

Development

Development

Building A Simple System for Emailing Reports
Patrick Dugan Holmes, IPC—The Hospitalist Company
Presentation Summary

IPC--The Hospitalist Company needed a way to “push” routine reports to recipients by email a couple times daily, so users would not have to remember to run critical customer service reports. We built a simple system using simple tables and shareware that effectively and easily generates PDF files that are emailed to multiple recipients. The presentation will explain the whole system, and the attendee will get all the information needed to reproduce a similar system.

Overview

This is basically a case-study of how we built a simple system for generating PDF reports and emailing them to specific recipients. There are many ways this could be accomplished but this paper details how we did it. The goals for this paper are to show you how to build a simple system for emailing reports with an emphasis on “keeping it simple” and using simple building blocks.

The key components include tables in the Oracle database (of course!), a Windows scheduling program, a Windows email program, and Oracle Reports which we used to generate the PDF files. This paper will first go over the steps in the process, then look “under the hood” at the tables and the full source code for the key SQL*Plus script and the key database function. I’ll conclude with a sample email and report, some comments about the development process and how I think the system could be improved in the future.
The example PDF report that is referenced in this paper is a list of “encounter Q/A notes” that are entered by doctors (all over the United States) in order to communicate some kind of “quality assurance” information back to the home office. This report specifically sends all the QA notes of type “IT” (i.e. Information Technology) to our trainers and to our IT Quality Assurance manager. (The “IT” type of Q/A note is used by doctors to report possible bugs.)

Steps

steps: in general

· A Windows scheduling program calls a batch file (We use “Time-Target” which is not currently being sold, but you could use any scheduling program)
· A Windows batch file executes a SQL*Plus script which uses Oracle database tables to generate a temporary batch file

· The temporary batch file is executed which:

· Potentially creates a PDF file using Oracle Reports.
· The Oracle Reports module takes the email_job_id as a parameter and joins with the email_job_detail table to build the report
· Sends an email, with the PDF file attached if it was created, to one or more recipients using a Windows command-line email program. (We use “febootimail”, a simple shareware program.)
An Important Point
Note that the report that is being emailed is being triggered by some event that happens in the database. Once the event has been processed and the appropriate report emailed to the appropriate recipients, you would NOT want to send the same information to the same recipients again. The way this is handled in this system is by storing the related primary key value for the source record for the “event” in a transaction table so that the report will not be sent again for that source record. At the end of this paper, after everything else is described, you will see the source code for this important step, in a function called “email_next_job()” which (a) has to be customized for every report, and (b) queries and inserts into the source table for the “event” that is the basis of the report being produced.
Steps: In Detail

Windows Scheduler

The Windows Scheduling program calls a batch file. This is a screen-capture of Time-Target, a Windows scheduling program. Note the two jobs called “Run_Email_Jobs”, which is actually the same batch file being executed every day at 8:00am and again at 2:00pm:
[image: image1.png]
Windows Batch File

The batch file that gets executed is called: Run_email_jobs.bat:

PROMPT $p-$t$g

IF EXIST running.txt GOTO :finish

ECHO Running > running.txt

ECHO Generating email_jobs

DEL email_jobs_list.done

DEL email_jobs_list.error

plus80w.exe /nolog @gen_email_jobs.sql

wait 5

email_jobs_list

:finish

EXIT

Note that there is logic so that the job will not run again if it appears to be running already. (If the “running.txt” file exists in the working directory, then the program assumes that the job is still running from a previous execution.)

SQL*Plus script
SQL*Plus is started, executing a SQL*Plus script called “gen_email_jobs.sql”. This script reads the Oracle tables and then creates a temporary batch file called “email_jobs_list.bat” which is then executed two lines later in the batch file. Each job in the temporary batch file will send an email. The email will include an attachment if there is something to report, and will NOT send an attachment if there is nothing to report. (Our users wanted a “there’s nothing to report” email instead of not getting an email at all, because if they didn’t receive an email, they wouldn’t know if the email was missing on purpose, or if there was some other problem with the process or with the email server. This is kind of like the “this page is intentionally left blank” page that you see in documentation.)
Example Temporary Batch File, Without An Attachment

