Development - Frameworks

“Real” ADF Faces: Lessons Learned from the Trenches

Ara Kassabian, Jet Propulsion Laboratory
California Institute of Technology
National Aeronautics and Space Agency

Introduction

One of the goals of the JavaServer Faces (JSF) specification was to create a framework that encouraged the creation of third-party component libraries. In the three years since the release of JSF 1.0, that hope has been realized with the advent of such popular component suites as Apache Tomahawk, ICEfaces, RichFaces, and of course Oracle ADF Faces
. Each component suite has its strengths and weaknesses. When developing with intent to deploy to Oracle Application Server, however, a natural choice is ADF Faces, which is tightly integrated with JDeveloper and supported on OC4J as a “most favored” platform. Such a choice faced our development team in June 2007, while designing the architecture of a new application, E-Copy.

E-Copy is an online system allowing JPL employees and affiliates to submit and track document duplication jobs over the JPL Intranet. Users log in to E-Copy and create a job ticket by uploading electronic copies of their documents. At the same time, they specify job options (paper size, ink color, etc.), a list of recipients, the date/time at which the job needs to be completed, and account information. At the other end, E-Copy allows operators at the JPL Duplication Center to receive and process the jobs, changing the status of job tickets as they are processed. Finally, an administrator interface allows super-users to export job ticket details to Excel, purge job documents, and update the “E-Copy News” sidebar with information relevant to end users.

After analyzing the system high-level requirements, the development team chose to develop E-Copy as a JSF/EJB application, using ADF Faces as the JSF component library and framework and deployed to Oracle Application Server 10.1.3.1. Some reasons for choosing this combination of technologies were:

· The form-oriented nature of the application lent itself to a web implementation using a minimum of “rich client” (AJAX) functionality.

· ADF Faces provides an Oracle look-and-feel “out of the box”. It was hoped that this would increase adoption among end users, who are familiar with this look-and-feel through previous experience with Oracle E-Business Suite.

· ADF Faces provided all the components necessary to support the E-Copy requirements, including: tab/panel components; process components (for creating “wizards”); data-driven paged tables; a file upload component; several layout components; etc.

· EJB 3.0, which relies on the Java Persistence API (JPA) for object-relational mapping, is powerful and—finally!—easy to use. The OC4J JPA implementation uses Toplink—a mature, well-known object-relational mapping tool—under the hood.

· In addition to a component library, ADF Faces also includes a data binding framework, with GUI drag-and-drop support in JDeveloper. Because two of the three project developers were new to JSF (and, indeed, to Java), it was hoped that this would lower their learning curve and increase their productivity.

E-Copy went live in January 2008, eight months after the project kick-off, and has generally been well received by end users. The project team’s experience with ADF Faces has been used as a benchmark by other projects at JPL looking to develop JSF applications. This paper summarizes the team’s experience and analyzes what the team felt to be the strengths and weaknesses of ADF Faces. Based on that analysis, we make suggestions for future enhancements.

Assumptions

We assume in the following sections that the reader is familiar with the base technologies discussed in this paper. Specifically, we assume familiarity with the following base technologies:

· JavaServer Faces (JSF) 1.1

· Enterprise JavaBean (EJB) 3.0

· All subordinate specifications, such as Java Server Pages (JSP) 2.0, Servlet API 2.4, etc.

· ADF Faces 10.1.3.1

In addition, a passing acquaintance with web design patterns and object-relational mapping principles and design patterns would be helpful.

The interested reader is directed to the Java web site (http://java.sun.com) or to [ADFHOME] for reference material and tutorials related to the above-mentioned subjects.

Overview of ADF Faces

As mentioned above, ADF Faces
 is both a JSF component library and a data binding framework. The component library consists of over 100 components ranging from simple text input boxes and labels to sophisticated layout components. The binding framework, which is designed to work with both EJB 3.0 and ADF Business Components
, aims to minimize the amount of coding by web developers through its drag-and-drop integration with JDeveloper.

