Development - Application Express

Taking APEX Applications to the Next Level
Todd Arave, Intermountain Healthcare
Matt Wilson, Intermountain Healthcare
Introduction
In today’s business environment much is required of applications. Software developers must quickly develop and deploy applications to meet businesses changing needs. It is critical that developers quickly identify business needs and code applications to those requirements. While requirements of applications vary it’s important to acknowledge that a basic set of common functionality is required by most applications. The majority of business applications need to incorporate functionality like: managing users, securing data, running background processes, etc. Applications that are built using a strategy of component reuse realize benefits of saved time, and consistent user interfaces. Building and reusing a fundamental set of components within applications enables developers to focus their efforts on the specific requirements of applications.
This document describes key techniques Intermountain Healthcare developers used to implement a suite of applications that were written using Application Express. Oracle Application Express (APEX) ships with a well designed set of tools that enable developers to quickly create robust, scalable applications. Using the techniques described in this paper will help you leverage APEX components and take your APEX applications to the next level.
Objectives

1. Share techniques to quickly develop a framework for robust applications.

2. Illustrate a practical method of managing users.

3. Explain how to incorporate job scheduling with APEX applications.

Outline

1. Application Setup
A. One Workspace Many Applications
B. System Administration Application

2. User Management

A. LDAP
B. Defining Application/Role/User

C. Searching LDAP

D. User Functions

3. Authentication
A. Intermountain’s Authentication
B. Detecting User Data Changes

C. Application Menu

4. Authorization
A. Application Level

B. Specific Page/Region/Component Level
C. Performance
5. Scheduler

A. Batch Processing

B. Overview of dbms_scheduler

C. Our Custom Infrastructure for APEX Applications

6. Auditing
A. Who Columns

B. Audit Table
7. Interfacing

A. Moving Files

B. Query File System

C. Reading and Writing Files
D. Database Links
8. Shared Components
A. Themes/Templates

B. List of Values
C. Navigation Bar

D. Images

E. JavaScript

9. Conclusion
Application Setup
The Application Express development environment is flexible and can be configured in a variety of ways. When setting up your own APEX development environment it’s important to think through what setup will work best for your situation. Take the time to analyze your requirements before configuring your APEX environment. This upfront analysis will help you meet your application requirements.
One Workspace Many Applications
Intermountain Healthcare developers chose a strategy of configuring our APEX development environment to utilize one workspace to house all our APEX applications. Associating all applications to one workspace enables the sharing of objects and logic amongst applications in the workspace. If choosing to share components from one application to another a master copy of the component must be created then subscribed to. When master copies of components are changed those changes are then published to the subscribing components. By using this strategy of subscribing to master copies of shared components, Intermountain has realized many advantages. Some of the advantages realized by sharing components within a workspace are: consistent look and feel, development productivity, and reuse of proven components.

System Administration Application

Following Intermountain’s decision to use one workspace to house all our applications, the first APEX application Intermountain built was a system administration application. The system administration application performs the following functions:
create and manage users
create and manage roles
manage the assignment of application roles to end users
define scheduler programs
view scheduled and completed jobs for all APEX applications in the suite
define global values to help prevent hard coding
define master copies of shared components that are subscribed to by other APEX applications
schema associated with system administration application houses packages of common procedures and functions
User Management
One of the first considerations when creating an application is how the users will be managed. Application Express can facilitate a variety of user management strategies.
LDAP

To centrally manage users Intermountain Healthcare chose to use an LDAP (Lightweight Directory Access Protocol). Managing user definitions and credentials centrally reduces the burden on application administrators and end users. Also, end users need to remember fewer passwords, since the same password can be used for multiple applications. With LDAP, application administrators don’t need to reset passwords as often. When employees leave the corporation their access is ended from within the LDAP causing access to all applications to cease. The benefit of centrally managing users is a big benefit for large corporations that have thousands of employees like Intermountain Healthcare.
Defining Applications/Roles/Users
Although Intermountain uses an LDAP to manage user definitions and credentials it is necessary to control what users can do within the suite of applications beyond just logging on. Intermountain Healthcare does not store application role information in our LDAP. Instead Intermountain relies on individual applications to control the assigning of application roles to end users.

To facilitate the management of assigning application roles to end users, Intermountain wrote our own system administration application using APEX. From within the system administration application users are assigned application roles. These assigned roles are then used to secure portions of the applications by those roles.
Intermountain Healthcare’s business need required our developers to write our own user management and authentication logic. Fortunately Application Express is flexible and supports a variety of methods to manage and authenticate users. Here is an example of the table structure used to manage users, application roles and applications within Intermountain Healthcare APEX applications.
[image: image1.png]
example schema for managing users/application_roles/applications
The following screen shots are examples of how the system administration application is used to define applications, application roles, and associate users to those application roles. There are four basic steps to define an application, its roles and assign those roles to an end user.