First, here is an example of the resulting: “email_jobs_list.bat” which was created by the “gen_email_jobs.sql” script. This example is without an attachment as there was nothing to report when this job was run:

rem

rem

rem Report: 1 -- QA NOTES - IT-REPORT-BUG

echo pholmes@ipcm.com > sendto_QA_Notes_IT.txt

echo kxxxxx@ipcm.com >> sendto_QA_Notes_IT.txt

echo vxxxxx@ipcm.com >> sendto_QA_Notes_IT.txt

echo kxxxx@ipcm.com >> sendto_QA_Notes_IT.txt

rem v_job_id=0

febootimail -FROM pholmes@ipcm.com -TO -USEFILE sendto_QA_Notes_IT.txt -SUBJECT QA_Notes_IT: No records this time, no attachment -TEXT QA_Notes_IT: No records to process, so there is no attachment -SERVER xxxxxx.xxxxxx.com

rem

rem

:EXIT

WAIT 15

DEL running.txt

REN email_jobs_list.bat email_jobs_list.done

Notes:

· Febootimail is the command-line email program that I use to send the email (great little shareware program!!!)

· The -SUBJECT is for the subject, and -TEXT is for the body of the email message

· The “echo” lines are there to create the “sendto_<job-prefix>.txt” file that is then used to provide febootimail with the list of email recipients for the current job. This is how I handle sending to any number of recipients. The SQL*Plus script creates this file for each job.

· The “-TO –USEFULE” parameter points to the “sendto_<job-prefix>.txt” to get the list of recipient email addresses.
· The -SERVER parameter refers to IPC’s exchange server (but I’ve put ‘xxx’s to obscure the name)
· The WAIT command is only there to insert a 15 second delay before the batch file finishes/closes.

Here is the “sendto_<job-prefix>.txt” file that goes with the batch file above, specifically “sendto_QA_Notes_IT.txt”:

pholmes@ipcm.com
kxxxxx@ipcm.com
vxxxxx@ipcm.com
kxxxx@ipcm.com
(with ‘xxxx’s to obscure the real email addresses of some IPC employees)

Example Temporary Batch File, With an attachment

Here is an example of a “email_jobs_list.bat” that is created when a job does have an attachment. The differences are noted below.
rem

rem

rem Report: 1 -- QA NOTES - IT-REPORT-BUG

echo pholmes@ipcm.com > sendto_QA_Notes_IT.txt

echo kxxxxx@ipcm.com >> sendto_QA_Notes_IT.txt

echo mxxxxxx@ipcm.com >> sendto_QA_Notes_IT.txt

echo vxxxxxxipcm.com >> sendto_QA_Notes_IT.txt

echo pxxxxxxxx@xxxxxxxx.xxx >> sendto_QA_Notes_IT.txt

echo kxxxx@ipcm.com >> sendto_QA_Notes_IT.txt

rem v_job_id=219

rwrun60.exe c:\castelle\email_jobs\QA_Notes_IT.rdf xxx/xxx@xxx destype=file batch=yes P_EMAIL_JOB_ID=219 desname="QA_Notes_IT_00000219.pdf" desformat=PDF

:check00000219

copy QA_Notes_IT_00000219.pdf QA_Notes_IT_00000219copy.pdf

if not exist QA_Notes_IT_00000219copy.pdf goto check00000219

febootimail -FROM pholmes@ipcm.com -TO -USEFILE sendto_QA_Notes_IT.txt -SUBJECT QA_Notes_IT: See attachment -TEXT QA_Notes_IT -SERVER xxxxxx.xxxxxx.com -ATTACH QA_Notes_IT_00000219.pdf

del QA_Notes_IT_00000219copy.pdf

del QA_Notes_IT_00000219.pdf

rem

rem

:EXIT

WAIT 15

DEL running.txt

REN email_jobs_list.bat email_jobs_list.done

Notes:

· There are more email recipients. This system can send to different recipients depending on whether there is information to report or not, i.e. if there is an attachment or not. I refer to this as “info” or “alert”, where “info” means that the email is being sent without an attachment just to inform the recipient that the process did run but there was nothing to report, whereas an “alert” is with an attachment and means that the there is something important being sent to the recipient that requires the recipient’s attention.
· Note that there is a call to the Oracle Reports runtime (rwrun60.exe—yes, don’t laugh—we are really still using Oracle Developer 6i for client-server programs!). Note that the reports runtime will create a specifically-named .PDF file
· Note that there is a check to make sure that the .PDF file is completely finished before the batch file continues. We had to do this because sometimes the batch file would continue even if the .PDF file was not really finished and not yet readable.

