Development Frameworks (e.g. ADF, AJAX, Ruby on Rails, Struts)

Fantastic Four: ADF Faces, WebCenter, AJAX and SOA

Rohit Badiyani, Piocon Technologies, Inc.
Karen Smudde, Piocon Technologies, Inc.
Winslow Troy, Piocon Technologies, Inc.

Overview

Developing web applications with Oracle technology has quickly gone from labor intensive programming to a component selection and configuration process. Rapid Application Development (RAD) is a REALITY with the current and evolving Oracle web development tools. This white paper focuses on how advancements in Oracle’s JDeveloper Integrated Development Environment and Application Development Framework (“ADF”), such as ADF Faces, Rich Client Interfaces, Data Visualization, Business Components and Task Flow facilitate RAD projects. We will also discuss how AJAX provides fully interactive web applications, and how WebCenter provides rich, Web2.0 interfaces that further extend the collaborative nature of the resulting solutions. Rounding out the “Fantastic Four”, the SOA Suite and its capabilities for providing seamless integration of legacy, current and new systems will be covered. In addition, we will also provide a brief introduction to Oracle JDeveloper, for developers unfamiliar with Oracle’s highly capable Java development platform. Provided in the context of a current, operational solution, this talk will show how Oracle’s latest advances streamline your development efforts.

What is JDeveloper?

Oracle JDeveloper is an integrated development environment (IDE) for building applications using the latest standards for Java, XML, Web services and SQL. Oracle JDeveloper supports the entire development life cycle with integrated features for modeling, coding, debugging, testing, and deploying applications. JDeveloper provides greatly integrated development environment with a consistent interface and development experience when used for different technology stacks.
JDeveloper provides a visual and declarative approach to J2EE application development. Developers can implement the data persistence layer using a number of options, including simple Java Classes, EJB, TopLink, Oracle Application Development Framework (ADF) Business components or Web services. Regardless of the technology chosen, JDeveloper provides a declarative way to create this layer and also a drag-and-drop visual approach to bind the user interface components to the persistence layer. Oracle Application Development Framework (ADF) further simplifies development by implementing design patterns, eliminating infrastructure coding and reducing repetitive coding tasks.

Oracle Application Development Framework (ADF)
Oracle ADF is a comprehensive productivity layer for J2EE developers. It simplifies building applications as a set of business services with Web, Wireless, and Rich Client interfaces. ADF accelerates development with ready-to-use J2EE Design Pattern implementations and metadata-driven components that otherwise must be coded, tested, and debugged by hand.

Oracle ADF simplifies J2EE development by minimizing the need to write code that implements design patterns and the applications infrastructure. Oracle ADF also provides a visual and declarative approach to J2EE Development.

Oracle ADF makes it easy to develop applications that adhere to the Model-View-Controller (MVC) design pattern, by separating business service implementation details from the user interface as depicted by the four layers shown in the figure below. The separation is performed via a metadata driven architecture that enables developers to focus on the business logic, rather than how the services are accessed.
[image: image1.emf]
 The Four Layers of Oracle ADF

The Four Layers of Oracle ADF

Splitting the business logic from the user interface logic provided by the MVC implementation, ADF breaks the Java code into four different layers. The Business Services layer, which implements your business logic, and the three MVC layers of Model, View and Controller. These layers are described below.
Business Services Layer

The Business Services layer provides services such as data access, data persistence, transaction management and business logic execution. With Oracle JDeveloper, you can create business service layer using EJB, Toplink objects, Simple Java Classes and ADF Business Components.
Oracle ADF Business Components focuses on implementing the Business Services Layer on top of the database in a declarative and SQL centered way. ADF Business Components framework provides an easy way to create Java objects based on database tables, views or pure SQL queries. It also provides out-of-the-box services like transaction management, resource pooling, locking, declarative validation rules, and relational mappings. The benefits of using this framework are immediate and obvious: reduced development time/cost and lower project risk. The framework handles all the common cases with built-in behavior and also provides the ability to override specific components with minimal coding efforts. The key ADF Business Component components that cooperate to provide the business service implementation are:

· Entity object

An entity object represents a row in a database table and simplifies data modification by handling data manipulation language (DML) operations. Also encapsulated is the business logic for the row making sure business rules are consistently enforced. Associations are used to create an active link between entity objects.

· View object

View Objects are view of business data based on existing Entity Objects or SQL statements. Full power of the SQL language is used to join, filter, sort, and aggregate data exactly as required by the end-user task at hand. View links are defined to establish master-detail relationship between two view objects.

· Application module

Application Module contains all the view objects and master-detail relationships that the application will need. Custom service methods can be defined in Application Modules and exposed as interfaces that can be called from client application.
While the base components handle all the common cases through built-in behavior, customization is always possible and the default behavior provided by the base components can be easily overridden or augmented.
Model Layer

The Model layer enables the View and Controller layers to access the Business Services layer using the data bindings and data controls.

Controller Layer

The Controller layer manages the application page flow. JDeveloper supports JSF Controller as well as open source Apache Jakarta Struts controller to control the flow between web application pages.

View Layer

The View layer provides the user interface to the application using JSF, ADF Faces, JSP, Swing or ADF JClient.
The new features in JDeveloper 11g include enhancements to ADF Business Components, ADF data binding, Web and AJAX development, data visualization components and development support for WebCenter and SOA.

ADF Business Components

ADF Business Components and JDeveloper simplify the development and customization of business applications for the J2EE Design Pattern with visual and declarative approach. With ADF Business Components, developers aren’t required to write the infrastructure code required by the typical J2EE application to:

· Connect to the database

· Retrieve data

· Lock database records

· Manage transactions

ADF Business Components provides a foundation of Java classes that allow your business-tier application components to leverage the functionality provided in the following areas:

· Simplifying Data Access

· Enforcing Business Validation and Business Logic

· Supporting advanced UIs with Multi-Page Units of Work

· Simplifying application security with JAAS integration and audit maintenance

ADF Business Components have been enhanced providing improved functionality. In past experience using JDeveloper 10.1.2, we had to do lot more coding to implement cascading list of values and to enforce custom business logic. This has been simplified by JDeveloper 11g’s improvements, which are significant in terms of saving time and simplifying coding efforts. Some of the new features in business components that we find interesting are listed below.
Cascading List of Values

In Oracle ADF 11g, you can configure a list of values as a declarative feature of any view object attribute. By defining the list of values at the model layer instead of within the user interface (UI), you can ensure that your UI will present a list of values correctly and consistently, regardless of the particular Oracle ADF-supported UI client technology you decide to use. Steps needed to create a cascading list of values are explained below.
· The first step is to create a view object with where clause containing bind variables:
[image: image2.png]
[image: image3.png]
· As the next step, create two new variables as referenced in where clause:
[image: image4.png]
· To add List of Values, click on “+” in List of Values section:

[image: image5.png]
· To configure the LOV, select the MgrListForDept View created earlier in the wizard:

[image: image6.png]
· Map the bind parameter values to attributes of source view object:
[image: image7.png]
As you can see in example below, as the department number is changed, the list of managers changes based on the department selected.
	[image: image8.png]
Manager list for Research department
	[image: image9.png]
Manager list for Sales department

Calculated Attributes

With the latest versions of JDeveloper, now you can create attributes in the Entity Object with a value type of “Expression” and define how the value is calculated using expressions. E.g.:

· Add new attribute and setup expression for calculation:
[image: image10.png]
· Setup dependencies of calculate attribute:
[image: image11.png]
· Calculated attribute TotalComp shown below in a web application:
[image: image12.png]
Groovy Validation Rules

Conditional business logic can be implemented using groovy script expressions. An example of validation rule defiled with Groovy expression is shown below:
[image: image13.png]
[image: image14.png]
ADF Task Flow
ADF task flows provide a modular approach for defining control flow in an application. With ADF task flows, the control can be broken into a collection of reusable task flows. Every task flow defines a part of applications navigation flow. Activities are the nodes that make up a task flow. Activity node represents a logical operation such as displaying a view, executing application logic, or calling another task flow.

	ADF Task Flow Advantages

	JSF Page Flow
	ADF Task Flow

	The entire application must be represented within a single JSF page flow.
	The application can be broken up into a series of task flows that call one another.

	All nodes within a JSF page flow must be JSF pages. No other types of objects can exist within the JSF page flow.
	You can add to the task flow diagram nodes such as views, method calls and calls to other task flows.

	Navigation only between pages.
	Navigation between pages as well as other activities, including routers.

	No reuse of application fragments.
	ADF task flows are reusable within the same or an entirely different application.

After you break up your application into task flows, you may decide to reuse task flows containing common functionality.

	No shared memory scope between multiple requests except for session scope.
	Shared memory scope that enables data to be passed between activities within the task flow.

ADF Task Flows provides two types of task flow, Bounded Task Flow and Unbounded Task Flow.
· Bounded task flow: A bounded task flow has a single entry point and zero or more exit points. Bounded task flows support transactions, reuse, reentry and parameters. They contain sets of private control flow rules, activities, and managed beans.
 [image: image15.emf]
· Unbounded task flow: Unbounded task flows can have more than one entry point and do not support parameters, transaction management or reentry. An unbounded task flow consists of all activities and control flows in an application not included within any bounded task flow.

[image: image16.emf]
The application can then call bounded task flows from activities within the unbounded task flow.
A train represents a progression of related activities that guides an end user to the completion of a task. The end user clicks a series of train stops, each stop linking to a particular page. Train UI component looks like this:

[image: image17.emf]
The following is an example of a Self-registration task flow page with a train:
[image: image18.emf]
ADF Faces – Rich Client Interface
Oracle ADF Faces has 100+ Rich Client Components and 50+ Data Visualization Components for creating Rich Internet Applications that can look like and feel like desktop applications. Oracle has helped spear-head the JSF progression by donating to Apache to form the base for project Apache MyFaces Trinidad. ADF Faces components extend Trinidad to provide Rich Client (RC) Components which have more built in features and will be explained later. JavaServer Faces enables developers to create Web applications from pre-built components, using JDeveloper, which provide visual page editors, component palettes and other tools that significantly increase developer productivity. Components become the building blocks for web development with ADF Faces. The ADF Components features include enhanced features such as partial page rendering, drag and drop, auto-completion, auto-saving, data validation, etc. Applications built with ADF Faces are accessible by an Internet Browser, PDA, and mobile devices do not require an organization to deploy additional software.

JavaServer Faces (JSF)
JavaServer Faces (JSF) is a standardized specification for building User Interfaces (UI) for server-side applications. JSF is part of the Java community process and referred as JSR-127. JSF provides a set of standard GUI widgets, and has the ability to create custom controls beyond the simple HTML controls.1
Below are 8 goals specified by the JSR-127:

· Create a standard GUI component framework which can be leveraged by development tools to make it easier for tool users to both create high quality GUIs and manage the GUI's connections to application behavior.

· Define a set of simple lightweight Java base classes for GUI components, component state, and input events. These classes will address GUI lifecycle issues, notably managing a component's persistent state for the lifetime of its page.

· Provide a set of common GUI components, including the standard HTML form input elements. These components will be derived from the simple set of base classes (outlined in #1) that can be used to define new components.

· Provide a JavaBeans model for dispatching events from client-side GUI controls to server-side application behavior.

· Define APIs for input validation, including support for client-side validation.

· Specify a model for internationalization and localization of the GUI.

· Automatic generation of appropriate output for the target client, taking into account all available client configuration data, such as browser version, etc.

· Automatic Generation of output containing required hooks for supporting accessibility, as defined by WAI.

This means developers can use JSF to build rich client (RC) web applications without the burden of having to build their own AJAX code, JavaScript libraries, or custom event model. Vendors like Oracle provide 100+ JSF components that can be used to build web applications like those found on a desktop application. JSF has the capability to render a UI for the browser, phone, PDA, etc. and provides a way to change the look and feel simply by choosing a different skin.
ADF Faces Features In JDeveloper
Oracle JDeveloper 11g provides the following advantages when using JSF: 2
· Visual editor provides an intuitive JSF WYSIWYG experience and supports HTML and JSP 2.0.

· Drag and drop support from Component Palette to Visual Editor, Source Editor, and Structure Window.

· Overview editor for JSF configuration files allows for friendly manipulation of all components of the faces-config.xml file.

· JSF page flow diagram provides visual rapid development of JSF navigation.

· Built-in JSP code editor with syntax highlighting, code insight, and much more.

· Easy-to-use wizard for importing existing JSF projects.

· Advanced structure outlining of JSF pages enables direct editing in the Structure Window with visual editor synchronization.

· Advanced Component Palette with the ability to easily add new tag library sets and edit existing ones.

· A JSF-aware Expression Language (EL) editor dramatically simplifies binding the JSF components to a data source.

· Rendering of JSF facet components in visual editor including look-up for facets supported by the parent component.
Oracle JDeveloper 11g and features for ADF Faces development:
[image: image19.png]
· Design WYSIWYG editor: provides more support to update the properties in design mode.