From an architecture point-of-view, ADF Faces consists of two major modules, the JSF component suite and the binding framework. It is possible to use the component suite without using the binding framework and vice-versa. In E-Copy, both pieces were used. Table 1 lists the components of ADF Faces in detail.

Table 1: ADF Faces Components
	ADF Faces Module
	Component

	Component Suite
	A tag library of JSF components

	
	A design-time API that allows JDeveloper to: display a visual representation of the ADF Faces components in its JSP design view and to display ADF Faces data controls in the JDeveloper Data Control Palette

	
	The AdfFacesFilter servlet filter, which initializes the AdfFacesContext object (and, by extension, ADF Faces artifacts) at the beginning of each request

	Binding Framework
	The AdfBindingFilter servlet filter, which initializes the data bindings and automatically loads data from the model at appropriate points in the JSF lifecycle

	
	JSF phase listeners that augment the JSF lifecycle and allow ADF Faces to move data between the model and view layers

	
	XML configuration files (auto-generated in JDeveloper) that maintain metadata information, such as: the structure of model layer objects, the mapping of GUI components to model objects, and general configuration information

	
	A security framework that supports tailoring the user interface to match the logged in user’s privileges based on declarative rules (maintained in XML configuration files)

	(All)
	JAR file libraries containing the ADF Faces implementation code

ADF Binding Framework Details
The ADF Binding Framework makes it possible to bind user interface components to elements in the project data model. The process is described graphically in Figure 1
. The developer enters a JSF Expression Language (JSF EL) entry in one of his JSF components (ADF Faces or standard JSF). If the expression references the binding context (e.g., #{bindings.XYZ}), the binding framework will resolve the expression by accessing the binding framework metadata, as shown in the figure.
[image: image1.png]
Figure 1: Overview of the ADF Binding Framework
[image: image2.png]
Figure 2: ADF Binding Framework Metadata Files

A number of files, listed in Figure 2, help in the resolution process:

· Bean definition files, one per Java class or enum in the data model, describe the JavaBean properties and public methods of their corresponding Java classes. For example, JobTicket.xml describes the properties and public methods of JobTicket.java. For each property, the bean definition file captures the property data type, plus user-defined GUI hints (label, maximum length, validator, etc.).

· The model data control description file (called DataControls.dcx by default) describes a set of “data controls”, or business classes with a public interface that will be made accessible through the binding framework. In an EJB project, data controls are typically session beans.
· The client data binding description file (called DataBindings.cpx by default), located in the view layer, lists those JSF pages that use the binding framework and, for each page, lists the location of the corresponding page definition file. The client data binding description file also lists those data controls that will be used in the view project. In this way, a single model may be “wired” to multiple view projects, each of which is using a subset of the available data controls.

· Page definition files, one per JSF page that is using the binding framework, describe the framework elements used in the page. Each page definition consists of two sections: The first section, called “bindings”, lists a set of methods and abstract GUI elements and maps these to methods and properties in the data controls. Abstract GUI elements include: table, tree, graph, list, attributeValues. The second section, called “executables”, lists those actions that will be executed by the binding framework at appropriate points in the JSF lifecycle (typically, at the beginning and end of each HTTP request). Each element in the “executables” section is linked to an element in the “bindings” section, which it uses to perform its action. Elements in the “executables” section include: methodIterator, invokeAction, and accessorIterator.
· JSF EL elements in the JSP/JSF pages themselves link elements of the page to elements in the page definition files. Typically, these expressions begin with #{bindings…}, “bindings” being the JSF managed bean created and initialized by the binding framework at the beginning of each HTTP request, based on the content of the page definition files.

[image: image3.png]
Figure 3: Internal dependencies of the ADF binding framework metadata files

The resolution process, and the dependencies of the metadata files upon each other, is depicted graphically in Figure 3.
[image: image4.png]
Figure 4: ADF/JSF lifecycle

In order to “do its thing”, the ADF binding framework augments the JSF lifecycle with addition lifecycle phases (see Figure 4). These additional phases are wired into the standard lifecycle using a JSF phase listener.
Overview and Architecture of E-Copy

While this paper is primarily an evaluation of the ADF Faces component suite and framework, an understanding of the E-Copy application will shed light on our evaluation of ADF Faces.