Step 1, define an application

[image: image2.png]
Step 2, define application roles

[image: image3.png]
Step 3, view user’s currently assigned application roles

i[image: image4.png]
Step 4, assign the new application roles to a user

[image: image5.png]
Searching LDAP
New users are added to the suite of applications by first searching the corporate LDAP and then committing selected records to the user table in the system admin schema. Custom code was needed to search the LDAP system and add the selected users. Within the system administration application there was a page created to execute LDAP searches. LDAP can be searched by username, first name, last name and/or employee number. Query results are then reviewed and individual records selected and committed to the user table.
[image: image6.png]
LDAP search page used to add end users – confidential information is redacted
The LDAP search page uses the following logic:

1. When the search button is clicked LDAP is queried and the results are moved to a collection created by APEX functions.
DECLARE

 v_query VARCHAR2(1000) := 'SELECT ldap_auth_flag

 ,user_name

. . .

 FROM table(ldap_pkg.search('''||:P10_USER_NAME

 ||''','''||:P10_FIRST_NAME

 ||''','''||:P10_LAST_NAME

 ||''','''||:P10_EMPLOYEE_NUMBER

 ||'''))

 ORDER BY user_name';

BEGIN

 IF apex_collection.collection_exists('LDAP_USER') THEN

 apex_collection.delete_collection('LDAP_USER');

 END IF;

 apex_collection.create_collection_from_query_b('LDAP_USER', v_query);

END;

2. After the collection is populated a report region of a page queries the populated apex collection and shows the results.
SELECT APEX_ITEM.RADIOGROUP(1,SEQ_ID) "Add"

,SEQ_ID

,c002 user_name

. . .

FROM apex_collections

WHERE collection_name = 'LDAP_USER'

3. Once an administrator clicks the create user button the selected user(s) in apex collection are looped through and the user record is created in the user table.

DECLARE

 v_user_name VARCHAR2(50);

 v_employee_number NUMBER(16);

. . .

BEGIN

 FOR i in 1..APEX_APPLICATION.G_F01.COUNT LOOP

 SELECT c002 user_name

 ,to_number(c003) employee_number

. . .

 INTO v_user_name

 ,v_employee_number

. . .

 FROM htmldb_collections

 WHERE collection_name = 'LDAP_USER'

 AND SEQ_ID = APEX_APPLICATION.G_F01(i);

 INSERT INTO users(user_id

 ,user_name

 ,employee_number

. . .

)

 VALUES (users_s.nextval

 ,UPPER(v_user_name)

 ,v_employee_number

. . .

);

. . .

 END LOOP;

END;

User Functions
A package of user functions was created in the system admin schema to help consistently manage users and their application roles. The functions are used for a variety of purposes including: auditing, consistent formatting, code reuse, and authorizations. The following is a short description of what each user function does.
return user_id given a user_name

return user_name given a user_id

return user’s formated full_name given a user_id

return user’s formated full_name given an employee_number

return employee_number for the current user

return email address given a user_name

return TRUE if user has specific application role given application short name and role code - used by authorization schemes
return 'Y' if user has specific application role given application short name and role code
return TRUE if user has any role for application given the application short name - used by application authorization scheme

insert new user record in user table following a unique search of LDAP given an employee_number

assign an application role to user given user_id, application short name, and role code
Authentication
Authentication is the process of attempting to verify the identity of the sender of communication such as a request to log in. There is often confusion between the term authentication and a closely related term authorization. However, authentication is the process of verifying a person’s identity, while authorization is the process of verifying that a known person has the authority to perform a certain operation. Authentication therefore, must precede authorization.
Authenticating end users within APEX built applications is done through a configurable component known as an authentication scheme. Authentication schemes are configuration of how an application will check credentials of the users (user login). The authentication scheme component within APEX supports a variety of methods to authenticate end users.
Intermountain’s Authentication
Intermountain Healthcare chose to create our own authentication function to query LDAP and verify user credentials. Intermountain uses the same authentication scheme for all our APEX applications. To use the same authentication scheme applications must be housed in the same workspace. Applications of the suite then subscribe to a master copy of the authentication scheme. A cookie must also be defined within the authentication scheme. The cookie is then shared by all applications that subscribe to the same authentication scheme. The result of using the same authentication scheme is end users can navigate across applications without having to re-authenticate.

[image: image7.png]
subscriptions to master copy of authorization scheme

[image: image8.png]
Applications in the suite use the same cookie as defined in the authorization scheme.

The image below illustrates how Intermountain’s authentication function was plugged into the authentication scheme. Authentication functions must return boolean values (pass/fail). If you have the requirement of writing your own LDAP authentication function there are many examples of how to do this on the web.
[image: image9.png]
call to custom authentication function configured within authorization scheme

Detecting User Data Changes
Because we chose to manage users and application roles within a system admin application it requires us to keep the user table in the system admin schema synced with the user record found in LDAP (master copy). To keep the user record in sync at login time the authentication function not only authenticates the user using LDAP it also checks the LDAP user record for any changes and syncs changes to the user table. Admittedly this is not best form to sync data from one system to another. However, the solution fits Intermountain’s need, plus the setup used for the suite of APEX applications works for managing users and their associated application roles. By having our own copy of the user record, system management is made easy and the number of hits on the LDAP system is reduced. The following code is a sample of the authentication function that authenticates and updates the user information.