· We set a batch file go-to or “checkpoint” using a colon (e.g. :check00000219)

· we attempt to copy the pdf to a “…copy.pdf” file which can only work successfully if the original .pdf file is completely finished and is now readable
· we do a “if not exist” check to see if the PDF copy got created, and if not, go back to our checkpoint

· Note that the “febootimail” line has a different subject and text message, and it now also has an attachment

· Note that we “clean-up” after ourselves, deleting the .PDF files after the email has been sent

How the SQL*Plus Script Works

Remember that the whole point of the “gen_email_jobs.sql” script is to create the temporary batch file that is then executed. Here is an outline of what the “gen_email_jobs.sql” SQL*Plus script does:

· Create a cursor of jobs to loop through
· For each job in the cursor

· Create a cursor of recipients for the current job

· Create an “echo <email address>” line in the batch file, which will create the “sendto_<job-prefix>.txt” file
· Determine which of the following four conditions are true for the current job and prepare the corresponding line in the batch file so that an appropriate email is sent:

· There are no recipients for this job! Send an email to the administrator (i.e. pholmes@ipcm.com)
· There was some kind of error. Send an error message to recipients
· There were no records, i.e. nothing to report. Send a “no records, no attachment” email

· There were records and there should be an attachment. Send an email with the PDF report attached.

Under The Hood

Now we will look at the tables that support this system for emailing reports, the key SQL*Plus script and the key database function:

The Oracle Ojbects and Tables

All of the Email System Objects

SELECT object_type, object_name

 FROM all_objects

 WHERE owner = 'ADMIN'

 AND object_name LIKE 'EMAIL%'

 ORDER BY object_type, object_name;

Results:

	FUNCTION
	EMAIL_NEXT_JOB

	SEQUENCE
	EMAIL_JOB_DETAIL_ID_SEQ

	SEQUENCE
	EMAIL_JOB_ID_SEQ

	SEQUENCE
	EMAIL_JOB_RECIPIENT_ID_SEQ

	SEQUENCE
	EMAIL_RECIPIENT_ID_SEQ

	SEQUENCE
	EMAIL_REPORT_ID_SEQ

	SEQUENCE
	EMAIL_REPORT_RECIPIENT_ID_SEQ

	TABLE
	EMAIL_JOB

	TABLE
	EMAIL_JOB_DETAIL

	TABLE
	EMAIL_JOB_RECIPIENT

	TABLE
	EMAIL_RECIPIENT

	TABLE
	EMAIL_REPORT

	TABLE
	EMAIL_REPORT_RECIPIENT

The Tables

There are six tables, six sequences and a function that make up the database objects relating to this reports’ email system. One sequence goes with each table’s primary key value. The tables can be summarized as:

	EMAIL_RECIPIENT
	List of all possible recipients

	EMAIL_REPORT
	List of all possible reports

	EMAIL_REPORT_RECIPIENT
	Intersection table of the recipients for each report, and vice-versa

	EMAIL_JOB
	A job is an instance of a report being run as of a specific date/time

	EMAIL_JOB_DETAIL
	This is a one-to-many child table of EMAIL_JOB. Each job will have one or more source records that trigger the job, i.e. that cause the job to be necessary. This table stores the primary-key value for each source record in order to record which job they are linked to, but also so that they will not be processed again in a future job.

	EMAIL_JOB_RECIPIENT
	This table is not actually being used yet. This table could be used to record the recipient id for each job, but we haven’t had a compelling reason to add this feature yet.

EMAIL_RECIPIENT (list of all possible recipients for any report)

	RECIPIENT_ID
	RECIPIENT_NAME
	RECIPIENT_EMAIL

	1
	Pat Holmes
	pholmes@ipcm.com

	2
	Kxxxx Xxxxx
	kxxxxx@ipcm.com

	3
	Mxxx Xxxxxxx
	mxxxxx@ipcm.com

	4
	Nxxx Xxxxxx
	nxxxxx@ipcm.com

	5
	Vxxx Xxxxxxxx
	vxxxxxxx@ipcm.com

	6
	Vxxxx Xxxxx
	vxxxx@ipcm.com

	7
	Exxxxx Xxxxxx
	exxxxxx@ipcm.com

	8
	Pat Holmes (home)
	pxxx@xxxxxx.xxx

	9
	Kxxxxx Xxxxxx
	kxxxxxx@ipcm.com

	10
	Sxxx Xxxxx
	sxxxxx@ipcm.com

EMAIL_REPORT (list of all possible reports; only one, so far…)

