Development—Database Programming

Stop Doing Transactions Wrong!
Iggy Fernandez, Database Specialists
INTRODUCTION
Back in 1996, Oracle applied for a patent for the well-known techniques it now uses for concurrency control. Here are some quotes from the patent documents (Reference [2]).

“To describe fully consistent transaction behavior when transactions execute concurrently, database researchers have defined a transaction isolation level called “serializability.” In the serializable isolation level, transactions must execute in such a way that they appear to be executed one at a time (“serially”), rather than concurrently.”

“In other words, concurrent transactions executing in serializable mode are only permitted to make database changes they could have made if the transactions had been scheduled to execute one after another, in some specific order, rather than concurrently.”

The serializability criterion for database consistency is very well known and is mentioned in the ANSI SQL standard (Reference [1]). Here is an excerpt.

“A serializable execution is defined to be an execution of the operations of concurrently executing SQL-transactions that produces the same effect as some serial execution of those same SQL-transactions. A serial execution is one in which each SQL-transaction executes to completion before the next SQL-transaction begins.”
Necessary and Sufficient Conditions

Serializability is not a necessary condition for database consistency even though it is certainly a sufficient condition. In other words, serializability is more restrictive than strictly necessary. A Microsoft researcher (Reference [9]) recently described another “sufficient condition” for database consistency called “semantic correctness” which is less restrictive than serializability. The following example is provided in Reference [9].

“For example, a stock trading application might have a buy transaction type that takes as parameters the identity of a stock and the number of shares, n, to be purchased and a result that states ‘when each share was purchased no cheaper unbought shares of the stock existed in the database.’ In a semantically correct schedule, two concurrent transactions, T1 and T2, could each buy some shares at $30 and some at $31 per share, even though initially there are n shares available at $30. First, T1 buys n/2 shares at $30; then, T2 buys n/2 shares at $30; then, since there are no more shares available at $30, T1 buys n/2 shares at $31; and, finally, T2 buys n/2 shares at $31. When each transaction terminates, its result is true since, when each share was bought, no cheaper unbought shares existed in the database. The final state could not have been produced by a serializable schedule since the purchase price of all shares bought by one or the other of the two transactions would have been $30.”
As a general rule, database consistency schemes that guarantee serializability are also more restrictive than strictly necessary i.e. they enforce restrictions that are sufficient but not absolutely necessary, as illustrated in Fig. 1.

[image: image1.png]All Executions

Consistent Executions

Semantically Correct Executions

Serializable

Executions

Database
Consistency
Scheme

Fig. 1: The relationship between different classes of executions.

Houston, We Have a Problem!

The following quote is from an academic paper by researchers at the University of Massachusetts at Boston (Reference [5]).

“All major database system products are delivered with default non-serializable isolation levels, often ones that encounter serialization anomalies more commonly than SI, and we suspect that numerous isolation errors occur each day at many large sites because of this, leading to corrupt data sometimes noted in data warehouse applications.”
The next quote is from the chapter on Data Consistency and Concurrency in Oracle Database 11g Concepts Manual (Reference [10]). The language has not changed since the days of Oracle 7 and can be traced to an Oracle white paper written in 1995 (Reference [6]).

“Application designers must take into account the fact that reads in Oracle Database do not block writes as they do in other systems. Transactions that check for database consistency at the application level can require coding techniques such as the use of SELECT FOR UPDATE. This issue should be considered when applications using serializable mode are ported to Oracle Database from other environments.”

In another place in the same chapter, the caution is repeated.

“Because Oracle Database does not use read locks in either read-consistent or serializable transactions, data read by one transaction can be overwritten by another. Transactions that perform database consistency checks at the application level cannot assume that the data they read will remain unchanged during the execution of the transaction even though such changes are not visible to the transaction. Database inconsistencies can result unless such application-level consistency checks are coded with this in mind, even when using serializable transactions.”
The next quote is from Reference [5].

“The classical justification for lower isolation levels is that applications can be run under such levels to improve efficiency when they can be shown not to result in serious errors, but little or no guidance has been offered to application programmers and DBAs by vendors as to how to avoid such errors.”