--Authenticate and Search LDAP for changes to users LDAP record, sync any changed to user table.

FUNCTION authenticate_update

 (p_username IN VARCHAR2

 ,p_password IN VARCHAR2

)

 RETURN BOOLEAN

AS

 v_result BOOLEAN;

BEGIN

 --proceed to validate if parameters not null

 IF p_username IS NOT NULL

 AND p_password IS NOT NULL THEN

 --search LDAP information

 FOR user_rec IN (SELECT ldap_auth_flag

 ,user_name

. . .
 FROM TABLE(ldap_pkg.search(p_username))) LOOP

 --if ldap record different from users table update users table
 UPDATE schema.users

 SET user_name = user_rec.user_name

. . .

 ,last_updated_by = user_id

 WHERE user_rec.employee_number = employee_number

 --if record changed update oax.users

 AND (NVL(user_name,'X') != NVL(UPPER(user_rec.user_name),'X')

 OR NVL(first_name,'X') != NVL(user_rec.first_name,'X')

. . .
);

 END LOOP;

 COMMIT;

 --call to authenticate

 v_result := ldap_pkg.authenticate(p_username,p_password);

 ELSE

 v_result := FALSE;

 END IF;

 RETURN v_result;

END authenticate_update;

Application Menu
Intermountain has a requirement that end users navigate between APEX applications they have access to. To fulfill the navigation requirements a menu page was created. The menu page lists links to all APEX applications the current user has access to. The query that shows the users accessible applications references the tables from the system administration application along with a call to v(‘APP_USER’) to get the current user.
The menu page was created in its own application. The menu application uses the authentication scheme used by the suite of applications. However, the menu application uses no authorization scheme which enables access to all authenticated users. The menu page is the default page shown to users after login; however, users can be directed to other pages within the applications instead of the menu page. Directing users to specific pages other then the default menu page is possible because of APEX’s built-in page century function; this is also known as deep linking. Linking to a specific page within an application is especially useful when sending emails that have links referencing application pages.
[image: image10.png]
application menu showing applications user has access to

Authorization
Authorization is the process of verifying that a known person has the authority to perform a certain operation. For most applications authorizing what users can access is critical. Securing applications in APEX built applications is done through the use of authorization schemes. An authorization scheme is configuration that determines how an application, page, or component will be secured. Authorization schemes are defined as a pass/fail security checks.
When defining how your applications will be secured it important to ask questions like the following. What data needs to be secured and why? Who should have access to secured data? What parts of an application can be secured? Your business requirements should drive how your applications will be secured.
After an analysis of Intermountain’s security needs Intermountain developers created authorization schemes to meet the security needs. Intermountain chose to use two levels of authorization schemes. The first level authorization scheme is associated at the application level. The second level authorization secures specific pages, regions and components within applications based on assigned application roles.

Application Level

Intermountain chose to use one authorization scheme associated at the application level to be used by all applications within the suite. The application level authorization scheme calls a function that simply checks if current user has a role in the application being accessed (exists query). The application level authorization if a first level security check to verify the user can access the application. When finer grained security is required Intermountain uses additional authorization schemes (discussed in the next section). It is possible to reuse the application level authorization scheme because security requirements are consistent for the suite of applications. The image below shows how the application authorization scheme is subscribed to and a generic authorization function is used.
[image: image11.png]
authorization scheme for securing application level access

[image: image12.png]
The association of the authorization scheme to the application is made on the “Edit Security Attributes” page.

Specific Page/Region/Component Level

When specific pages, regions, or components need to be secured an authorization scheme is used to verify the current user has an application role before rendering the object. Application roles are defined and assigned to users through the system administration application discussed earlier in this paper. When a specific portion of an application needs to be secured the following is done.

· application role is defined and assigned to users

· authorization scheme is defined to check if the current user has a specific role
· authorization scheme is associated to the page, region or component that needs to be secured
To verify a user’s authority to access applications, pages or components these application roles are queried through the associated authorization schemes. Security functions were created enabling application roles to be queried in consistent ways. The following code illustrates a function used to check if the current user has a specified application role.
--returns boolean TRUE if current user has application role
FUNCTION has_app_role(p_application_short_name IN VARCHAR2

 ,p_role_code IN VARCHAR2)

RETURN BOOLEAN

AS

 v_yes_no VARCHAR2(1) := 'N';

 v_result BOOLEAN := FALSE;

BEGIN

 BEGIN

 SELECT 'Y'

 INTO v_yes_no

 FROM oax.users u

 , oax.user_app_roles uar

 , oax.application_roles ar

 , oax.applications a

 WHERE a.application_short_name = UPPER(p_application_short_name)

 AND ar.application_id = a.application_id

 AND ar.role_code = UPPER(p_role_code)

 AND uar.application_role_id = ar.application_role_id

 AND u.user_id = uar.user_id

 AND u.user_name = v('APP_USER');

 IF v_yes_no = 'Y' THEN

 v_result := TRUE;

 ELSE

 v_result := FALSE;

 END IF;

 EXCEPTION

 WHEN no_data_found THEN

 v_result := FALSE;

 END;

 RETURN(v_result);

END has_app_role;

Performance

Because authorization schemes are executed frequently within secured applications they should be written to execute quickly. Authorizations schemes can be configured to execute once per page or once per session. Setting an authorization scheme for executing once per session is more efficient. However, authorization checks may depend on changing sessions state or other considerations that make using a once per page check more consistent. APEX’s debug utility that is available from the developer toolbar is a useful tool to check the performance of authorization schemes. When a page is in debug mode execution times of specific components are shown.