· Source Editor: In sync with the property editor and structure panel.

· Structure Panel

· Property Editor

· Component Palette for JSF tags that can be dragged and dropped into Design, Source, or Structure windows.

· Data Controls to drag and drop bound JSF components.
ADF Faces as Rich Client Components
JDeveloper 11g organizes their components into the following categories:

	Component Category
	Description

	Layout components
	Define how the components are arranged on a page.

	Input components
	Allow end users to enter data or other types of information, such as color selection or date selection.

	Table and tree components
	Display structured data in tables or expandable trees.

	LOV components
	Allow end users to make selections from lists.

	Query components
	Allow end users to query data.

	Pop-up components
	Display data in pop-up windows or dialogs.

	Explorer-type menus and toolbars
	Allow you to create menu bars and toolbars.

	Output components
	Display information and graphics, and can also play video and music clips.

	Labels, tips, and messages
	Display labels for other components, along with mouse-over tips and error messages.

	Navigation components
	Allow users to go from one page to the next.

	Data visualization components
	Allow users to analyze complex data in real-time.

Layout Components
ADF Faces provide components that can be used to arrange other components on a page. A nice feature that some layouts support is component stretching which is a geometric management functionality that allow the content to fit to the size of the browser and will also resize the children components. Developers can define default sizes of each panel, but at any time a user can resize any panel for optimal viewing.

Below is an example of a simple panel splitter that allows developers to define a placeholder or a facet. Also, layouts can be nested to form more robust layouts for a given page as shown in the diagram below.

[image: image20.png]
There are many other layout components that can be used to style the contents of a page. All Layout components are grouped together in the JDeveloper Component Palette. Below you will see an example of the Panel Accordion, Panel Splitter, and Panel Tabbed.
[image: image21.png]
Input and Select Components

Standard common components; such as, inputs and selects have additional options and features. Below are the various types for each selects and inputs:
	Input Components
	Select Components

	af:inputText

af:inputColor

af:inputDate

af:inputFile

af:inputNumberSlider

af:inputNumberSpinbox

af:inputRangeSlider
	af:selectBooleanCheckbox

af:selectBooleanRadio

af:selectManyCheckBox

af:selectManyChoice

af:selectManyListbox

af:selectManyShuttle

af:selectOneChoice

af:selectOneListbox

af:selectOneRadio

af: selectOrderShuttle

Input components accept user input in a variety of formats. The most common formats are text, numbers, date, and selection lists. The entered values or selections may be validated and converted before they are processed further. ADF Faces also has built-in support to provide input help such as required field indication, converters, hints and help.

This is an example of af:inputNumberSlider, af:inputRangeSlider, and af:inputNumberSpinbox:
[image: image22.png]
Also, ADF Faces provides a Rich Text Editor:

[image: image23.png]
Example of af: selectOrderShuttle:

[image: image24.png]
Navigation components

ADF Faces has multiple components to support different styles for navigation. Some pages need to be linked from a simple menu, and explorer style menu, or a wizard approach for a stepped approach. Below are examples of components for navigation:
[image: image25.png]
A train component displays a series of navigation items that guide users through the multi-step process:
[image: image26.png]
This can be useful for wizards and a process flow. The train component also supports back and forward and sub-steps.

Table Components
Many business users are accustomed to Spreadsheets and have to enter a lot of data as efficiently as possible. Web applications tend to have an input-form where users have to navigate back and forth between a query screen and an add/edit page. Users want the ability to edit multiple records at a time, with selects and calendar controls as well as the ability to query or filter the data without having to navigate to other screens. In earlier versions of JDeveloper, the work needed to support an editable-multi-row table required creating additional classes and coding to over-ride the method that updates the model. In JDeveloper 11g editable tables are easy to create.

Here is an example of a editable table, that was created with no coding. In this example, users can modify multiple Employee records at a time. Data can be filtered by using the input boxes above each header. Data can be sorted by any column. If a particular column is too narrow users can resize any column much like a spreadsheet. We also see an example of a default hint showing the format for date.

[image: image27.png]
Not only are hints and input help supported, but another valuable feature is validation. Below we see that a user has entered an invalid date format. Notice the input box has a red border and an invalid date format message appears. This message and appearance can be customized. To fix this issue, the user can correct the date format or simply use the calendar control to select a date. In addition, the user cannot execute and commit changes without fixing the errors. If the user tries to execute the changes a message appears with a list of all input errors. In the past, developers had to create validation routines. Now these are default features that developers easily enhance.

[image: image28.png]
The next screen shot shows how ADF tables can support selects. These are list of values that were created at the model level. This means that anytime the Employee data control is used in a JSF page, the department column automatically show a select-component. A developer can create an input form and the select will appear because we have defined it once in the View Object.

[image: image29.png]
This feature shows an input box with a list of values that can be filtered. A dialog appears with the ability to search in basic mode and advanced mode. Users can add fields to filter in advanced mode. Also, keep in mind this was done with most of the default settings when creating the model. Search Criteria can be customized at the model level and propagate to this Search and Select dialog. There are many issues that ADF Faces takes care of that should be noted. Web developers have to always ensure to hide HTML <select> when a dialog in a <div> tag appears over the select. With ADF Faces, developers do not have to handle common web development issues.

Below is an input Box with a list of values.

[image: image30.png]
Users also can move columns around left or right just like a spreadsheet. In addition, ADF tables support a feature that allows users to export to Excel.

SKINS

ADF Faces provide a set of skins that can be used by an application to change the default appearance of your components. Skins are an easy way to globally style an application. Skins can manage the colors and fonts, and also allow you to display content seamlessly to a browser or PDA.

The flexibility of Skins can help companies that host and sell Internet applications to other companies by providing Branding with the help of Skins. For example, an On-Demand application for selling widgets has numerous customers, each wanting to customize the look and feel and ability to change the color scheme of their choice. The site could offer a way to set the style and colors which can be associated with their site.

Reusable Content

ADF JSF provides reusability which is invaluable because it simplifies application development and promotes a consistent look and feel across pages in your application. The methods for creating reusable content are:
· Declarative Components

· Page Fragments

· Page Templates

Declarative Components

Many times in an application a group of components will have the same layout for many pages. To group a set of components, developers can create a declarative component.