Isolation Levels

Concurrency control duties put a heavy burden on the DBMS. For example, if a write-transaction modifies a data item, it is advisable that other transactions not be allowed to read the modified value until the write-transaction commits. “Pessimistic” concurrency control schemes such as those used by Microsoft and IBM achieve this by forcing read-transactions to acquire “read-locks” on the data items they want to read . A read-transaction will not be able to acquire a read-lock if a write-transaction has modified the data item in question and has not yet saved its modifications.

The “READ UNCOMMITTED” isolation level provides the application developers with the ability to signal to the DBMS that read-locks are not necessary because no write-transactions are anticipated (as in the case of a Data Warehouse). The DBMS then no longer has to expend effort in acquiring read-locks and efficiency is thereby improved.

Oracle offers three isolation levels, one of which is no longer documented in the Oracle manuals.

1. The default isolation level corresponds to the transaction setting “isolation_level=read_committed” and provides statement-level consistency.

2. A second, stricter, isolation level, activated using the transaction setting “isolation_level=serializable,” provides transaction-wide consistency and is referred to as “snapshot isolation with the first-updater-wins rule” in the academic literature (Reference [5]).

3. A third, very strict isolation level, activated using the database setting “serializable=true” (Oracle 9i and prior versions) or “_serializable=true” (Oracle 10g and 11g), guarantees serializability, but only at the expense of table-level read-locks on all tables accessed by the transaction. It is not documented in the Oracle 10g or 11g manuals.

[image: image2.jpg]All Executions

Consistent Executions

isolation_ level=read committed

Serializable Executions

isolation_level=serializable

_serializable
=true

Fig. 3: The relationships between Oracle isolation levels.

Statement-level Consistency

This is the default isolation level provided by Oracle and corresponds to the transaction setting “isolation_level=read_committed.” Every SQL statement operates on a database snapshot containing only data values that were committed before the statement began. Every new statement within the same transaction operates on a different snapshot and, therefore, this isolation level only provides statement-level consistency.

Readers do not acquire “read-locks” on rows satisfying their selection criteria and, therefore, do not block writers. Writers acquire exclusive locks on rows that they modify and, therefore, they block other writers, but they do not block other readers.

If a statement retrieves a data block and finds that it has been modified since the statement began, it searches the “rollback segments” for the prior version of the block. If the prior version has aged out of the rollback segments, the statement fails with the well-known “ORA-1555” error: “Snapshot too old.”
This isolation level can cause inconsistent results if used in inappropriate circumstances. This is illustrated in the examples that follow.

Transaction-level Consistency

This non-default isolation level avoids most errors that can occur at the default isolation level and is activated using the transaction setting “isolation_level=serializable.” It is referred to as “snapshot isolation with the first-updater-wins rule” in the academic literature. Every SQL statement operates on a snapshot of the database containing only data values that were committed before the transaction began. Every statement within the same transaction operates on the same snapshot and, therefore, this isolation level provides transaction-level consistency.

The other significant difference between this isolation level and the default isolation level is that Oracle will balk if a transaction attempts to modify a data item that was modified after the transaction began; the transaction will receive the error message “can’t serialize access for this transaction” (ORA-8177).
 This is called the “first-updater-wins” rule.

While transaction-level consistency does a good job at avoiding a plethora of errors including “Lost Updates” (Reference [3]) as well as “Dirty Reads,” “Non-repeatable Reads” and “Phantoms” (Reference [1]), it is subject to a class of error referred to as “Write Skew” (Reference [5]). This is illustrated in the examples that follow.

The First Case of the Disappearing Dollars

The following example illustrates the dangers of the default Oracle concurrency setting (“Statement-Level Read Consistency.”) Create a table called BANK_ACCOUNT as follows.

create table bank_account (

 account# integer,

 balance number

);

insert into bank_account values (1,10);

insert into bank_account values (2,10);

insert into bank_account values (3,10);

The following stored procedure transfers money from one bank account to another. It sleeps for sixty seconds (600 centiseconds) after checking the balances in the accounts, and this artificially introduced timing delay gives plenty of time for a second transaction to read the same data and create a problem.