[image: image13.png]
APEX debug used to check execution time of authentication schemes

Scheduler
Batch Processing
Most applications require both transactional and batch processing. Transactional processing, also known as interactive processing, is when the computer responds directly as user requests are made. Batch processing is just the opposite; it is when a user makes a single request which triggers a batch, or background, process. The background process interacts with the computer in its own session, not tying up the user’s session or screen.

APEX is a great tool for developing interactive applications. However, the APEX platform does not address batch processing, a need that most applications have. Below is a brief overview of dbms_scheduler and the custom architecture we built to accommodate batch processing within our APEX applications.

Overview of Dbms_Scheduler
The dbms_scheduler package provides a collection of scheduling functions and procedures that are callable from any PL/SQL program. The Scheduler enables application developers to create programs and program libraries that end users can use to create or monitor their own jobs. In addition to typical database jobs, you can schedule and monitor jobs that run as part of an application suite.
The Scheduler provides complex enterprise scheduling functionality, which you can use to:
· Schedule job execution based on time
· Reuse existing programs and schedules

· Schedule job processing based on priority and resource load

· Manage and monitor jobs
· Execute and manage jobs in a clustered environment
In the Scheduler, all the components are database objects like a table, which enables you to use normal Oracle privileges. The basic elements of the Scheduler are:

· Programs

· Schedules

· Jobs

A program is a collection of metadata about what will be run by the Scheduler. It includes information such as the name of the program, program action (for example, a procedure or executable name), program type (for example, PL/SQL and Java stored procedures or PL/SQL anonymous blocks) and the number of arguments required for the program. A program is a separate entity from a job. Jobs can be created using existing programs, which means that different jobs can use the same program.

A schedule specifies when and how many times a job is executed. Jobs can be scheduled for processing at a later time or immediately. For jobs to be executed at a later time, the user can specify a date and time when the job should start. For jobs that repeat over a period of time, an end date and time can be specified. Schedules can be very complex and utilize a Calendaring Syntax to define when jobs should run and on what interval they should repeat. Schedules can be saved and used by multiple jobs.

A job is a user-defined task that is scheduled to run one or more times. It is a combination of what (the action) needs to be executed and when (the schedule). Users with the right privileges can create jobs either by simply specifying the action and schedule at the time of job creation, or by using existing programs and schedules.

Oracle documentation related to the scheduler is found primarily in two reference manuals. “The Oracle Database Administrator’s Guide” covers scheduler concepts; and “PL/SQL Packages and Types Reference” provides detail on the routines within the dbms_scheduler package. Both are excellent references.

Our Custom Infrastructure for APEX Applications

Dbms_scheduler has very rich functionality and offers a lot of options you can take advantage of. In other words, you can build your batch processing infrastructure as complex or as simple as you would like. When we set out to build our solution it was important to find a good balance between ease of use for developers and users, good functionality, and reliability. This section contains a discussion on our strategy and the custom programming we completed to deliver on the strategy.

Our strategy and requirements:

· Limit overhead and complexity in the programming.

· Focus on the 80/20 rule, or in this case for us the 99/1 rule. 99% of our batch processing is stored procedures and 1% is something else like a UNIX shell script. So, we only programmed for stored procedures.

· Stick with Scheduler basics by not building out a configurable infrastructure for predefined schedules, windows, job classes, etc.

· Provide easy to use routines for developers.
· Provide core functionality for running stored procedures
· User can run job once or setup a schedule for the job.
· Ability to pass parameters

· Email notification to user when complete

· Given we have several APEX applications in the same database, the ability to run and view jobs must be segregated by application.

· Allow users to see what they have run along with the attributes of the job.
· Provide ability for an application administrator to view and cancel jobs.

We have delivered on this vision and created a very nice set of functionality for our APEX batch processing. The programming required is not trivial, but realistic if you have a few solid years of Oracle database programming experience. Below is an overview of the setup, programs and subroutines we developed.

Database Setup
CREATE ROLE oax_scheduler;

GRANT scheduler_admin TO oax_scheduler;

GRANT EXECUTE ANY TYPE TO oax_scheduler;

GRANT oax_scheduler TO oax*;

CREATE TYPE oax_parameter_t AS OBJECT

 (parameter_name VARCHAR2(60)

 , parameter_value VARCHAR2(500)

);

CREATE TYPE oax_parameter_list_t IS VARRAY(100) OF oax_parameter_t;

CREATE TYPE oax_notify_list_t IS VARRAY(100) OF VARCHAR2(500);

GRANT EXECUTE ON oax_parameter_t TO PUBLIC;

GRANT EXECUTE ON oax_parameter_list_t TO PUBLIC;

GRANT EXECUTE ON oax_notify_list_t TO PUBLIC;

BEGIN

 dbms_scheduler.add_event_queue_subscriber('OAX_AGENT');

END;

* OAX is a custom database user that owns objects and utilities we will use across all APEX schemas and applications in the database.