Page Fragments

Page Fragments can have sections of a page and can be included in many pages. A JSF page can have multiple page fragments. This is very similar to a jsp:include.
Page Templates

JSF Components by themselves are reusable, but mostly these are widgets on a page. In a real-world Internet application, most pages follow a set of standard floor plans and follow proper UI design patterns. Page Templates are used to define a set of floor plans that can be used by developers to quickly create new pages and at the same time provide a flexible way to enhance pages simply by changing the templates without changing every page. Page Templates are a building block to define a layout for the entire page to ensure a consistent structure. New pages will reference the page templates which mean any changes made will be adapted. Also, Page Templates can have their own data bindings; which allows developers to define data-bound controls independently in the template and not for every page. The following screen shots will demonstrate the power and ease of creating a page template.

To create a page temple, select JSF Page Template from the New Gallery:

[image: image31.png]
The Create JSF Page Template dialog allows you to define a Page Template. Notice the filename is JSPX file and is referenced at run-time. You can optionally change the name and create a page definition.

Using the page definition you can define facet definitions and attributes. Facet Definitions allow you to define areas for application developers to define content. Attributes are parameters that can be referenced by the template and defined by the page developers.

[image: image32.png]
Once a page template is defined, developers can now select the template when creating a page. The visual editor displays the bare bones template. From here the developer provides content for the two facets using a panel splitter called master and detail. In this simple example the developer defines the pageTitle attribute which will be referenced by the page template at run-time.

[image: image33.png]
Here is an example of a page that references a page template called Departments:
[image: image34.png]
Custom ADF Faces Components

If an application needs a component not provided by ADF JSF or the wealth of available 3rd party JSF Components then JSF allows developers to build custom components that can extend the ADF JSF components. Extending ADF JSF allows the inheritance of built in features like partial page rendering techniques to AJAX-enable the custom components.

JSF has a standardized technique for building Internet components. The approach that delegates events on the client to the server is very similar to that of a Java Swing application. In essence, it bridges and encapsulates all the complicated work between the client and server at the component level. This includes state management and event handling. JSF provides techniques for styling, client-side scripting, and a listener interface to handle events on the server. Each component has CSS and JS files which can be cached on the client and reduce the footprint of the rendered component. Also, ADF JSF uses some of the latest features of JavaScript and CSS by using prototype JavaScript objects, JSON, and CSS 3.0 and supports a way to dynamically, at runtime, conform to CSS 2.0 if the browser doesn’t support the latest version.

ADF Data Visualization

ADF data visualization components provide significant graphical and tabular capabilities for displaying and analyzing data. These components provide the following common features:

· Full ADF Faces components that support the use of ADF data controls.

· Provide for declarative design time creation using the Data Control Palette, the JSF Visual Editor, Property Inspector, and Component Palette.

· Offer live data preview during design. This feature is especially useful to let you see the effect of your design as it progresses without having to compile and run a page.

Each data visualization component needs to be bound to data before it can be rendered because the appearance of the components is dictated by the data that is displayed. Data visualization components are ADF Faces components that provide extensive graphical and tabular capabilities for visually displaying and analyzing data, as depicted in the sample below.

[image: image35.png]
Graph

The graph component gives you the capability of producing more than 50 types of charts including a variety of bar graphs, pie graphs, line graphs, scatter graphs, and stock graphs. This component lets you evaluate multiple data points on multiple axes in many ways. For example, a number of graphs assist you in the comparison of results from one group against the results from another group.

All ADF Faces graphs support Flash rendering as well as SVG. Graph interactivity includes the use of zooming and scrolling, the use of an adjustable time selector window to highlight specific sections on a time axis, the use of line and legend highlighting and fading to filter the display of data points, and the use of dynamic reference lines and areas. The Graph Type selection wizard is shown below:

[image: image36.png]
An example of 3D Pie Chart is shown below. Notice the tool tip tooltip label showing the warehouse name and the quantity when the mouse is moved over each slide:

[image: image37.png]
Gauge

The gauge component also renders graphical representations of data. Unlike the graph, a gauge focuses on a single data point and examines that point relative to minimum, maximum, and threshold indicators to identify problem areas.

The following kinds of gauges can be produced by this component:

	· Dial gauge: Indicates its metric value along a 180-degree arc. This type of gauge usually has an indicator in the shape of a line or an arrow which points to the value that the gauge is plotting.
	[image: image38.png]

	· Status meter gauge: Indicates the progress of a task or the level of some measurement along a rectangular bar. An inner rectangle shows the current level of a measurement against the ranges marked on an outer rectangle.
	[image: image39.png]

	· LED gauge: Depicts graphically a measurement, such as key performance indicator (KPI). Several styles of graphics are available for LED gauges such as:

Dot that indicate good (green dot), fair (yellow dot) or poor (red dot).

Arrows that indicate good (up arrow), fair (left- or right-pointing arrow), or poor (down arrow).
Also available are rectangle and triangle styles.
	[image: image40.png]
[image: image41.png]

Pivot Table

The ADF pivot table produces a grid that supports multiple layers of data labels on the row edge or the column edge of the grid. This component also provides the option of automatically generating subtotals and totals for grid data. Pivot tables let you switch data labels from one edge to another to obtain different views of your data. For example a pivot table might initially display products within region in its rows while showing years in its columns. If you switch region to the column edge so that columns display year within region, then data cells in the table show totals for products by year within region.

A sample pivot table:

[image: image42.png]
Testing the Pivot functionality, for example, select the Product column and move it underneath the State row:
[image: image43.png]
[image: image44.png]
Geographic Map

The ADF geographic map is a component that represents business data and allows you to superimpose multiple layers (also referred to as themes) of information on a single map. For example, a map of the United States might use a color theme that provides varying color intensity to indicate the popularity of a product within each state, a pie chart theme that shows sales within product category and a point theme that identifies the exact location of each warehouse. When all three themes are superimposed on the United States map, you can easily evaluate whether there is sufficient inventory to support the popularity level of a product in specific locations.

	[image: image45.png]
A map indicating where the warehouses are located geographically
	[image: image46.png]
Click on the red spot of your choice to pop up a window showing the location name and the quantity.

Gantt

There are two types of ADF Gantt components. These are the project Gantt (which focuses on project management) and the scheduling Gantt (which focuses on resource management). Each Gantt shows the following regions combined with a splitter:

· List region content: The left side of the splitter provides a list of tasks (for the project Gantt) or a list of resources (for the scheduling Gantt). This region can display any number of additional columns of related information.

· Chart region content: The right side of the splitter consists of an area in which task progress or resource progress is graphed over time. The ability of the Gantt to zoom in or out on its time axis lets you view management information across the desired time period.

The Gantt chart shows for each person/customer the total duration for all the orders:

[image: image47.png]
Click on one person + icon to expand the order details and visualize the state of each individual order:

[image: image48.png]
Other Advantages to using ADF Faces

Partial Page Component Rendering - Instead of full page rendering, ADF Faces events and components can trigger partial page rendering, that is, only portions of a page refresh upon request.