create or replace procedure debit_credit(

 debit_account in integer,

 credit_account in integer,

 debit_amount in integer

)

is

 debit_account_balance number;

 credit_account_balance number;

begin

 select balance

 into debit_account_balance

 from bank_account

 where account#=debit_account;

 --

 select balance

 into credit_account_balance

 from bank_account

 where account#=credit_account;

 --

 debit_account_balance :=

 debit_account_balance - debit_amount;

 --

 credit_account_balance :=

 credit_account_balance + debit_amount;

 --

 user_lock.sleep(600);

 --

 update bank_account

 set balance = debit_account_balance

 where account# = debit_account;

 --

 update bank_account

 set balance = credit_account_balance

 where account# = credit_account;

 --

 commit;

end;

In the following transaction history, Transaction A and Transaction B each transfer five dollars to the Account #2 and, therefore, the balance in Account #2 should increase by ten dollars.

18:09:14 TRANSACTION A> execute debit_credit(1,2,5);

PL/SQL procedure successfully completed.

18:09:15 TRANSACTION B> execute debit_credit(3,2,5);

PL/SQL procedure successfully completed.

Here are the contents of the BANK_ACCOUNT table after the experiment. The balance in Account #2 is only fifteen dollars instead of twenty dollars.

18:09:21 SQL> select * from bank_account;

 ACCOUNT# BALANCE

---------- ----------

 1 5

 2 15

 3 5

3 rows selected.

Reproducing these anomalous results in the real world is difficult because of the split-second timing that is required, but we cannot guarantee that they will never happen when we use the default Oracle concurrency setting. Fortunately, the problem is easily solved by using the SERIALIZABLE concurrency setting as in the following example in which Transaction B encounters the error “ORA-08177: can’t serialize access for this transaction.”
18:10:41 TRANSACTION A> alter session set isolation_level=serializable;

Session altered.

18:10:41 SQL> execute debit_credit(1,2,5);

PL/SQL procedure successfully completed.

18:10:42 TRANSACTION B> alter session set isolation_level=serializable;

Session altered.

18:10:42 SQL> execute debit_credit(3,2,5);

BEGIN debit_credit(3,2,5); END;

*

ERROR at line 1:

ORA-08177: can't serialize access for this transaction

Here are the contents of the BANK_ACCOUNT table after the second experiment. Transaction B will need to resubmit its work but this is more acceptable than losing a customer’s money.

18:10:49 SQL> select * from bank_account;

 ACCOUNT# BALANCE

---------- ----------

 1 5

 2 15

 3 10

The Second Case of the Disappearing Dollars

The following example is from Reference [5] and shows that Oracle SERIALIZABLE mode will not prevent all anomalous behavior, exactly as Oracle itself warns in Oracle Database 11g Concepts Manual (Reference [10]).
First create a table called BANK_ACCOUNT as follows.

create table bank_account (

 account# integer,

 account_type varchar(1),

 balance number

);

insert into bank_account values (1,'C',70);

insert into bank_account values (1,'S',80);

The following stored procedure transfers money from one account to another. Negative balances are allowed as long as the sum of the balances in the customer’s checking and savings account is greater than zero. Once again, we impose an artificial timing delay after checking the balance in each account.

create or replace procedure withdrawal(

 in_account# in integer,

 in_account_type in varchar,

 in_withdrawal_amount in number

)

is

 checking_account_balance number;

 savings_account_balance number;

begin

 select balance

 into checking_account_balance

 from bank_account

 where account#=in_account#

 and account_type='C';

 --

 select balance

 into savings_account_balance

 from bank_account

 where account#=in_account#

 and account_type='S';

 --

 user_lock.sleep(600);

 --

 if (checking_account_balance + savings_account_balance >= in_withdrawal_amount) then

 update bank_account

 set balance = balance - in_withdrawal_amount

 where account# = in_account#

 and account_type = in_account_type;

 end if;

 commit;

end;

Having learned the lessons of the First Case of the Disappearing Dollars, we use SERIALIZABLE mode in an effort to fend off anomalies.

09:39:58 TRANSACTION A> alter session set isolation_level=serializable;

Session altered.

09:39:58 SQL> execute withdrawal(1,'C',100);

PL/SQL procedure successfully completed.