The Business Viewpoint

As mentioned in the overview, E-Copy allows JPL users to submit duplication jobs online to the JPL Duplication Services department. It also allows operators to track and update the status of submitted job tickets. Finally, E-Copy allows application administrators to manage the system and extract reports. Figure 5 to Figure 10 display screen shots of the E-Copy application. Note the differences in the GUI between the end user, operator, and administrator views. Not only do operators and administrators get access to additional tabs and GUI widgets; even the behavior of the application is modified to match the user’s role.

An important detail of this overview is the fact that E-Copy supports the submission of two types of duplication jobs:

1. So-called “document tickets”, in which users upload their job documents (technical papers, proposals, presentations, etc.)

2. “Phonebook tickets”, in which users request hard copies of the various JPL phonebooks (white pages, yellow pages, blue pages, etc.)

The two types of job tickets differ in the details of the submission process (e.g., when submitting a phonebook ticket, end users do not need to upload any documents, but they do need to specify the type(s) of phonebook being requested). Once the ticket is submitted, however, both types of ticket follow the same lifecycle.

[image: image5.png]
Figure 5: Main E-Copy Page (End User View)
[image: image6.png]
Figure 6: Main E-Copy Page (Operator View)

[image: image7.png]
Figure 7: E-Copy Search Page (Administrator View)

[image: image8.png]
Figure 8: E-Copy "Create New Document Ticket" Wizard (Step 1)
[image: image9.png]
Figure 9: E-Copy “View Ticket Details” page, showing action buttons (Administrator View)
[image: image10.png]
Figure 10: E-Copy “Edit Ticket” page, showing a document ticket
[image: image11.png]
Figure 11: E-Copy Object Domain Model (JPA Entities)
E-Copy Data Layer

The E-Copy data is stored in two locations:

3. Job ticket information (header, options, history, etc.) is stored in an Oracle 10g database schema.

4. Actual job files are stored on the filesystem. The file paths are stored in the E-Copy database tables.

The structure of the E-Copy database schema is fairly “vanilla”. The main table, JPLECP_JOB_TICKETS_ALL, contains the ticket header information. Dependent tables contain the related data. Proper use of database indices and constraints ensures that the integrity of the data is maintained and that data is retrieved in a performant manner.

An important decision during the schema design was the mapping of the two types of job tickets (document and phonebook ticket) to the database schema. Looking ahead to the object-relational mapping, the team recognized the need to choose between the four standard class hierarchy mapping patterns
:

5. Map the entire class hierarchy to a single table

6. Map each concrete class to its own table

7. Map each class to its own table

8. Map the classes into a generic table structure

After examining the expected data access patterns, the team decided to use the first design pattern (map the entire class hierarchy to a single table). Consequently, both types of job ticket are stored in the same JPLECP_JOB_TICKETS_ALL table. A discriminator column, TICKET_TYPE, distinguishes between document and phonebook ticket records.

E-Copy Model Layer

The E-Copy model layer consists of four types of objects:

9. JPA entity classes mapped to database tables

10. EJB session beans acting as the service façade to the entity classes

11. JDK 1.5 enum classes to add type safety to database columns
 accepting a limited set of values (e.g., true/false columns). An important enum class is EcopyJobTicketState, which is used to encapsulate the valid states and state transitions of job tickets.

12. Utility and helper classes, primarily to perform various business-rule validations

Figure 11 (Page 8) shows the E-Copy object model. With the exception of the JobTicket abstract superclass, there is a one-to-one mapping between database tables and entity classes.

In addition to purely Java classes, a number of XML files also exist in this layer of the application:

· persistence.xml is the configuration file specified by the JPA specification

· For each entity and session bean class, the ADF Faces binding framework creates a same-named XML file to hold metadata information for the class. The metadata stored by the XML file includes: list and description of the JavaBean properties and public methods of the class; GUI information for each property, such as data type, label, maximum length, validator name, etc. The binding framework then uses this metadata in the view layer to connect model elements to GUI elements.