ADF Faces tags provide additional features than the standard tags; for example, all input components offer built-in label and message display support. To demonstrate how ADF tags features provide more than JSF Core tags, let’s look a simple tag for input text:

· ADF Faces: (Note: ADF Tags use the namespace: “af”)

<af:inputText label="Name:" value="Enter a name"/>

· Code needed with JSF Core tags to provide the same comparable functionality with the standard tags

<h:panelGrid columns="2">

 <!-- Use outputLabel; outputText doesn't support accessibility -->

 <h:outputLabel for="nameInput" value="Name: ">

 <h:panelGroup>

 <h:inputText id="nameInput" value="Enter a name"/>

 <f:verbatim>
</f:verbatim>

 <h:message for="nameInput"/>

 </h:panelGroup>

 </h:panelGrid>
AJAX

Asynchronous JavaScript and XML (“AJAX”) is perhaps the reason why the industry is now able to produce more Rich Internet Applications (“RIA”), than ever before. It is a reasonable statement to say that the majority of Internet applications utilize HTML, JavaScript and CSS. In the infancy of these technologies some organizations did not like User experience and found that it failed their expectations: especially if they were familiar with fat-client-server applications. Some organizations even produced their Internet applications with Java based clients (AWT/SWT/Swing), Flash Applications (FLEX), ActiveX, or Oracle Forms. Alternatives to HTML, JavaScript, and CSS have not been able to replace their predecessor. The AJAX hype has encouraged and spawned many more examples, open source libraries and literature to help developers. However, even with the availability of AJAX JavaScript Libraries, developers must have a handle on some if not all of the following technologies that make AJAX churn: DHTML, Browser DOM, HTML, CSS, XML, XSL/XSLT, JavaScript and/or JSON. Another big problem for web development is many of the browsers require different JavaScript syntax.

JDeveloper provides AJAX ready enabled JSF components, which means developers can take advantage of their framework and count on the support that a large organization needs. When developers look for JSF components they ask, “are the JSF components AJAX enabled?” Oracle has 100+ AJAX enabled JSF components in 11g and as they grow and mature this technology, you can expect many more to come in future releases. If developers have controls that are not common and need to develop new controls, JSF allows you to create new components. Once built you will be able to drag-n-drop and define your components in an IDE the same way as you would use the JSF Core and ADF-JSF components.
It is outside the scope of this whitepaper to discuss an AJAX implementation; it is more useful to show the components and the AJAX capabilities that are provided.

To demonstrate AJAX, let’s discuss our simple master detail example. Oracle uses Partial Page Rendering or PPR to request more data when the end-user triggers an event.

[image: image49.png]
· (green) The End-User event is setting the IT department as the current row by simply clicking in the editable Department Name input box. The department row is our master.

· (red) Immediately, the detail facet changes, and displays a message, “Fetching Data…”.

· (blue) The AJAX response provides the data, the Employees in the IT department, and renders the rows in a table.

Partial page rendering only changed the detail area of the screen without reloading the entire page. This was also an example of cross-component refresh. This means simply that the master triggered an event where the detail listener handles this type of event. This was done declaratively, simply by specifying a handle for the detail and setting the id or handle in the detail’s behavior->partial triggers. For the features described here no coding was required. Inside the detail area the end-user can cause a refresh of itself, in other words the detail area: for example; scrolling, sorting by clicking on the table header, etc.
There are many other ADF JSF components that support partial page rendering. Below are examples of only two layout components that will render only a portion of the page. When the end-user selects a tab or a header in an accordion layout only the active area's data is fetched, rendered, and loaded.
[image: image50.png]
Here is an example of a List of Values (“LOV”) which initially shows enough records that can be viewed in a scrollable window. When the user scrolls down, this ADF Faces component uses AJAX to fetch data for the component and dynamically append additional rows of data.

[image: image51.png]
JavaScript Support

Not all IDEs will even support editing of JavaScript unless it is stored in a JavaScript file. A new set of features in JDeveloper help developers edit their JavaScript, as well as provide debugging tools with a client side JavaScript Debugger that can be run locally. Usually, an Internet developer will use the native browser to debug, but sometimes placing a breakpoint in a JavaScript library can be difficult and debugging objects that are dynamically created with DHTML can be problematic. In an ADF Faces project, custom JavaScript should be kept to a minimum. However, JSF internally uses JavaScript and the Debugging Tools enable developers to debug client side code from the framework. In addition, projects built before ADF Faces, may require more JavaScript code where these features could be very useful.
	JavaScript Editor
	JavaScript Debugger

	Syntax highlighting

Brace matching

Code collapse

Code insight

Error underlining and audits

Usage Search

Refactoring of Code

Go to declaration

Structure pane integration
	Breakpoints

Stepping

Watches

Data modification

AJAX Summary
Even though ADF/JSF has a great deal of AJAX features for the developer, understanding the individual technologies will make it easier to solve problems that will occur. And developers that are savvy with AJAX techniques may initially get frustrated when adapting to different techniques and a new API. Be aware if you need a Rich Internet Application yesterday and require high availability to various end users, then you may not want to use JDeveloper 11g because some components require the latest browser version. Also, when using ADF JSF you are using <af:XXXX> tags rather than <f:XXXX> tags that will tie the development to an ADF Faces implementation. However, you get the advantages that Oracle provides by extending the core JSF tags. The biggest advantage to using ADF Faces is the IDE support offered by JDeveloper. The drag-n-drop, structure panel, the WYSIWYG design editor, page templates and synchronized source window are hard to beat even in an open source IDE’s.

WebCenter
In order to solve their business requirements, users often have a set of existing applications, either custom or purchased, that require them to spend time moving from one system to another. For example, a simple task like approving a purchase request could require them to check existing purchase orders (application or spreadsheet). They might have to analyze a set of reports (analytics system) in order to understand current spending levels. They might need to communicate with the person making the request (email) to confirm details. Each of these tasks requires the user to remember and interpret the details of this information and move it from one system to another. Wouldn’t it be nice if these tasks could be linked and all the details shared automatically?

The need for this type of application is evident to increase productivity. Users need applications that support transactional processes (application or spreadsheet), business intelligence data (analytics system) and communications (email) all in one place. They expect the same ease of use and speed they experience with their desktop applications. There is no longer a clear difference between and desktop or Web-based application.
What is WebCenter?