Tables for Tracking Run History, Errors, and Job Output

CREATE SEQUENCE oax.job_details_s NOCACHE INCREMENT BY 1 START WITH 101;

CREATE TABLE oax.job_details

 (job_detail_id NUMBER(15) NOT NULL

 , program_name VARCHAR2(30) NOT NULL

 , requested_by NUMBER(15) NOT NULL

 , job_name VARCHAR2(30) NOT NULL

 , parent_job_name VARCHAR2(30) NOT NULL

 , start_date DATE NOT NULL

 , end_date DATE

 , completion_code VARCHAR2(30)

 , parameter_list oax_parameter_list_t

 , notify_list oax_notify_list_t

 , CONSTRAINT job_details_pk

 PRIMARY KEY (job_detail_id)

 USING INDEX TABLESPACE oaxx

);

GRANT SELECT ON oax.job_details_s TO oax_scheduler;

GRANT SELECT, INSERT, UPDATE, DELETE ON oax.job_details TO oax_scheduler;

CREATE SEQUENCE oax.job_log_s NOCACHE INCREMENT BY 1 START WITH 101;

CREATE TABLE oax.job_log

 (job_log_id NUMBER(15) NOT NULL

 , job_detail_id NUMBER(15) NOT NULL

 , text VARCHAR2(4000) NOT NULL

 , CONSTRAINT job_log_pk

 PRIMARY KEY (job_log_id)

 USING INDEX TABLESPACE oaxx

 , CONSTRAINT job_log_fk1

 FOREIGN KEY (job_detail_id) REFERENCES oax.job_details

);

CREATE INDEX oax.job_log_i1 ON oax.job_log(job_detail_id) PCTFREE 10 TABLESPACE oaxx;

GRANT SELECT ON oax.job_log_s TO oax_scheduler;

GRANT SELECT, INSERT, UPDATE, DELETE ON oax.job_log TO oax_scheduler;

CREATE SEQUENCE oax.job_output_s NOCACHE INCREMENT BY 1 START WITH 101;

CREATE TABLE oax.job_output

 (job_output_id NUMBER(15) NOT NULL

 , job_detail_id NUMBER(15) NOT NULL

 , text VARCHAR2(4000) NOT NULL

 , CONSTRAINT job_output_pk

 PRIMARY KEY (job_output_id)

 USING INDEX TABLESPACE oaxx

 , CONSTRAINT job_output_fk1

 FOREIGN KEY (job_detail_id) REFERENCES oax.job_details

);

CREATE INDEX oax.job_output_i1 ON oax.job_output(job_detail_id) PCTFREE 10 TABLESPACE oaxx;

GRANT SELECT ON oax.job_output_s TO oax_scheduler;

GRANT SELECT, INSERT, UPDATE, DELETE ON oax.job_output TO oax_scheduler;

Subroutines for Creating Programs, Running Jobs, and Viewing Results

PACKAGE oax_scheduler_pkg IS

 default_parameter_list oax_parameter_list_t;

 default_notify_list oax_notify_list_t;

 -- Called from Apex screen to create a Scheduler program

 PROCEDURE build_program

 (p_program_name IN VARCHAR2

 , p_program_type IN VARCHAR2 DEFAULT 'STORED_PROCEDURE'

 , p_program_action IN VARCHAR2

 , p_number_of_arguments IN NUMBER DEFAULT 0

);

 -- Procedure submitted as a job to scheduler from job_wrapper. Through Advanced

 -- Queueing, this job does not run until the stored procedure submitted by the user

 -- is complete. This procedure updates job_details and sends an email to the user.

 PROCEDURE update_job

 (p_event_message IN sys.scheduler$_event_info

 , p_job_detail_id IN NUMBER

 , p_job_log_id IN NUMBER

);

 -- Internal routine called from within run_program. The job could be run directly

 -- from run_program if we were not using the special data types for parameter_list

 -- and notify_list. There is a scheduler bug related to passing collections as a

 -- parameter, this approach worked around that bug.

 PROCEDURE job_wrapper

 (p_program_name IN VARCHAR2

 , p_requested_by IN NUMBER

 , p_parameter_list IN oax_parameter_list_t DEFAULT oax_scheduler_pkg.default_parameter_list

 , p_notify_list IN oax_notify_list_t DEFAULT oax_scheduler_pkg.default_notify_list

 , p_parent_job_name IN VARCHAR2

);

 -- Called from Apex screen to run a program. The Apex screen collects parameter

 -- values, start/end/repeat information, email addresses to notify and calls this routine.