View Layer

The E-Copy view layer consists of the usual JSF/web application artifacts (web.xml, faces-config.xml, JSF/JSP pages, managed bean classes, etc.), with the addition of ADF Faces-specific artifacts (adf-faces-config.xml, page definition files, DataBindings.cpx, etc.). The SRDemo sample project
 was used as a model and many of the view layer design patterns used in E-Copy were imported from SRDemo.
Some noteworthy artifacts of the E-Copy view layer are described in detail in the following sections.
ViewTicketDetails.jspx

This multi-purpose page is the most complex JSF page in the application. Its purpose is to display the details of a ticket and allow the logged in user to perform a number of actions on the page (see Figure 9 above for a screen shot of this page). The complexity of the page derives from the following:
· The actions available on this page depend on the role of the logged in user, as well as the status of the job ticket.

· The same page is used to display the details of document tickets and phonebook tickets. Consequently, different sections of the page will be hidden or rendered depending on the ticket type.

· A section of the page (the “operator notes”) is only visible to operators.

· The page supports a printer view, in which extraneous GUI elements (such as the button bar) are hidden.

· Some of the buttons launch a modal dialog to collect additional user input. The HTTP request is submitted as a partial submit. As a result, partial page rendering (PPR) is used to update sections of the page based on the user input. For example, the “Cancel Job” button launches a dialog box in which the user enters his reason for cancelling the ticket. Upon completion, the displayed ticket status is updated to “Cancelled” and a row is added to the ticket audit trail table.
Despite its complexity, the design of the page is straightforward. JSF EL is used to display and hide GUI elements based on logic stored in the page backing bean and/or the model
. As mentioned above, PPR is used to update sub-sections of the page upon return from any modal dialog.
“Create New Document Ticket” and “Create new Phonebook Ticket” Process Trains

These two wizards (process trains) allow the end user to create and submit a new document or phonebook ticket (see Figure 8 for a screen shot of the first page of the “Create New Document Ticket” wizard). While relatively straightforward, the creation of these wizards enabled the team to exercise the process train component.
Pop-Up Dialogs

Pop-up dialogs were used in a number of places in E-Copy: As confirmation dialogs (e.g., “Do you really want to do ABC?”); to collect additional information from the user (e.g., “Enter cancellation reason”); as search boxes for input fields where a simple drop-drown was not sufficient (e.g., in the project and task fields); to handle sub-tasks, such as uploading a job ticket document; etc. The ADF dialog framework was used throughout.
Lessons Learned

Components

The majority of ADF Faces components functioned “as advertised”. While not sexy, in the AJAX sense, the team found the functionality provided by the components to equal or exceed that provided by other JSF component suites on the market
. Of the 100-odd components available, E-Copy used a large percentage. At no time, however, was GUI design restricted by the lack of a needed component.

Not to be discounted is the ease with which ADF Faces made it possible to create well-styled, professional looking pages based on a pre-tested user look-and-feel. The out-of-the-box Oracle look-and-feel is particularly well suited for organizations with pre-installed Oracle applications, where end users are already familiar with the look-and-feel.
Conformance to Standards

The ADF Faces are JSF-compliant components. They may be deployed on any J2EE 1.4-compliant servlet container with the addition of the JSF 1.1_02 libraries (either the reference implementation or Apache MyFaces). In addition to Oracle Application Server, ADF Faces is also certified with a number of third-party servers, such as JBoss, IBM WebSphere, and Weblogic. Notably missing from the list is Glassfish. Although the E-Copy team deployed and tested ADF Faces only on Oracle Application Server, it is our belief (based on our experience with the product) that it should be readily deployable to Glassfish as well, though possibly some additional libraries may need to be packaged with the web application.
Browser Support

Overall, ADF Faces browser support was excellent. The three browsers in general use at JPL are: Internet Explorer 6.0/7.0, Firefox 2.0, and Safari 2.0. With one minor issue (listed below in the “Dialog Framework” section), ADF Faces performed well and consistently on all three browsers. It even performed well in Opera, which is not on the official list of supported browsers.