WebCenter applications focus on tasks, placing information and services in the context a user needs to complete a business function or task. WebCenter applications combine critical task flows, business intelligence, structured and unstructured content, collaboration tools and Web 2.0-style to create online work environments. These applications can change and grow as the user’s job evolves and can be customized at the user, group or enterprise level.
No longer do users have to open their spreadsheet application and search for that purchasing spreadsheet, fire up the analytics system to see if the department has already spent too much for the month or make a phone call to make a clarification. Within a single interface, WebCenter Suite gives users access to the critical tools necessary to perform their daily tasks. In addition, interfaces can be personalized to match the needs of individuals and groups at different levels of an organization.

WebCenter Suite allows developers build Web-based enterprise mash-ups, combining information from diverse applications and repositories. With the WebCenter Framework, developers can "rapidly" create content and applications that can be both customized based on user roles and identities and personalized based on a user’s preferences.
WebCenter Key Components

Oracle WebCenter consists of several key components which sit on top of Oracle ADF and are fully integrated into Oracle JDeveloper and Oracle Application Server.

· WebCenter Framework is a standards-based, robust, and flexible framework to build Web applications.

· WebCenter Composer allows the modification Web pages that compose a dynamic portal at run time.

· WebCenter Services allows the addition of services to an ADF Web based applications like live content, wikis and discussion forums.

· WebCenter Spaces allows the easy creation of dynamic portals.

· WebCenter Anywhere brings WebCenter context-rich applications through multiple mobile technologies.

[image: image52.png]
WebCenter Key Components
WebCenter Framework
Oracle WebCenter Framework is a J2EE development framework using Java Server Faces (JSF) to build Web applications. JDeveloper provides a declarative development environment for building highly interactive, customizable applications. It is a new platform for user interaction, combining the best features of Portals, with portlets and customization, Web 2.0 rich-client user experiences and collaborative content and services with SOA-enabled hot-pluggable components.

Content Integration

Many applications require some form of content integration. The framework provides JCR/ JSR 170 standard based content integration layer allowing developers to publish content stored in diverse locations. Content repositories supporting the JCR standard can be configured, and adapters are available for file systems, Oracle Content Database, Oracle Portal and leading third-party content management systems. Oracle’s out-of-the-box implementation of a data control (JSR 227) on top of the JCR standard allows developers to quickly leverage this standard without having to write a line of code.

Creating a content repository connection in WebCenter is easily done in a matter of minutes through the Create Content Repository Connection wizard. Once created, this connection can be used with the out-of-the-box document services bundled with WebCenter. In the diagram below, a repository connection is created to the files system.
[image: image53.jpg]
WebCenter Content Repository Connection

Portlet Runtime/Portlet Bridge

Since WebCenter 10.1.3, WebCenter Framework has integrated capabilities historically included in portal products directly into the Java Server Faces (JSF) environment. WebCenter Framework, in conjunction with the JSF environment, provides the ability to bind portlets and customize the application at runtime. JDeveloper provides a standards-based development environment which supports rapid creation of JSR 168-based portlets and integrated deployment and production support of WSRP 2.0 that enables portlet-to-portlet communication to build “in-context” applications.

[image: image54.png]
WebCenter Portlet Framework

JSF Rich Client View Components

The Java Server Faces component model is similar to the AWT GUI component model, with events and properties just like the Swing component model. The JSF model has containers which contain components, and which are also components that can be contained by other containers. The Rich Client JSF view component model brings desktop-like behavior to web applications. With JDeveloper 11 and the WebCenter Framework, applications can be developed using the same programming model (JSF) when building a Web application or a portal application or a wireless application.

 Any JSF page can take advantage of portal characteristics and WebCenter applications can take advantage of the new set of AJAX/Rich Client JSF View Components based on the JavaServer Faces. ADF Faces has over 100 out-of-the-box JSF components for WebCenter Applications. See “ADF Faces” section for more details.

Resource Catalogs

JDeveloper exposes reusable resources from multiple repositories as a catalog. Resource catalogs contain the building blocks of an application – portlets, documents, images and taskflows. Catalogs are created and managed at design time and shared in the JDeveloper development environment across projects resulting in increased productivity and reuse. Resources are dragged from the resource catalogue and dropped as components into the page editor for use in a JSF page.

The resource catalogue contains all the service task flows provided by the Oracle WebCenter Framework. When new resources (portlets, content repository connections, service configuration connections) are created they can be added to the catalogue. New catalogues can be created to organize common resources by type or project. With WebCenter 11g, you can register resources at the catalogue level and or the project level. If you register them with the resource catalogue, you can easily share them with other catalogues. In previous versions of WebCenter, you had to remember to register each resource with the project. In the diagram below, we register the resource with the catalogue. This makes reuse easier than ever.
[image: image55.png]
WebCenter Resource Palette Registration
Once the resource is register, simply drag it into the desired catalogues, see below.
[image: image56.png]
Add Resource to Catalogue

WebCenter Services

WebCenter Out-Of-The-Box Services

WebCenter 11g provides a set of out-of-the-box components to provide key services for business users for use in online collaboration, information sharing and communication. Many services interface with standard productivity tools, like email, discussions, Wikis and tasks. These Web 2.0 services extend the functionality of applications and enrich the user experience.
Examples
· Mail – Integration with MS Outlook provides users with the ability to perform email functions within the context of the WebCenter application, reducing context-switching between applications while performing tasks within a business process.

· RSS – This service publishes the contents of multiple services and is configurable at the user level. Lists can be dedicated as RSS 2.0 or ATOM feeds.

· Announcements – Notifications of important events can be sent via the Announcement service.

· Discussion Forums – Discussion services allow users to post questions, search for answers and respond to others’ questions. Discussions can be linked directly with business applications to provide contextually relevant information.

· Document Library – Users can create and view documents from multiple repositories. All documents relevant to a particular task can be viewed from a single location, regardless of their actual location.

· Wikis – The Wiki service provides collaboration amongst user groups when creating documents. WebCenter includes an open-source Wiki server.

· People – The People service allows users to see who is online and available, initiate instant messages, phones or video calls and receive files or notifications through a single interface while performing business activities and tasks.

[image: image57.png]
WebCenter 2.0 Services
Custom Services

Additionally, custom services can be easily integrated into a WebCenter application. Adding a web service to a WebCenter application is as simple as creating a data control from the web service and exposing the return values in a bound ADF component.

ADF Task flows

A bounded taskflow represents a reusable block of functionality with a single entry point and defined exit points. With taskflows, page fragments or pages with navigation are developed and reused this many times in within applications. Bounded taskflows were created for each of the WebCenter services and can be added into an application at design time by a simple drag and drop operation. A mashup combining Google Maps with Craigslist apartment listings to display on a map all of the apartments for rent in a particular neighborhood can be exposed as reusable taskflow. The JSF Portlet Bridge has been extended to expose custom-built taskflows as JSR 168/WSRP. For more on ADF Task flows, see “ADF Task Flows” section.