 PROCEDURE run_program

 (p_job_owner IN VARCHAR2

 , p_program_name IN VARCHAR2

 , p_requested_by IN NUMBER

 , p_start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL

 , p_repeat_interval IN VARCHAR2 DEFAULT NULL

 , p_end_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL

 , p_parameter_list IN oax_parameter_list_t DEFAULT oax_scheduler_pkg.default_parameter_list

 , p_notify_list IN oax_notify_list_t DEFAULT oax_scheduler_pkg.default_notify_list

);

 -- Routines developer can use to write errors and/or output. Developer can

 -- also set a completion code of normal, warning, or error. The Apex screen for

 -- users to view their jobs use these tables.

 PROCEDURE write_log

 (p_job_detail_id IN NUMBER

 , p_text IN VARCHAR2

);

 PROCEDURE write_output

 (p_job_detail_id IN NUMBER

 , p_text IN VARCHAR2

);

 PROCEDURE set_completion_code

 (p_job_detail_id IN NUMBER

 , p_completion_code IN VARCHAR2

);

END;

Scheduler Pages

[image: image14.png]
administrator page used to define scheduler programs
[image: image15.png]
administrator page to query defined scheduler programs
[image: image16.png]
example end user page used to submit a job
[image: image17.png]
page showing scheduled job
[image: image18.png]
page showing jobs that have completed and status – links to popup pages showing additional information about job – requested by column redacted
[image: image19.png]
popup page showing job log of a completed job
Auditing
Intermountain Healthcare uses two techniques for saving audit information when records change. One technique saves change information on a record level while the other saves information about changes on a specific column level.
Who Columns

The first technique incorporates the use of four auditing columns in each table. The four auditing columns are: created_by, last_updated_by, creation_date, and last_update_date. These audit columns provide basic audit information about each record in the table. Before insert or update triggers are used on each table to detect data changes. The triggers reference proven functions to derive the current user and retrieve the system date/time of the change. The following code is an example of defining who columns on a table and a trigger to populate them.
Example table definition

CREATE TABLE applications

(application_id NUMBER(15) NOT NULL

. . .
,creation_date DATE

,created_by NUMBER(15)

,last_update_date DATE

,last_updated_by NUMBER(15)

. . .
);

Example trigger

CREATE OR REPLACE TRIGGER applications_biu

 BEFORE INSERT OR UPDATE ON applications FOR EACH ROW

BEGIN

 IF inserting THEN

 --Insert "who" fields

 :new.created_by := oax.user_pkg.get_user_id;

 :new.creation_date := SYSDATE;

 END IF;

 --Update "who" fields

 :new.last_updated_by := oax.user_pkg.get_user_id;

 :new.last_update_date := SYSDATE;

END;

Audit Table

The second technique Intermountain uses to collect audit information tracks specific changes to column data. A Limitation of the first technique is it only shows the last person to edit the record, and does not show what data was changed. When the business requirement is to save information on who changed a specific column of data the second technique is used.
When the hourly_rate column of this table is changed a history of the change will be saved.
-- Providers table

CREATE TABLE providers

 (provider_id NUMBER(15) NOT NULL

. . .
 , hourly_rate NUMBER(11,2)
. . .
 , creation_date DATE

 , created_by NUMBER(15)

 , last_update_date DATE

 , last_updated_by NUMBER(15)

 , last_update_login NUMBER(15)

 , CONSTRAINT providers_pk

 PRIMARY KEY (provider_id)

 USING INDEX TABLESPACE tablespace_name
. . .
);

The following illustrates the definition of an audit table used to store change details when column data is changed.
-- Provider_audit

CREATE TABLE provider_audit

 (provider_id NUMBER(15) NOT NULL

 , datetime_stamp DATE NOT NULL

 , updated_by NUMBER(15) NOT NULL

 , field_changed VARCHAR2(30) NOT NULL

 , old_value VARCHAR2(300)

 , new_value VARCHAR2(300)

 , CONSTRAINT provider_audit_fk1

 FOREIGN KEY (provider_id) REFERENCES schema_name.providers

);

. . .
Here is an example of conditional logic used within the before insert or update trigger on the providers table. When the data in the hourly_rate column is changed the change details are inserted into an audit table.

-- Update audit table

IF updating THEN

 IF NVL(:old.hourly_rate,0) <> NVL(:new.hourly_rate,0) THEN

 INSERT INTO provider_audit
 VALUES(:new.primary_id

 ,SYSDATE

 ,oax.user_pkg.get_user_id

 ,'HOURLY_RATE'

 ,:old.hourly_rate

 ,:new.hourly_rate

);

 END IF;

END IF;

Intermountain uses user_id instead of the username for storing audit information because the username of a user can change whereas the user_id will not change. Using the user_id helps avoid confusion and keeps the audit trail clean. A simple function to derive the current user’s user_id was created then used by the logic in the before insert or update triggers.
Interfacing

Intermountain’s suite of applications has the requirement to share data between systems for a variety of purposes. This section illustrates what Intermountain has done to enable our APEX applications to interface files between various systems.
Moving Files

Two different methods are used by the Intermountain applications to move files from one machine to another. The first method is used to upload files from a user’s local client to the server hosting the database. The second method is used to move files from one server to another server.
Upload - File Browse

Intermountain has a need for end users to upload interface files from their client machines to the operating system of the database server. Once uploaded the interface files can then be processed into the database by using utl_file. Intermountain’s custom process that enables users to move files from client machines to the operating system of the database server is as follows.
· Step 1 – Using APEX create a page and place a file browse item on the page. The file browse item enables users to browse and select files from their local environment. When the page is submitted the selected file is automatically loaded into wwv_flow_files.blob_content column..