	REPORT_ID
	REPORT_NAME
	ACTIVE_FLAG
	FILE_PREFIX

	1
	QA NOTES - IT-REPORT-BUG
	Y
	QA_Notes_IT

EMAIL_REPORT_RECIPIENT (intersection table of which recipients get which reports and vice-versa)

	REPORT_RECIPIENT_ID
	REPORT_ID
	RECIPIENT_ID
	RECEIVE_ALERT_FLAG
	RECEIVE_INFO_FLAG

	1
	1
	1
	Y
	Y

	2
	1
	2
	Y
	Y

	3
	1
	3
	Y
	N

	4
	1
	5
	Y
	Y

	5
	1
	8
	Y
	N

	6
	1
	9
	Y
	Y

EMAIL_JOB (an instance of when a report was generated for a specific report at a specific date/time; this query just shows the last ten jobs)

	JOB_ID
	REPORT_ID
	JOB_DATE

	…
	…
	…

	 203
	1
	2/10/2008 8:00

	205
	1
	2/10/2008 14:00

	207
	1
	2/12/2008 8:00

	209
	1
	2/14/2008 8:00

	211
	1
	2/14/2008 14:00

	213
	1
	2/15/2008 8:00

	215
	1
	2/15/2008 14:00

	217
	1
	2/23/2008 8:00

	219
	1
	2/24/2008 20:22

EMAIL_JOB_DETAIL (records source_pk_id for each source record that was processed for a specific job; this query just shows the detail for the last ten jobs; note that a few jobs have multiple child records such as job_id # 207)

	JOB_DETAIL_ID
	JOB_ID
	SOURCE_PK_ID

	…
	…
	…

	513
	203
	41657

	515
	205
	41667

	516
	205
	41668

	517
	207
	41721

	518
	207
	41723

	519
	207
	41725

	520
	207
	41726

	521
	209
	41792

	523
	211
	41798

	525
	213
	41806

	527
	215
	41824

	529
	217
	42025

	531
	219
	42082

EMAIL_JOB_RECIPIENT (not actually used yet. Could record the recipient_id for each recipient of each job)

SQL> DESC admin.email_job_recipient

Name Type Nullable Default Comments

---------------- ------- -------- ------- --------

JOB_RECIPIENT_ID INTEGER

JOB_ID INTEGER Y

RECIPIENT_ID INTEGER Y

The Source Code for the SQL*Plus Script

Here is the actual code for “gen_email_jobs.sql”:

-- This is the main program that sends email_jobs

-- by generating a PDF and emailing the PDF

--

-- values of v_job_id:

-- -2 = there are no valid recipients

-- -1 = there was an error in creating the job

-- 0 = there was no error but there are no records to be processed

-- >0 = a valid v_job_id

--

-- 08/21/2007 PDH Created

-- 08/22/2007 PDH dbm_output error (> 255 chars); switch to using -USEFILE and sendto.txt

-- 08/24/2007 PDH Changed to make recipients and report-names table-driven (generalized)

--

-- Future features:

-- * make the sendfrom table-driven (add admin.email_report_administrator id #, from the email_recipient table

-- * handle "no valid recipients" more gracefully: either don't create job or "rollback" job

-- * make the mail server table-driven

-- * how handle if a source record is changed later--should re-include in a future report?

-- * make the report generator table-driven (why limit to Oracle Reports?)

-- * make the filetype table-driven (why limit to .PDF?)

-- * keep the schedule in Oracle; don’t rely as much on a Windows scheduler
-- * make it so ADMIN.email_next_job does NOT have to be customized for each new report
--

--whenever sqlerror exit

connect admin/xxxxxx@xxxx
set trimspool on

set feedback off

set serveroutput on size 1000000

set head off

set linesize 500

spool email_jobs_list.bat

DECLARE

 v_job_id INTEGER;

 exit_loop EXCEPTION;

 v_error VARCHAR2(2000);

 v_sendfrom VARCHAR2(30) := 'pholmes@ipcm.com';

 v_recipient_count INTEGER;

 --

 CURSOR c_jobs IS

 SELECT report_id, report_name, file_prefix

 FROM admin.email_report

 WHERE active_flag = 'Y';

 CURSOR c_recipients (p_report_id IN INTEGER) IS

 SELECT er.recipient_email, er.recipient_name, err.receive_alert_flag, err.receive_info_flag