Performance

From a performance point-of-view, response times were sometimes limited by the necessary round-trip to the server, even in cases where partial-page rendering (PPR) was used. Generally speaking, response times in a lightly loaded environment (1-10 concurrent users) averaged between 200-500 milliseconds. A notable exception was the response time of pop-up dialogs. Because ADF Faces opens a new browser window for each pop-up dialog (including the date picker control), response times in those cases averaged around 1-2 seconds. Nevertheless, while not stellar, response times did remain stable even in a more heavily loaded environment (20 concurrent users) and they were deemed acceptable by E-Copy stakeholders.

Bugs

Of course, no software is free of bugs. Other ADF Faces developers have reported bugs on the Oracle JDeveloper forum. In the case of the E-Copy team, the only major bug that was encountered concerned the process train model. Following the recommendations of the Oracle ADF Faces Developer’s Guide
, the process train models for the “Create New Document Ticket” and “Create New Phonebook Ticket” wizards were configured in faces-config.xml as application-scoped managed beans. However, stress testing of the application (with two concurrent users continuously cycling through the “Create New Document Ticket” process) resulted in runtime exceptions. Analysis of the log files and the Java source code suggested that the process train model framework superclasses (provided by ADF Faces) were not thread-safe. Re-configuring the process train model managed beans to be session-scoped solved the issue. It should be noted, however, that our solution is just a band-aid because it assumes that only one process train (wizard) will be active per HTTP session. In an application where the user is allowed to work on multiple wizards in separate browser windows, the band-aid solution would not work.

Dialog Framework
The ADF Faces dialog framework is a powerful way of displaying pop-up dialogs and capturing user input from those dialogs. It was used extensively throughout the E-Copy application. It does suffer from a few minor drawbacks, which we list below:

· A minor bug in the generated JavaScript prevents modal dialogs from being displayed correctly in FireFox 2.0 (the parent window is not disabled)
. Oracle reports that it will fix this bug in the 10.1.3.4 release of ADF Faces.

· There is no out-of-the-box equivalent to the Java Swing JOptionPane class
, nor is it possible to easily create such a facility, due to the nature of the JSF/ADF lifecycle and the need to extensively tinker with the ADF Faces dialog framework
.
· If a page displays a copy of itself in a dialog box (the most common scenario being when a page displays a print view of itself in a pop-up dialog box), then problems occur if the user closes the dialog by clicking on the close box
 rather than a “Close Window” button or hyperlink wired to a returnActionListener. If this occurs, the dialog framework gets confused and thinks the dialog is still displayed. The next HTTP request is therefore treated as if it came from the open dialog box. In the scenario listed above, the next HTTP request will result in the page being redrawn in its print view.

A workaround is to use custom JavaScript in the onUnload event handler of the <afh:body> tag to trap the window closure event and programmatically trigger the “Close Window” button or link
.

Custom JavaScript

Though JSF aims to free the developer from the need to write JavaScript, it does not quite succeed. Custom JavaScript was used in E-Copy to handle the following situations:

· Enabling/disabling of related GUI components—While PPR could have been used to handle this situation, custom JavaScript does the job faster, because it avoids a trip to the server.

· Invoking the browser “Print…” dialog box

The main issue encountered by the E-Copy team in adding JavaScript was the following. The majority of ADF Faces tags include JavaScript event handler properties (onClick, onBlur, etc.). However, the JavaScript code attached to those properties needs to reference the HTML tags rendered by the ADF Faces tags. In the case of simple tags, this is straightforward: it suffices to set the ID property of the tag. The ID is automatically carried over to the generated HTML tag as either the “name” attribute or the “id” attribute. Unfortunately, this technique fails utterly in the case of complex tags (e.g., the date picker) because a single ADF Faces tag may generate multiple HTML tags. Only one of those HTML tags will “inherit” the ID of the ADF Faces tag, making the other HTML tags inaccessible to the JavaScript. Another situation in which the technique fails is where the ADF Faces tags are on a pop-up dialog page. In such cases, ADF Faces may modify the ID of the rendered HTML tag(s) by prefacing the user-defined ID with a prefix of the form “_idn:”, where “n” is a number (e.g., “_id1:”).