· Step 2 – The interface file needs to be moved from wwv_flow_files.blob_content to the operating system where utl_file processing can read the file and put the records in a table. To move the file from the blob column to the OS the following needs to be done.
· Add a button on the page and label it upload. The upload button will be used to submit the page.

· Create an On Submit – After Computations and Validations process on the page. Set the condition of this process to execute when the upload button is clicked. The code in the process will query the wwv_flow_files table for the newly uploaded file, and utl_file is used to move the file from the blob into a directory specified in the process. The final action of the process is to delete the uploaded file from the wwv_flow_files table.

[image: image20.png]
Example process definition used to move a file to from a blob column to an OS directory.

Here is an example procedure to move a file from a blob column to an OS directory.
PROCEDURE move_blob_to_os

 (p_dest_directory IN VARCHAR2

 , p_blob_name IN VARCHAR2

)

IS

 v_file utl_file.file_type;

 v_buffer RAW(32767);

 v_read_amount BINARY_INTEGER := 32767;

 v_pos INTEGER := 1;

 v_blob_len INTEGER;

 v_data BLOB;

 v_file_name VARCHAR2(100);

BEGIN

 SELECT blob_content

 ,filename

 INTO v_data

 ,v_file_name

 FROM wwv_flow_files

 WHERE name = p_blob_name;

 v_blob_len := dbms_lob.getlength(v_data);

 v_file := utl_file.fopen('/your_directory_name/'||lower(p_dest_directory), v_file_name, 'W', 32767);

 WHILE v_pos < v_blob_len LOOP

 dbms_lob.read(v_data, v_read_amount, v_pos, v_buffer);

 IF v_buffer IS NOT NULL THEN

 utl_file.put_raw(v_file, v_buffer, true);

 END IF;

 v_pos := v_pos + v_read_amount;

 END LOOP;

 utl_file.fclose(v_file);

EXCEPTION

 WHEN OTHERS THEN

 IF utl_file.is_open(v_file) THEN

 utl_file.fclose(v_file);

 END IF;

END move_blob_to_os;

[image: image21.png]
Page used to upload files and query the destination directory.

FTP – External Job
To move files between servers, Intermountain dynamically builds and executes FTP scripts. The FTP scripts are dynamically built using utl_file to write the FTP commands to a script file. Once created the FTP script is executed by submitting a dbms_scheduler job of job_type “EXECUTABLE”. An EXECUTABLE job type is an operating system executable. This type of scheduler job is also known as external job because the job action/command is run outside of the database. The job_action (or corresponding program_action if using named programs) is the full operating system–dependent path of the desired external executable, excluding any command line arguments.

There is required database configuration and operating system setup to enable the running of external jobs. Please refer to Oracle documentation on how to setup external jobs for your environment. Here is sample code illustrating how to create and start an external job to execute a script.
--get a unique job_name for the ftp job - this is just a sequence number on the end of FTP_ prefix

v_job_name := dbms_scheduler.generate_job_name('FTP_');

--create ftp job

dbms_scheduler.create_job(job_name => v_job_name

 ,job_type => 'EXECUTABLE'

 ,job_action => '/your_directory_here/'||v_script_name

 ,comments => 'Run script that does FTP'

);

--start job

dbms_scheduler.enable(v_job_name);

Query File System
For interfacing purposes Intermountain has a requirement to query operating system directories containing interface files. The requirement is that interface directory contents need to be seen and reviewed by end users so they can verify that specific files have been uploaded and are ready for processing. After a file has been verified as being in the interface directory the user schedules an interface job to processes the file using utl_file. The interface directory is queried by using a Java stored procedure. The Ask Tom website has a good description of how to create a java stored procedure that queries the contents of a directory.
http://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11_QUESTION_ID:439619916584
http://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11_QUESTION_ID:7506780031005
Here is example code used by Intermountain to query the files in an operating system (Unix) directory.
CREATE OR REPLACE AND RESOLVE JAVA SOURCE NAMED "DirList" AS

import java.io.*;

import java.sql.*;

import java.util.Date;

import java.text.SimpleDateFormat;

public class DirList{

 public static String getList(String directory) throws SQLException{

 File path = new File(directory);

 String[] list = path.list();

 java.util.Arrays.sort(list);

 String filename;

 String rtnHtml = "";

 for (int i=0; i<list.length; i++){

 filename = list[i];

 String fpath = directory+"/"+filename;

 File f = new File(fpath);

 long len;

 Date date;

 String sqldate;

 SimpleDateFormat df = new SimpleDateFormat("MM/dd/yyyy kk:mm:ss");

 if (f.isFile()) {

 len = f.length();

 date = new Date(f.lastModified());

 sqldate = df.format(date);

 rtnHtml = rtnHtml+"<tr><td>"+filename+"</td><td>"+len+"</td><td>"+sqldate+"</td></tr>";