 FROM ADMIN.email_recipient er, ADMIN.email_report_recipient err

 WHERE er.recipient_id = err.recipient_id

 AND err.report_id = p_report_id;

 --

BEGIN

 FOR c_jobs_rec IN c_jobs LOOP

 --

 dbms_output.put_line('rem');

 dbms_output.put_line('rem');

 dbms_output.put_line('rem Report: ' || to_char(c_jobs_rec.report_id) || ' -- ' || c_jobs_rec.report_name);

 --

 v_job_id := admin.email_next_job(c_jobs_rec.report_id);

 -- v_job_id := 19; -- for testing only, usually comment out admin.email_next_job() above first

 --

 v_recipient_count := 0;

 FOR c_recipients_rec IN c_recipients(c_jobs_rec.report_id) LOOP

 IF (v_job_id = 0 AND c_recipients_rec.receive_info_flag = 'Y') OR

 (v_job_id != 0 AND c_recipients_rec.receive_alert_flag = 'Y') THEN

 v_recipient_count := v_recipient_count + 1;

 dbms_output.put('echo ' || RPAD(c_recipients_rec.recipient_email,30));

 IF v_recipient_count = 1 THEN

 dbms_output.put(' > ');

 ELSE

 dbms_output.put(' >> ');

 END IF;

 dbms_output.put_line(' sendto_' || c_jobs_rec.file_prefix || '.txt');

 END IF;

 END LOOP;

 --

 --

 -- handle situation where there are NO valid recipients

 IF v_recipient_count = 0 THEN

 v_job_id := -2;

 END IF;

 --

 --

 dbms_output.put_line('rem v_job_id=' || to_char(v_job_id));

 --

 IF v_job_id = -2 THEN -- no valid recipients!

 dbms_output.put_line('febootimail -FROM ' || v_sendfrom

 || ' -TO pholmes@ipcm.com -SUBJECT ' || c_jobs_rec.file_prefix || ': No valid recipients! Wasted job! '

 || c_jobs_rec.file_prefix || ltrim(to_char(v_job_id,'09999999'))

 || '-TEXT ' || c_jobs_rec.file_prefix || ': No valid recipients, wasted job! '

 || c_jobs_rec.file_prefix || ltrim(to_char(v_job_id,'09999999'))

 || ' -SERVER xxxxx.xxxxx.com ');

 ELSIF v_job_id = -1 THEN -- error!

 dbms_output.put_line('febootimail -FROM ' || v_sendfrom

 || ' -TO -USEFILE sendto_' || c_jobs_rec.file_prefix || '.txt'

 || ' -SUBJECT ' || c_jobs_rec.file_prefix || ': ERROR!!!!! Contact IT! '

 || '-TEXT ' || c_jobs_rec.file_prefix || ': ERROR occurred, contact IT -SERVER xxxxx.xxxxx.com ');

 ELSIF v_job_id = 0 THEN

 dbms_output.put_line('febootimail -FROM ' || v_sendfrom

 || ' -TO -USEFILE sendto_' || c_jobs_rec.file_prefix || '.txt'

 || ' -SUBJECT ' || c_jobs_rec.file_prefix || ': No records this time, no attachment '

 || '-TEXT ' || c_jobs_rec.file_prefix
 || ': No records to process, so there is no attachment -SERVER xxxxx.xxxxx.com ');

 ELSE -- v_job_id > 0

 dbms_output.put_line('rwrun60.exe c:\castelle\email_jobs\' || c_jobs_rec.file_prefix || '.rdf '

 || ' xxx/xxx@xxx destype=file batch=yes P_EMAIL_JOB_ID='

 || ltrim(to_char(v_job_id))||' desname="' || c_jobs_rec.file_prefix || '_'
 ||ltrim(to_char(v_job_id,'09999999'))

 || '.pdf" desformat=PDF');

 dbms_output.put_line(':check'||ltrim(to_char(v_job_id,'09999999')));

 dbms_output.put_line('copy ' || c_jobs_rec.file_prefix || '_'
 ||ltrim(to_char(v_job_id,'09999999'))||'.pdf ' || c_jobs_rec.file_prefix
 || '_'||ltrim(to_char(v_job_id,'09999999'))||'copy.pdf');

 dbms_output.put_line('if not exist ' || c_jobs_rec.file_prefix || '_'
 ||ltrim(to_char(v_job_id,'09999999'))||'copy.pdf goto check'||ltrim(to_char(v_job_id,'09999999')));