09:40:01 TRANSACTION B> alter session set isolation_level=serializable;

Session altered.

09:40:01 SQL> execute withdrawal(1,'S',100);

PL/SQL procedure successfully completed.

Our precautions were for naught. The constraint is violated and the sum of the balances in the two accounts falls below zero.

09:40:07 SQL> select * from bank_account;

 ACCOUNT# A BALANCE

---------- - ----------

 1 C -30

 1 S -20

2 rows selected.

What is a programmer to do? He or she must heed Oracle’s warning very seriously and create artificial “choke points” or “serialization points” in every read-write transaction. One way to create the necessary choke point in this example would be to use “SELECT FOR UPDATE” when reading account balances.

Poor Orphan Annie

The following example is taken from Oracle Database 11g Advanced Application Developer’s Guide (Reference [11]).
“One transaction checks that a row with a specific primary key value exists in the parent table before inserting corresponding child rows. The other transaction checks to see that no corresponding detail rows exist before deleting a parent row. In this case, both transactions assume (but do not ensure) that data they read will not change before the transaction completes.

The read issued by transaction A does not prevent transaction B from deleting the parent row, and transaction B's query for child rows does not prevent transaction A from inserting child rows. This scenario leaves a child row in the database with no corresponding parent row. This result occurs even if both A and B are SERIALIZABLE transactions, because neither transaction prevents the other from making changes in the data it reads to check consistency.”
Create the PARENT and CHILD tables as follows and insert one row into the PARENT table.

create table parent (

 parent_name varchar(8)

);

create table child (

 child_name varchar(8),

 parent_name varchar(8)

);

insert into parent values('Warbucks');

The following transaction history shows that it is possible to create an orphan record.

18:25:07 TRANSACTION A> alter session set isolation_level=serializable;

Session altered.

18:25:07 TRANSACTION A> select * from parent where parent_name='Warbucks';

PARENT_N

Warbucks

1 row selected.

18:25:16 TRANSACTION B> alter session set isolation_level=serializable;

Session altered.

18:25:16 TRANSACTION B> select * from child where parent_name='Warbucks';

no rows selected

18:25:19 TRANSACTION A> insert into child values ('Annie','Warbucks');

1 row created.

18:25:21 TRANSACTION B> delete from parent where parent_name='Warbucks';

1 row deleted.

18:25:23 TRANSACTION A> commit;

Commit complete.

18:25:25 TRANSACTION B> commit;

Commit complete.

Here are the contents of the two tables after the experiment.
18:25:28 SQL> select * from parent;

no rows selected

18:25:28 SQL> select * from child;

CHILD_NA PARENT_N

-------- --------

Annie Warbucks

1 row selected.

Poor orphan Annie! The way out of this predicament is to use the trusty SELECT FOR UPDATE (at the expense of concurrency) or to define a referential integrity constraint (which uses SELECT FOR UPDATE internally).

The Case of the Popular Projector

The next example shows that SELECT FOR UPDATE is not a panacea for all problems (if a concurrency limiting strategy can be labeled a panacea). The programmer has tried to implement the business rule that a resource such as a Projector cannot be doubly booked for the same time period. Here is the definition of the SCHEDULES table.

create table schedules(

 resource_name varchar(25),

 start_time date,

 end_time date

);

Here is the stored procedure that is used. It carefully checks that the requested resource has not already been reserved for an overlapping time period. Once again we introduce an artificial time delay to force the problem.

create or replace procedure

resource_scheduler(

 room_name in varchar,

 new_start_time in date,

 new_end_time in date

)

is

 already_reserved integer;

begin

 already_reserved := 0;

 --

 select count(*) into already_reserved

 from schedules

 where resource_name = room_name

 and (start_time between new_start_time and new_end_time)

 or (end_time between new_start_time and new_end_time);

 --

 user_lock.sleep(600);

 --

 if (already_reserved = 0) then

 insert into schedules values (room_name,new_start_time,new_end_time);

 end if;

 --

 commit;

end;

Here is a transaction history showing that the above procedure does not prevent a resource from being double-booked for the same time period. Using SELECT FOR UPDATE on the SCHEDULES table will not help in this example. The solution is to create a separate RESOURCES table and update the resource record as part of the transaction. This concurrency-limiting strategy will prevent two users from making a reservation at the same time, even if the reservation is for different time periods. The second transaction will then fail with the ORA-08177 error.

