
Introduction to Java —
PL/SQL Developers Take

Heart!

Peter Koletzke
Technical Director &
Principal Instructor

Paper #460

2

A language that doesn't
affect the way you think
about programming is not

worth knowing.

—Dennis M. Ritchie.

Quote

3

Survey
• Years with PL/SQL?

– Less than 2, 2-4, 4+
• Years with Java?

– None
– 2, 2-4, 4-13, 13+

• Other languages?
– C
– C++
– Smalltalk
– COBOL, Basic, JCL, Perl …

4

Agenda

• Java Basics

• Object Orientation

• Anatomy 101

• Datatypes and Variables

• Control Statements

Slides and white paper are
available on the IOUG and

Quovera websites.

5

Java Advantages
• Platform independent (the promise of portability)
• The core of J2EE

– Lots of deployment options
• Modern language

– Object oriented (the promise of reuse)
– Supports multi-tasking

• Looks like C++
– No pointers
– Manages memory for you (C-- ?)

• A well-developed user community
– Open-source support

• Emerging language
– Currently hot; It has Oracle’s attention

6

Java Drawbacks
• Emerging language

– Currently hot
– No mass acceptance

• Microsoft is still in the game (.NET languages)

– Technologies are changing rapidly
• Not a “normal” skill for an Oracle developer
• It requires a 3GL tool

– Some IDEs help create code
• Arguably more complex than PL/SQL

– Database access is not a natural thing
– Needs object-oriented thinking

7

Developing the Code
1. Create or modify source code file

– Standard ASCII text – can use Notepad or vi
– Use .java extension (HiThere.java)

2. Compile the source code file
– javac.exe HiThere.java
– Creates <classname>.class (HiThere.class)

3. Test the class file in a runtime (interpreter)
session
– Also called Java Virtual Machine (JVM)
– java.exe HiThere

4. Repeat 1-3 until victory is declared
5. Deploy the file

– Package with required libraries

Called
“bytecode” or
“bytecodes”

8

Agenda

• Java Basics

• Object Orientation

• Anatomy 101

• Datatypes and Variables

• Control Statements

9

Deliver yesterday,
code today,

think tomorrow.

—Anonymous

Project Timeline

10

OO Basics
• Basic building block is the Class

– The fundamental building block
– A pattern, template, archetype, or blueprint from

which objects are built
• Like for a car – 1988 Honda Accord LXI

– A “concept” not anything “real”
– Also called an abstract data type

• Objects
– “Real” things – in code, anyway

• Like PL/SQL variables

– The “instantiation” of a class
• 1988 Honda Accord LXI (VIN 785789359019)

– Kind of like a variable built from a data type

11

Big Three OO Concepts
• Inheritance

– Parent-child relationship
– Child has data and behavior of the parent
– Classes inherit by “subclassing” a parent class

• Encapsulation
– Data is hidden from the outside
– Use an approved interface to get to data (setCity,

getAddress, etc.)
• Polymorphism

– Similar to overloading in PL/SQL
– Caller doesn’t know which method

will be called
12

OO (Java) vs PL/SQL?
• PL/SQL does not have inheritance

– Cannot subclass a procedure or package
– You can call prebuilt code, of course

• OO objects vs PL/SQL variables
– Behavior is loosely bound in PL/SQL
– Behavior is integrated into OO objects

• Different paradigms

13

Data & Code Paradigms
Structured, Relational,

Procedural
Object-Oriented

Table

Application
codeApplication

code

Data
rowData

rowData
rowData

rowData
row

ClassClass
Application

code
Data

definition

Object1Object1

Application
code pointer

Data

Object4Object4

Application
code pointer

Data
Object5Object5

Application
code pointer

Data

Object2Object2
Data

Application
code pointer

Object3Object3

Application
code pointer

Data

Object6Object6

Application
code pointer

Data

14

Another Way to Think About Objects

• It is like an abstract data type
– Each “thing” created from the data type has

the same characteristics as the data type

– The difference is that Java (OO) has
methods for the declared instance

v_name VARCHAR2(20) := 'Frank';
v_commission NUMBER := 200;

String coName = "ACME Rockets";
Person coEmployee = new Person();

PL/SQL

Instances of
the data type Java The “data type”

15

Agenda

• Java Basics

• Object Orientation

• Anatomy 101

• Datatypes and Variables

• Control Statements

16

There is not now, and
never will be, a language

in which it is
the least bit difficult to

write bad programs.