 dbms_output.put_line('febootimail -FROM ' || v_sendfrom

 || ' -TO -USEFILE sendto_' || c_jobs_rec.file_prefix || '.txt'

 || ' -SUBJECT ' || c_jobs_rec.file_prefix || ': See attachment '

 || '-TEXT ' || c_jobs_rec.file_prefix || ' -SERVER xxxxx.xxxxx.com '

 || '-ATTACH ' || c_jobs_rec.file_prefix || '_'|| LTRIM(TO_CHAR(v_job_id,'09999999'))||'.pdf');

 dbms_output.put_line('del ' || c_jobs_rec.file_prefix || '_'
 ||ltrim(to_char(v_job_id,'09999999'))||'copy.pdf');

 dbms_output.put_line('del ' || c_jobs_rec.file_prefix || '_'
 ||ltrim(to_char(v_job_id,'09999999'))||'.pdf');

 END IF;

 --

 --

 dbms_output.put_line('rem');

 dbms_output.put_line('rem');

 END LOOP;

 --

 dbms_output.put_line(':EXIT');

 dbms_output.put_line('WAIT 15');

 dbms_output.put_line('DEL running.txt');

 -- the next line *MUST* be the last line (the batch file *WILL* stop running!!!!)

 dbms_output.put_line('REN email_jobs_list.bat email_jobs_list.done');

 --

END;

/

spool off

-- Execute the email_jobs_list.bat from the run_email_jobs.bat instead of from here using host

-- * This speeds things up tremendously!

exit

The Source Code for the Email_Next_Job() Function

The email_next_job() function. It currently must be customized for each new report.
CREATE OR REPLACE FUNCTION ADMIN.email_next_job(p_report_id IN INTEGER) RETURN INTEGER
--
-- 08/21/2007 PDH Created this function for sending email job reports
--
-- Notes:
-- * two sections of function are specific to value of p_report_id
-- * no email job is created if there are no records to be processed
-- * return-value:
-- -1 if error,
-- 0 if no error but also no records to be processed or invalid p_report_id
-- #>0 if return value is > 0 then this is the next job #
--
IS
 v_next_job INTEGER;

 v_count INTEGER := 0;

 v_error VARCHAR2(300);

 v_query_str VARCHAR2(4000);

 TYPE cur_typ IS REF CURSOR;

 c_rec cur_typ;

 c_report_id INTEGER;

 c_source_pk_value NUMBER;

BEGIN
 --
 -- check to see if there are any records to be processed for this report
 -- NOTE: admin must have select privilege on the source tables!!!
 --
 -- This next if statement must be customized for each new report.
 -- The value of p_report_id determines which email job is being set-up
 -- 1 = 'QA NOTES - IT-REPORT-BUG'
 -- The main select statement needs to return the primary key value
 -- for the table that is driving the report, so we can put that value in the
 -- email_job_detail table, so that record will not be processed again later
 IF p_report_id = 1 THEN

 -- 1 = 'QA NOTES - IT-REPORT-BUG'
 v_query_str :=

 'SELECT ' || p_report_id || ' report_id, eqn.eqn_id '
 || ' FROM casem.encounter_qa_notes eqn '
 || ' WHERE eqn.qa_note_date > SYSDATE - 14 '
 || ' AND TRIM(eqn.qa_note_type_cd) = ''IT'' ' -- use TRIM() to suppress this index
 || ' AND NOT EXISTS ('
 || ' SELECT 1 '
 || ' FROM admin.email_report er, admin.email_job ej, admin.email_job_detail ejd '
 || ' WHERE er.report_id = '|| p_report_id || ' '
 || ' AND ej.report_id = er.report_id '
 || ' AND ejd.job_id = ej.job_id '
 || ' AND ejd.source_pk_id = eqn.eqn_id '
 || ') ';

 END IF;

 --
 --
 -- process the cursor
 v_count := 0;

 OPEN c_rec FOR v_query_str;

 LOOP
 FETCH c_rec INTO c_report_id, c_source_pk_value;

 EXIT WHEN c_rec%NOTFOUND;

 --
 v_count := v_count + 1;

 --
 -- create job if this is the first record in the cursor
 IF v_count = 1 THEN
 -- get next job # (not specific to any particular report)
 SELECT ADMIN.email_job_id_seq.NEXTVAL

 INTO v_next_job

 FROM dual;

 INSERT INTO admin.email_job VALUES (v_next_job, c_report_id, SYSDATE);