18:19:08 SQL> alter session set isolation_level=serializable;

Session altered.

18:19:08 SQL> exec resource_scheduler('Projector', '2005/08/31 09:00', '2005/08/31 10:00');

PL/SQL procedure successfully completed.

18:19:10 TRANSACTION B> alter session set isolation_level=serializable;

Session altered.

18:19:10 TRANSACTION B> exec resource_scheduler('Projector', '2005/08/31 09:30', '2005/08/31 10:30');

PL/SQL procedure successfully completed.

Here are the contents of the SCHEDULES table at the end of the experiment.

18:19:17 SQL> select * from schedules;

RESOURCE_NAME START_TIME END_TIME

------------- ---------------- ----------------

Projector 2005/08/31 09:00 2005/08/31 10:00

Projector 2005/08/31 09:30 2005/08/31 10:30

2 rows selected.

The Case of the Dangling DBA

Here is another example of how SELECT FOR UPDATE is not always the right solution. The programmer has tried to enforce a business rule that not more than 100 students may be admitted to a class. The stored procedure first counts the number of students in the class and only inserts a new record if less than 100 records are found. Once again we resort to an artificial timing delay in order to force the problem.

create table schedules (

 course_name varchar(32),

 student_name varchar(32)

);

declare

 i integer;

begin

 for i in 1..99 loop

 insert into schedules values ('DBA 101',i);

 end loop;

 commit;

end;

create or replace procedure

signup(

 in_course_name in varchar,

 in_student_name in varchar

)

is

 signups integer;

begin

 select count(*) into signups

 from schedules

 where course_name = in_course_name;

 --

 user_lock.sleep(600);

 --

 if (signups < 100) then

 insert into schedules values(in_course_name, in_student_name);

 end if;

 commit;

end;

Here is a transaction history that shows how the business rule can be violated. Using SELECT FOR UPDATE on the SCHEDULES table will not help. We will have to create a COURSES table and update the course record. This will cause the second transaction to fail with the ORA-08177 error.

19:05:08 SQL> alter session set isolation_level=serializable;

Session altered.

19:05:08 SQL> exec signup('DBA 101','Iggy');

PL/SQL procedure successfully completed.

19:05:10 TRANSACTION B> alter session set isolation_level=serializable;

Session altered.

19:05:10 TRANSACTION B> exec signup('DBA 101','Ziggy');

PL/SQL procedure successfully completed.

Here are the contents of the SCHEDULES table at the end of the experiment, showing that the business rule has been violated because there are now 101 students enrolled in the course.

19:05:16 SQL> select count(*) from schedules where course_name='DBA 101';

 COUNT(*)

 101

1 row selected.

The Case of the Troublesome Tables

The following example is from Reference [7]. Two tables are initially both empty and each transaction inserts a row into one table containing the number of rows in the other table. This time we don’t need an artificial timing delay to force the problem!

create table a (x int);

create table b (x int);

18:19:18 TRANSACTION A> alter session set isolation_level=serializable;

Session altered.

18:19:18 TRANSACTION A> insert into a select count(*) from b;

1 row created.

18:19:26 TRANSACTION B> alter session set isolation_level=serializable;

Session altered.

18:19:26 TRANSACTION B> insert into b select count(*) from a;

1 row created.

18:19:27 TRANSACTION A> commit;

Commit complete.

18:19:31 TRANSACTION B> commit;

Commit complete.

Here are the contents of the two tables at the end of the experiment. This is not a “serializable” result because it cannot be produced by the serial execution, in any order, of the two transactions. One solution is to create an artificial choke point that allows only one transaction to succeed. This could take the form of a record in another table that both transactions must update.

18:19:33 SQL> select * from a;

 X

 0

1 row selected.

18:19:33 SQL> select * from b;

 X

 0

1 row selected.