 }

 }

 rtnHtml = "<table width=500>" + rtnHtml + "</table>";

 return rtnHtml;

 }

}

PL/SQL function calls java stored procedure DirList to retrieve Unix directory contents

FUNCTION get_dir_list(p_directory IN VARCHAR2)

RETURN VARCHAR2

AS language java

name 'DirList.getList(java.lang.String) return String';

The directory contents are then shown through an APEX page by creating a region type of “PL/SQL (anonymous block)” that calls the procedures to query the directory.
htp.p(oax.utilities_pkg.get_dir_list('/your_directory_here/'||LOWER(:OWNER)));

Reading and Writing Files
To read and write files Oracle has created the utl_file utility. Intermountain Healthcare uses utl_file extensively for reading and writing interface files. The utl_file will not be discussed in this paper. To read more about how to setup and use utl_file see the Oracle documentation.
Database Link

When interfacing between Oracle databases the preferred method is to use database links. Through a database link data on a remote database is queried as if it was local data. Intermountain Healthcare utilizes the power of database links where possible to interface between databases. For more information on database links see the Oracle documentation.
Shared Components
Using Application Express’ Shared Components is an effective way to quickly create reliable consistent applications. The focus of this section is on Shared Components that can be copied and subscribed to from an existing application (master copy). When creating a new application there is an option to "Copy Shared Components from Another Application". The list of shared components that can be imported from an existing application is as follows:

User Interface Themes

Lists of Values

Navigation Bar Entries

Authorization Schemes

Authentication Schemes
[image: image22.png]
When creating an application some types of shared components can be copied.
When creating a new application and choosing to “Copy Shared Components from Another Application” the components are simply copied into the new application. Once the new application is created the components that were copied from an existing application can then be changed to subscribe to a master copy of that component. A good practice is to define a reference application that contains master copies of shared components like templates, Lists of Values etc. Other applications can then subscribe their components to these master copies. Each time an update is made to a master template, changes can be published to components that subscribe to it. Within Intermountain’s APEX applications the system administration application serves the purposes of the master application that has its shared components subscribed to.
[image: image23.png]
This is an example of a shared component subscribing to a master copy of the component in another application.
[image: image24.png]
This is an example of a shared component being subscribed to by a shared component in another application.
Themes/Templates
Application Express delivers numerous good quality themes. Intermountain uses the themes delivered by APEX. However, Intermountain developers have made small changes/tweaks to some of the templates. It is a good practice to document any changes made to delivered templates. Intermountain developers document template changes in the comments section of the template. Like other shared components templates can subscribe to a master copy of the template. By referencing a master copy of changed templates Intermountain’s suite of applications maintain a consistent look and feel.
[image: image25.png]
document template changes.

List of Values

Reusing lists of values between applications speeds up development as tested LOVs are reused. Some of the LOVs that Intermountain shares between applications are: US states, gender, person title, and month.
Navigation Bar
Intermountain’s applications incorporate a shared navigation bar. As of APEX version 3.0.1 tabs cannot be copied/subscribed, this is one reason to use navigation bar entries instead of tabs to navigate between interoperating applications. The navigation bar used by Intermountain’s applications is shown in the image below. The “App-Menu” entry on the navigation bar links the user to a menu page where a user can switch to another application in the suite.
[image: image26.png]
Images
Images can also be used by more then one application in a workspace. This especially makes sense to share images across applications to maintain a consistent look and feel. We have not used images extensively within our application suite other then to share a common logo image. The key to using images across applications in a workspace is to not associate the image with an application. The screen capture below shows how Intermountain’s logo image is loaded into the workspace but not associated with a specific application.

[image: image27.png]
JavaScript
For consistency of user interfaces and code reuse we created a file/library of JavaScript functions. Intermountain’s JavaScript file is used across our suite of applications. The JavaScript file is uploaded to the workspace through the shared component Static Files. When uploading the file a key point is the file should not be associated to a specific application making it accessible to all applications in the workspace. The JavaScript file is included into pages by referencing it in the HTML Header section of the page using the src= attribute of the script tag. Because the file is loaded through the static files component the file is referenced using the #WORKSPACE_IMAGES# syntax. Here is an example of how to reference a JavaScript file that has been uploaded through the static files component.
<script src="#WORKSPACE_IMAGES#oaxlib.js" type="text/javascript"></script>

We do not reference our JavaScript file/library for all pages in our applications. We prefer to only reference the JavaScript file in pages that will utilize functions. It is possible to change a page template to reference a shared JavaScript file for all pages if that is a desired effect.

Conclusion
Intermountain Healthcare has successfully created a suite of applications using Application Express. By utilizing the techniques outlined in this paper Intermountain has successfully created a framework for developing APEX applications. New applications are quickly developed and plugged into a proven set of functionality. By using a foundation of application code developers can focus their attention on the specific business requirements of applications. The techniques discussed in this paper can help you take your APEX applications to the next level.

1

415