 END IF;

 --
 --
 INSERT INTO admin.email_job_detail

 SELECT admin.email_job_detail_id_seq.NEXTVAL, v_next_job, c_source_pk_value

 FROM dual;

 --
 END LOOP;

 --
 IF v_count = 0 THEN
 RETURN 0; -- if 0, no records to be processed, no job # created
 ELSE
 COMMIT;

 RETURN v_next_job;

 END IF;

EXCEPTION WHEN OTHERS THEN
 ROLLBACK;

 v_error := SQLERRM;

 dbms_output.put_line(v_error);

 RETURN -1; -- error happened!
END;

Sample Email and Report

As the email appears in my email client (Outlook 2003):

[image: image2.png]
The sample report that goes with the email:

[image: image3.png]
The query that the report is based upon:

SELECT DISTINCT qant.QA_NOTE_TYPE, eqn.QA_NOTE_DATE,

 DECODE(hp.LAST_NAME,NULL,'(' || eqn.modified_by || ')', hp.last_name || ', '

 || hp.FIRST_NAME) note_by, eqn.QA_NOTE,

 p.LAST_NAME || ', ' || p.FIRST_NAME patient_name,

 h.HOSPITAL_NAME, pos.PLACE_OF_SERVICE, hp.REGION

 FROM admin.email_job_detail ejd,

 CASEM.ENCOUNTER_QA_NOTES eqn, CASEM.QA_NOTE_TYPES qant,

 CASEM.HEALTH_PROFS hp, CASEM.PATIENTS p, CASEM.PATIENT_ENCOUNTERS pe,

 CASEM.HOSPITALS h, CASEM.PLACES_OF_SERVICE pos

 WHERE ejd.job_id = :p_email_job_id
 AND ejd.source_pk_id = eqn.eqn_id
 AND pe.HOSPITAL_ID = h.HOSPITAL_ID (+)

 AND eqn.QA_NOTE_TYPE_CD = qant.QA_NOTE_TYPE_CD

 AND p.PATIENT_ID = pe.PATIENT_ID

 AND pe.ENCOUNTER_ID = eqn.ENCOUNTER_ID

 AND pe.PLACE_OF_SERVICE_CD = pos.PLACE_OF_SERVICE_CD

 AND hp.HEALTH_PROF_ID (+) =

 DECODE(casem.IS_NUMBER(eqn.MODIFIED_BY),0,0,TO_NUMBER(eqn.modified_by))

 ORDER BY qa_note_type, qa_note_date, note_by

Note that the report’s query joins with the email_job_detail table on job_id

Conclusion

There are undoubtedly many ways this could be done. This works for us very well.

Obviously, I could use DBMS_JOB package to schedule queries and use the UTL_SMTP package to send the results to recipients, but I’m not sure if I could use those in conjunction with a report-writing tool that generates a nice-looking output such as a PDF file. I’m open to suggestion on that point.

We developed the first working version of this very quickly, in just a few hours. We were able to do this quickly because we were willing to build the functionality first, hard-coding if necesary, and then making it more general later as the requirements became more apparent. i.e. This was an example of a rapid-application-design (RAD), developing the basic functionality first, start using it right away, and then making changes iteratively as the requirements became more clear.

Here are some ways that we anticipate improving the system in the future if the opportunity or needs arise:

· make the sendfrom table-driven (add admin.email_report_administrator id #, from the email_recipient table

· handle "no valid recipients" more gracefully: either don't create job or "rollback" job

· make the mail server table-driven

· how handle if a source record is changed later--should re-include in a future report?

· make the report generator table-driven (why limit to Oracle Reports?)

· make the filetype table-driven (why limit to .PDF?)

· keep the schedule in Oracle; don’t rely as much on a Windows scheduler
· make it so the Admin.email_next_job does NOT have to be customized for each new report (I’m already using dynamic SQL so it wouldn’t be hard to store the custom part of the query in a column in the email_report table.)
Biographical Information
Pat Holmes is Vice President of Technology for IPC-The Hospitalist Company, a healthcare company that hires doctors that work in hospitals. He is an expert in Oracle development, and has lectured extensively on various Oracle developer topics, both as a classroom trainer and as a presenter at numerous Oracle conferences including IOUG-Live, OOW, and ODTUG. He is also president of the Los Angeles Oracle Users Group (LAOUG). Contact him at: pholmes@ipcm.com

1
Q142

13
457