The most obvious remedy to the situations described above is to enclose the ADF Faces tag by an HTML <div> and to attach the JavaScript to the <div>. Unfortunately, this technique seldom works, due to a tendency of ADF Faces to re-arrange the order of tags on the page. Thus, the <div> tag may indeed be rendered; however, it will generally enclose nothing.

The actual solution is to enclose the ADF Faces tags by one of the ADF Faces HTML layout tags (<afh:rowLayout> or <afh:tableLayout>). These tags render an HTML <table> in the proper location, with the ID attribute set correctly. JavaScript may then be attached to the tag.

Binding Framework

The ADF Faces binding framework was particularly disappointing to the E-Copy team, given its promise of drag-and-drop productivity, for the following reasons:

· The documentation is poor, buggy, and confusing—Two ADF Faces developer’s guides are provided: ADF Faces Developer’s Guide for Experienced Java Developers and ADF Faces Developer’s Guide for Forms/4GL Developers. Both guides describe the binding framework. However, information in the two guides is not always equivalent. The two guides may contradict each other or recommend contradictory approaches to handle the same technical problem. In some cases, the information is flat-out wrong
. This situation is somewhat mitigated by the JDeveloper forums and the extensive blogs of senior Oracle developers like Frank Nimphius, Duncan Mills, Shay Shmeltzer, and others, all of which constitute an invaluable resource.
· Though the aim of the binding framework is to minimize or eliminate hand-coding in the backing beans through drag-and-drop from the JDeveloper Data Control Palette, in practice, the team found itself re-coding many generated expressions back in the backing bean. The wiring of command buttons is particularly vexing: drag-and-drop will automatically connect a command button to a corresponding action method of the model. In a real application, however, successful execution of a command generally generates a corresponding confirmation messages (“Action XYZ was completed successfully”). The drag-and-drop wiring provides no mechanism for inserting confirmation messages. Thus, in most cases, the action handler of command buttons had to be re-coded in the backing bean.

· When a JPA entity is updated (using the EntityManager.mergeEntity method), the entity manager returns an updated copy of the entity object. The original copy of the entity is considered obsolete. In JSF pages that rely on ADF iterators, the updated copy of the entity object must be inserted back into the iterator. However, the binding framework offers no way to do this except to refresh the entire iterator programmatically by calling the executeQuery method. It follows, therefore, that any update operation must be immediately followed by a refresh operation. This requirement by itself means that many of the auto-generated bindings must be re-coded as backing bean methods.

· Even when a JSF page is used to create a new instance of an object, the page must still be driven by a method iterator returning a collection of similar objects (e.g., the “Create New Document Ticket” wizard must be driven by an iterator wired to a session bean method that returns a collection of DocumentTicket objects). The exception to this rule is when the data types of the new object’s field are scalar types (i.e., the new object does not have any have any collection properties, as List<JobRecipient> or List<JobStatus>). Aside from this exception, an invokeAction on the JSP page is used to create an empty row in the method iterator. This row is then populated by the user.
The problem occurs when the creation form is a multi-step wizard and the developer wishes to save the user-entered data when navigating between pages
. As soon as the object is saved and the iterator is refreshed (for reasons listed in the previous bullet), the row ceases being the new row. Thus, in addition to refreshing the iterator, the developer needs to programmatically reset the current row of the iterator using the method DCIteratorBinding.getRowSetIterator().setCurrentRow(). Unfortunately, the rowset iterator only includes rows up to the iterator’s RangeSize property. This property is automatically set to 10 by JDeveloper when drag-and-drop is used. For iterators wired to a collection with more than 10 objects, setCurrentRow() will fail unless the new row is one of the first 10 objects in the collection. The fix is to reset the RangeSize property to its default value of blank (infinite range size). In addition to being inconvenient, this procedure is counter-intuitive; there is no a priori reason for the iterator current row pointer to reset itself simply because the iterator was refreshed.
· The binding framework is not “inheritance-aware”. This manifests itself in a number of ways:

When an iterator maps to a mixed polymorphic collection of JPA entities (e.g., List<JobTicket>, actually a collection of DocumentTicket and PhonebookTicket objects), each member of the collection is treated as if it were a concrete instance of the declared class (JobTicket). This works in GUIs where the collection members are displayed together (e.g., in a data table). However, in cases where subclass-specific information needs to be displayed, the binding framework provides no method to “downcast” the member of an iterator to a sub-class. The only way to do this is to use the dataProvider property of the iterator, which returns the underlying object instance. This works but is problematic, because none of the metadata defined in the XML metadata files (labels and other GUI hints) is accessible. This forces developers to either abandon the use of the XML metadata files for storing GUI hints or to hard-code the information in the JSF page.
A related problem shows up when the super and sub-classes undergo evolution during development. ADF/JDeveloper generates an XML metadata file for each class in the data model, regardless of whether the class is abstract or concrete. The XML metadata files for the sub-classes repeat information already available in the XML metadata file of the superclass. As JavaBean properties are added and removed from the superclass, the order in which the properties are listed in the XML metadata files changes. In the example listed above, the first listed property for the JobTicket class may be “Ticket Number”, while the first listed property for the DocumentTicket subclass may be “Description”. Unfortunately, it turns out that the binding framework accesses property metadata by position, not by name. As a result, the framework may access and display the wrong data in the JSF page if the iterator is defined as returning a collection of superclass objects and the element being displayed is an instance of the subclass
.

Continuing with the above example, we find that the problem gets compounded when the subclasses introduce properties that are collections. In such cases, it becomes very difficult to create master-detail pages. This limitation led the E-Copy team to create two separate job creation wizards (“Create Document Ticket” and “Create Phonebook Ticket”) with separate JSF pages, even though only 2 out of 5 steps were different
.
Though none of the above issues is a showstopper, they do make it awkward to use the binding framework in an object-oriented way.
· Neither the ADF binding framework nor JDeveloper do much design-time or compile-time error detection on framework bindings. As a result, the majority of binding errors show up as runtime exceptions. Since JSF error detection is notoriously poor and since ADF runtime error detection is not much better, this can seriously complicate application debugging. In one instance, an error that was introduced by a typo in the data bindings on Step 5 of the “Create New Phonebook Ticket” wizard did not show up until the user completed the wizard and accessed Step 1 of the same wizard by attempting to create another phonebook ticket. Many hours of pouring over the code were required before the typo was identified and corrected.

· The ADF binding framework requires that all mapped data model entities be located in a single Java package or in sub-packages of the same package (e.g., gov.nasa.jpl.nbs.ecopy.model). During development, the E-Copy team wanted to locate some entities in a separate Java package (gov.nasa.jpl.nbs.oraapps.fnd) because these entities contained general user information not directly related to E-Copy. Indeed, the team wished to move these entities to a separate JDeveloper project. This proved to be impossible, however, due to the above-mentioned limitation of the ADF binding framework.
In conclusion, while the E-Copy development team liked the ability to quickly wire the GUI to the data model via drag-and-drop, it concluded that the time lost debugging minor bugs and working around the limitations of the framework overwhelmed any initial time savings.

Error Handling

The ADF binding framework provides base classes for handling binding container exceptions. Unfortunately, the classes and the error handling framework are not well documented
. In addition, the exception handling framework only handles binding container exceptions. JSP exceptions are unhandled and continue to result in a “500: Internal Server Error” page. Developers using ADF Faces are therefore advised to handle JSP errors separately (for example, via the <error-page> tag in web.xml).
Security Framework
The ADF binding framework includes a security framework based on the J2EE security model. This framework supports, in a declarative way, both authentication and authorization. The E-Copy team did not use this security framework because the application’s user roles were stored in the Oracle database (specifically, in Oracle E-Business Suite security tables). Thus, we did not have an opportunity to work with and evaluate the ADF security framework.
Summary

It has become customary for application server vendors to offer a suite of JSF components to augment their base product. ADF Faces is Oracle’s offering and complements Oracle Application Server and JDeveloper. This brand association may deter some from using ADF Faces. Others may be cautious, not knowing whether ADF Faces will live up to its marketing hype.