WebCenter Composer

WebCenter Composer allows end users to extend and customize their page(s) by adding, removing and arranging components at runtime. There are several modes, depending on the privileges, used to customize the pages at runtime. Customizations can be saved and redeployed with a new version of the application or to a new environment. During development, run-time editing is enabled when WebCenter composer components are added to the page. In the diagram below, we drag the composer components from the Component Palette to the Structure Pane of main.jspx. Now, when we run the page, we can customize it.
[image: image58.png]WebCenter Composer Palette

Metadata Repository

Customizations applied to a WebCenter application are saved to a metadata repository, Oracle’s Metadata Services (MDS). Metadata include base application definitions and runtime customizations but not portlet customizations. With WebCenter 11g, the metadata store to can be optionally file or database-enabled for increased scalability.
Runtime page management APIs

The WebCenter Page Service provides APIs that allow applications to manage a set of pages within a deployed application. The APIs enable developers of custom WebCenter applications to create new pages, maintain page metadata, and remove pages, all from a running application. At runtime, a resource catalogue containing available components can be used to add components to an application. Several page layout designs are available and a sandbox is available to preview the changes before committing them. The diagram below shows a page being customized at runtime. In the diagram below, we have customized our page by adding a link and some text, giving the page a title and rearranging the panels – all at run time!
 [image: image59.png]
WebCenter Run-time Customizations

WebCenter Spaces

WebCenter Spaces is designed to provide a way for groups to work together more effectively. Non-technical group members can easily share resources (documents, charts, reports, etc.) and by adding pages and services to a group’s space.

· Interest Group Space - This out-of-the-space is geared towards a specific topic. Typically, these spaces include services such as links, news, documents and discussion forums.

· Personal Space - Individuals can organize their own personal space with information and services needed for their specific tasks. Personal Pages are the user’s own set of pages and can be fully personalized. The Sidebar component is available from the personal space and gives an overview of tasks, email, notifications, etc. related to the user’s job functions.

· Role-Based pages - WebCenter also has a space geared towards a specific role in the organization. These pages are targeted to a specific group of users who perform similar tasks.
· Project Group Space - This out-of-the-box group space allows 2 – 20 users to collaborate towards a deliverable goal. It can include services such as issue tracking, events, discussion forums, tasks and documents. The diagram below shows an example group space for a Finance Project. This page has some welcome text, an issues list, a task list and a document repository.
[image: image60.png]
WebCenter Spaces - Project Group Space
WebCenter Anywhere

WebCenter Anywhere leverages Oracle’s standards-based framework and wireless platform using ADF Mobile. Users can connect and work wherever they happen to be by exposing critical task flows and services through familiar mobile devices (PDAs, Smartphones, Mobile Voice and Mobile Messaging) and desktop tools including Microsoft Office and Exchange.
Security

ADF Security is implemented as an extension to the standard J2EE container security and is executed after the standard J2EE security constraints have been processed. It is integrated into JDeveloper 11g and is implemented dynamically through a wizard. With ADF Security, changes in roles are immediately active. In addition, it is easy to implement multiple roles/permissions for a single page. In the JSF pagedef, rights to roles can be defined for specific attributes, methods or pages. Expression Language (EL) is used to display or hide items on a page based on the user's permissions defined in the run time policy store.

Deployment

WebCenter Application deployment and management have been improved in several ways. Applications and metadata are packaged into a single deployment file, making deployment easier and faster. Logging has been improved to allow detailed analysis of the running WebCenter application. WebCenter applications can be imported and exported within Enterprise Manager allowing an application and its metadata, customizations and security to be easily migrated to a different server.

Service Oriented Architecture (SOA)
The way in which businesses operate is quickly evolving from reacting - to anticipating. Business requirements are constantly changing and enterprises must quickly respond, leverage existing investments in applications and application infrastructure to address these new business requirements. IT organizations are facing increasing pressures to deliver cost-effective flexible solutions more quickly than ever before. To address these challenges, IT organizations are adopting a Service Oriented Architecture (SOA). SOA provides an enterprise architecture supporting connected enterprise applications that are developed as modular business units, or web services. These services can easily be integrated, providing a reusable, flexible and adaptable infrastructure.

What is SOA?

Service-oriented architecture (SOA) has been around in one form or another for many years. SOA is the evolution of distributed computing based on the request/reply design paradigm for both synchronous and asynchronous applications. An application's individual business functions are modularized and presented as services for the consumer (or client) applications. The key to services is that they are loosely coupled; the service interface is independent of the service implementation. Applications are constructed by composing one or more services. It is not necessary to understand the services' underlying implementations.

Benefits of soa

· Incremental Implementation: The ability to incrementally build the system, plugging in new services as they are developed or become available. In addition systems can be modified by switching service providers, extending services or modifying service providers and consumers.

· Reuse and composition: The ability to create and alter business processes and existing applications quickly and reliably with existing components.

Oracle SOA Suite

With Oracle SOA Suite, services can be created, managed, and orchestrated into composite applications and business processes. Oracle SOA Suite enables enterprises to incrementally adopt SOA. The suites include a single deployment and management model and tooling, end-to-end security, and unified metadata management. Oracle SOA suite helps to create, deploy and manage services. The main components of Oracle SOA Suite include:

Oracle JDeveloper
Oracle JDeveloper is the development component of Oracle SOA Suite. JDeveloper allows the creation and deployment of composite applications. The SOA Composite Editor enables you to manage all your composite components. Services can be integrated into ADF Faces and WebCenter applications.

Oracle BPEL Process Manager

BPEL process manager assembles a set of discrete external services, such as web services, java services, database stored procedures, external systems and human tasks into an end-to-end process flow.

[image: image61.png]
SOA BPEL Process Manager

Oracle Enterprise Service Bus

Oracle Enterprise Service Bus (ESB) moves data among various endpoints both within and outside the enterprise, using open standards to connect, transform and route business documents as XML messages between disparate applications.

[image: image62.png]
SOA Enterprise Service Bus

Human Task

The human task allows human functions to be combined into the BPEL process flow. A human task assigns a task to a user or role and waits for a response.

Oracle Complex Event Processing

Oracle Complex Event Process enables queries to be written to look for patterns in event streams. The events are cached and correlated into specific patterns.