Ensuring Serializability of Transaction-level Consistency

While transaction-level consistency does not always produce consistent results, it is possible for a set of transactions using transaction-level consistency to operate “with serializable effect.” For example, Reference [5] rigorously proves that the transactions comprising the TPC-C benchmark (Reference [12]) always operate with serializable effect when using transaction-level consistency.

Reference [5] also explains how to determine if the transactions comprising an arbitrary application always operate with “serializable effect” when using transaction-level consistency. However, automated tools are not yet available for the purpose and, therefore, this sort of analysis may not be feasible in a system containing thousands of different transaction types.

You can guarantee serializable results by leveraging the “first-updater-wins” rule; all write-transactions that operate on the same data should attempt to acquire an exclusive lock on a common record. The SELECT FOR UPDATE technique or referential integrity constraints can be used when appropriate; if a suitable record does not exist, then an artificial record can be created. Reference [5] refers to this strategy as “materializing the conflict;” If two such transactions attempt to execute concurrently, the “first-updater-wins” rule will cause one of them to fail with an ORA-8177 error (which is the desired behavior).

Summary

It is important to understand each isolation level and choose one that maximizes concurrency but avoids inconsistent results. In some cases, program modifications are necessary to avoid inconsistent results.

About the Author

Iggy Fernandez is a senior staff consultant at Database Specialists and edits the technical journal of the Northern California Oracle Users Group (NoCOUG). His e-mail address is iggy_fernandez@hotmail.com.

References

[1] ANSI. X3.135-1992—Database Language SQL. 1992. Available, at time of writing, at www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt.
[2] R. Bamford and K. Jacobs. Method and Apparatus for Providing Isolation Levels in a Database System. United States Patent No. 5,870,758, 1996. Available at www.uspto.gov, on payment of a $3 download fee.

[3] C. Date. An Introduction to Database Systems, Sixth Edition. Addison Wesley, 1994, Chapter 14.

[4] S. Elnikety, F. Pedone, and W. Zwaenepoel. Generalized Snapshot Isolation and a Prefix-Consistent Implementation. 2004. Available, at time of writing, at infoscience.epfl.ch/record/55710/files/IC_TECH_REPORT_200421.pdf.
[5] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making snapshot isolation serializable. 1996. Available, at time of writing, at www.cs.umb.edu/~isotest/snaptest/snaptest.pdf.

[6] K. Jacobs, R. Bamford, G. Doherty, K. Haas, M. Holt, F. Putzolu, and B. Quigley. Concurrency Control: Transaction Isolation and Serializability in SQL92 and Oracle7. Oracle White Paper, Part No. A33745, 1995. Available on request from Oracle Support.

[7] T. Kyte. Expert One-On-One Oracle. Wrox Press, 2001, Chapter 3.

[8] T. Kyte. Inside Multiversioning. Slide presentation at the Northern California User Group Fall 2004 conference, 2004. Available, at time of writing, at www.nocoug.org/download/2004-08/RWCons.ppt.

[9] S. Lu, Member, A. Bernstein, and P. Lewis. Correct Execution of Transactions at Different Isolation Levels. 2004. Available, at time of writing, at www.cs.wayne.edu/~shiyong/papers/tkde04.pdf.

[10] Oracle. Concepts. 2007, Chapter 13. Available at tahiti.oracle.com.
[11] Oracle. Advanced Application Developer’s Guide, 2007, Chapter 2. Available at tahiti.oracle.com.
[12] TPC. TPC-C Benchmark Specification. Available at www.tpc.org/tpcc.
[13] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and P. O'Neil. A Critique of ANSI SQL Isolation Levels. 1995. Available, at time of writing, at research.microsoft.com/research/pubs/view.aspx?type=Technical%20Report&id=5.
� Note that different serial orderings of transactions can conceivably produce different results. (For example, multiplying a number by 2 and then adding 3 will produce a different result if the operations are reversed.) Since each such result is permissible when the transactions are executed in serial fashion, they are all permissible when the transactions are executed in concurrent fashion.

� The READ UNCOMMITTED isolation level is not supported by Oracle.

� Oracle will also balk if it is unsure whether the data item was modified after the transaction began. The details can be found in the Oracle Database 11g Concepts Manual (Reference [10]).

13
Paper #446

