_PCT N

· OLAP cubes in Oracle 11g

In Oracle 11g, deploy OLAP cubes using Analytic Workspaces.
Register OLAP cubes as ‘Cube Organized materialized views’.

OLAP cubes take part in Query rewrite mechanism transparent to the end user.
OLAP cubes can support lot more queries than regular MVs.
Performance Statistics:

Consider the following query:

select sum(gross_quantity)
from sales a, customers b, times t

where a.customer_id = b.customer_id

and b.internal_id = '5083'

and a.transaction_date_id = t.time_id

and t.day_date between '01-JAN-2005' and '31-MAR-2005';
	Source\Metrics
	Cost
	Elapsed
	Consistent Gets
	Physical reads

	Without MVs
	12424
	00:00:28.81
	128300
	121288

	With MV
	335
	00:00:00.37
	6260
	6024

[image: image9.png]
10.1Query Plan showing usage of Materialized View

Summary

The techniques described above are proven to achieve the desired results as observed in our Data Warehouse environment. Engineers can exploit these techniques to supercharge existing VLDBs. They can avoid costly mistakes with respect to ETL, Storage and report generation while setting up new VLDBs. Constant tuning of queries can be avoided by deploying features such as summary tables and MVs.

3

Paper # 373

[image: image10.jpg][image: image11.jpg]