The E-Copy experience with ADF Faces was generally positive. The team was enthusiastic about the capabilities of the product and the professional look-and-feel of the components. One notable area where the product fell short was the binding framework. As part of our post-mortem analysis, therefore, we recommended using ADF Faces on other division projects, provided that developers stayed away from the binding framework.

References

	[ADFHOME]
	The home page of ADF Faces at http://www.oracle.com/technology/products/adf/index.html

	[AMBLER]
	Ambler, Scott W. “Mapping Objects to Relational Databases: O/R Mapping In Detail”, at http://www.agiledata.org/essays/mappingObjects.html

	[DEVGUIDE]
	Oracle ADF Developer’s Guide for Experienced Java Developers, at http://www.oracle.com/webapps/online-help/jdeveloper/10.1.3/state/content/navId.4/navSetId._/vtTopicFile.adfdevguide%7Ctoc%7Ehtm/vtTopicId./

	[SRDEMO]
	Download from the JDeveloper Extensions Exchange, at http://www.oracle.com/technology/products/jdev/samples/srdemo.html

� A fairly comprehensive comparison of JSF component suites is available at � HYPERLINK "http://www.jsfmatrix.net" ��http://www.jsfmatrix.net�.

� See [ADFHOME]

� Formerly known as BC4J

� All figures referenced in this section are reproduced from the JDeveloper help files; specifically, from “Developing J2EE Applications” (“Getting Started with Oracle ADF”.

� See [AMBLER], Section 2

� Or, alternatively, entity class JavaBean properties

� See [SRDEMO]

� Essentially, the value of the “rendered” attribute, which is available on every ADF Faces component, is set to a JSF EL expression that references a Boolean method on the backing bean. The backing bean method, in turn, may call methods on model objects to calculate its return value.

� Specifically, the team considered Apache Tomahawk, Project Woodstock, and ICEFaces.

� [DEVGUIDE], Chapter 11, “Creating a Process Train Model”, Steps 2 and 3

� Bug #6000134 on Metalink

� JOptionPane makes it easy to pop up a standard dialog box that prompts users for a value or informs them of something. It provides static methods that allow the developer to open a model dialog and collect information from the user in one method call.

� Note that this deficiency has been addressed in the upcoming 11g release of ADF Faces.

� The “X” icon on the window title bar in Microsoft Windows or the red bubble in MacOS

� The actual procedure is a little complicated, because the onUnload event handler is triggered when the “Close Window” button is clicked as well as when the window is closed from the close box. Thus, the JavaScript needs to distinguish between the two situations by examining the close event object or some other flag. In addition, the JavaScript rendered by ADF Faces for the “Close Window” button onClick handler is dynamic. The JavaScript handler for the onUnload event therefore needs to identify it and execute it dynamically using the JavaScript eval() method.

� A particularly glaring example of documentation being wrong is related to iterator refresh modes. The documentation describes several iterator refresh modes (always, ifNeeded, etc.). However, several of these modes are not supported when the data model uses EJB technology. Some modes are not supported at all.

� This prevents loss of data if the user unexpectedly disconnects from the server.

� In the example, the framework may display “Description” instead of “Ticket Number”

� Note that master-detail pages do not necessarily imply master-detail tables. Since each JSF page that uses the ADF binding framework is driven by an iterator, a table displaying sub-information must be driven from a sub-iterator. This is enough to introduce the difficulties described above if the master iterator returns a polymorphic mixed collection and the sub-iterator is specific to a sub-class. In the ticket creation wizards, it would have been ideal to drive the wizard from an iterator that returns a one-element collection of JobTicket, and to define two sub-iterators, one for DocumentTicket instances and one for PhonebookTicket instances. This did not prove possible.

� The documentation consists almost entirely of very sketchy Javadocs, plus the SRDemo sample application (see [SRDEMO]).

3
437