Oracle Business Activity Monitoring

Business Activity Monitoring (BAM) is used to monitor services in real time and correlate Key Performance Indicators (KPI) to actual business process. Information can be delivered through dashboards or alerts.

Oracle User Messenger Service
Oracle User Messaging Service (UMS) provides a standard service to send and receive messages between applications and user devices.

Responding to Change

SOA allows organizations to evolve and adapt to changing business processes. For example, an organization provides another option for customers to pay like “Google Checkout”, or orders need a manager’s approval for any orders over a certain dollar amount. BPEL Orchestrator allows you to change business processes with minimal or no coding changes. For enterprise solutions the ESB has a Rules Engine that can be configured and changed at run-time. Companies can use BAM to monitor and discover an inefficient business process, and then act on this information to tune the orchestration of the fine-grained web services.

SOA and WebCenter

A WebCenter application is the perfect example of a Service Oriented Architecture Application. The WebCenter Framework allows for multiple application services to be loosely coupled, and combined within a single User Interface, forming a new application. Oracle WebCenter provides the services and components for creating applications with a highly productive user interfaces that take advantage of the back-end services and management capabilities provided by SOA Suite.
Conclusions
Many IT organizations have a collection of home-grown Web-based Java applications, third-party purchased applications and legacy systems. Many of these applications act in an independent fashion, with their own authentication and their own “framework.” Common functionality and services that are essentially identical are duplicated among them.
In our real world experience with JDeveloper 10.1.2 and evaluation of JDeveloper 10.1.3 and 11g preview releases, we have seen how developing web applications has quickly gone from labor intensive programming to a component selection and configuration process.
With enhancements in ADF Business Components, we have seen how easy it has become to configure Cascading List of Values and implementation of business rules using expressions.
ADF Faces provides the “Wow” factor right out of the box. JSF provides a robust framework that has become the new standard for web development for Java. JSF is the Java answer to .NET and FLEX component frameworks. The open source community has adopted and contributed to this evolution. ADF Faces provides a polished JSF Component library that can be used to build Rich Client applications. JDeveloper 11g provides some of the best wizards and WYSIWYG editor to help create JSF pages. In addition, to the reusability features increase productivity and provide a real Rapid Application Development (RAD) experience.
ADF Faces provides features that we, as web developers, had to create ourselves. The features eliminate the need to focus on state management, custom page level JavaScript, and browser compatibility. Now developers can focus on more important tasks such as handling use-cases and business rules. The main advantages to give ADF Faces consideration over other JSF toolkits are the 100+ Rich Client Components and 50+ visualization components that are AJAX-enabled. Today users demand features historically found in desktop applications and with the Rich Client Components you will be able to produce rich client interfaces.
With a framework built to handle the common challenges related to authentication, single sign-on, and the deployment of applications in a unified environment, WebCenter is a great way to bring these disparate applications together. For anything that has already been built, chances are the portlet or services integration lend themselves nicely to bringing it all into WebCenter. With WebCenter, Oracle embraces open software standards, solid enterprise architecture/framework, SOA concepts, and the latest in Web 2.0 technologies and services.
Along with advantages for IT, the end result includes a more consistent experience for end users. WebCenter enables information workers to share information within their enterprise using Web 2.0 services, including discussions, wiki pages, and RSS feeds, document libraries and legacy systems.
JDeveloper has included frameworks that follow standard specifications, and Oracle has become a large contributor to the open-source community. What sets JDeveloper apart from other solutions are the tools that eliminate mundane tasks; such as, manually editing configuration files, or writing code that can be done with a wealth of wizards and drag-and-drop editors. For examples, look at the drag-and-drop design editor for BPEL, XSL, faces-config.xml, struts-config.xml, etc. These tools simplify development tasks and help developers focus more towards useful endeavors: such as, ensuring your application meets business requirements. The new features of JDeveloper take Rapid Application Development to the NEXT LEVEL.
References

Oracle JDeveloper Overview

http://www.oracle.com/technology/products/jdev/collateral/papers/1013/jdev1013_overview.pdf
Oracle ADF 11g Primer

http://www.oracle.com/technology/products/jdev/11/how-tos/oracle adf 11g primer.pdf
Oracle® WebCenter 11g Technology Preview 3

http://www.oracle.com/technology/products/webcenter/owcs_r11_tech_preview1.html

Fusion Developer’s Guide for Oracle Application Development Framework 11g (11.1.1)
http://download.oracle.com/otn_hosted_doc/jdeveloper/11/doc/b31974.pdf
Web User Interface Developer’s Guide for Oracle Application Development Framework 11g (11.1.1)
http://download.oracle.com/otn_hosted_doc/jdeveloper/11/doc/b31973.pdf
Oracle JDeveloper 11g Tutorials

http://www.oracle.com/technology/obe/obe11jdev/11/index.html
Oracle JDeveloper - How-To's

http://www.oracle.com/technology/products/jdev/howtos/index.html
Enhancing Application User’s Experience with Web 2.0 Capabilities

http://download.oracle.com/otndocs/tech/webcenter/pdf/oow07_s291883_enhance_web20.pdf
Oracle WebCenter Statement of Direction

http://www.oracle.com/technology/products/webcenter/pdf/owcs_r11_sod.pdf
Oracle WebCenter 11: New Features and Product Road Map
http://www.oracle.com/technology/products/webcenter/pdf/oow07_s291869_owc_roadmap.pdf
Developer’s Guide for Oracle SOA Suite 11g Release

http://download.oracle.com/otndocs/products/soa/e10224.pdf
About the Authors

Rohit Badiyani

Managing Principal, Piocon Technologies, Inc.

Rohit Badiyani serves as project manager at Piocon Technologies, Inc., leading teams designing and implementing solutions that track corporate activities and workflow and provide enterprise Business Intelligence. Since joining Piocon in 2001, he has continued to display the tenacity and technical expertise needed to craft quality solutions. Involved in all phases of system life cycle during his 12+ year consulting career, Rohit has led successful projects in various industries, such as financial services, manufacturing and retail.

Karen Smudde

Principal Consultant, Piocon Technologies, Inc.
Karen Smudde has over 11 years extensive experience engineering java web-based and client-server applications and SAP software solutions. She has been involved in all aspects of the software development cycle and has a proven track record of innovative designs and successful solutions.

Winslow Troy
Principal Consultant, Piocon Technologies, Inc.
Winslow Troy has been developing enterprise business solutions for 11 years, web development, database development, and OLTP. He has been involved in providing “On-Demand” B2B web applications. He has extensive experience implementing Rich Internet Application.

Acknowledgements

Matthew Vranicar – Piocon Technologies, Inc.

45

Paper 433