Flon’s Law

17

Basic Java Terms
• Class

– Fundamental building block
– All code is contained in classes
– Source code (.java) is compiled (.class)

• Object
– An instance of a class

• Method
– Unit of code contained in a class
– Like PL/SQL procedures and functions

• Constructor
– Code unit used to instantiate an object

18

About Methods
• Method signature:

public static void main (String[] args)

Access specifier Return type

Does not require
an object to use

the method

• Return type can be something or nothing (void)
• Overloading allowed

– More than one method with the same name and different arguments

• Access specifier declares which classes can see this class
– E.g., “private” is not visible to other classes

Argument

Method name

19

Access Specifiers
• Specifiers (or modifiers) word change

class visibility and functionality
– Serve like grants to execute PL/SQL code
– public - accessible from anywhere
– protected – not accessible from a class that

is not a subclass in a different package
– <no specifier> (the default) – accessible to

classes in the same package
– private - cannot be seen outside

its class, even from objects created
from that class

20

Access Specifier Effects

No

No

Yes

Yes

Yes

(no
specifier)

NoNoYesDifferent package
non-subclass

NoYesYesDifferent package
subclass

NoYesYesSame package
non-subclass

NoYesYesSame package
subclass

YesYesYesSame class

privateprotectedpublicSpecifier
Available to

21

About Constructors
• They look a bit like methods
• No return type (not even void)

– For example, Box(int quantity)
• Responsible for instantiating the class

– Creating the object
– Usually initializes variables

• Called using new operator:
– Box usefulBox = new Box();

• There is a default (non-declared)
constructor for every class
– This is used if you do not write a constructor
– Constructors with parameters will override

this one, however

Constructor

22

About Java Classes
• One “public” class per file

– Public classes are available everywhere
• All code is contained in classes

– File name is the public class name
• Spelled exactly the same
• Upper/lower case exactly the same

• Each public class stored in its own source file
– Has exactly same name as class
– Uses .java extension
– Compiled into a .class file

• Used to create objects, run code,
or serve as superclasses

23

Using Java Classes
• To create an object, declare an instance

– For example,
String empName = new String();

– This creates an object, empName
• Class files are collected into packages

– Directories in the file system or in a zip file
• Java Archive (JAR) contains multiple

class files
– Can use .jar or .zip extension
– “Libraries” made of one or more JARs

24

Sample Archive Contents

PackagesClass files

25

CLASSPATH
• JVM needs to be told where the classes

are
– Your classes
– Library classes

• Set the environment variable (shell
variable) CLASSPATH
– The list includes directories or archive files

(JAR or Zip), for example:

Current directory

SET CLASSPATH=.;C:\JDev10\jdk\jre\lib\rt.jar

26

Naming Conventions
• Java is a case-sensitive language

– Keywords are in lower case
• for, while, if, switch, etc.
• Case compliance is enforced for keywords

• There are conventions for other names
– Normally, no underscores used

• For example, EmpLastName not EMP_LAST_NAME
– Package names are all lower case
– Class names are mixed case

• EmployeeDataAccess
– Method and variable names are init-lower

• numberOfEmps, getCity(), setCity()
– Constants use all uppercase and underscores

• MAX_LOAD, MIN_HEIGHT

Note: Java
names can have
any number of

characters.

27

Blocks and Comments
• Executable program blocks - { } symbols

– Collection of declarations, specifiers, and methods
– Code blocks can be nested

• Comments:
– Single line
// This is a single-line comment.
int count; // it can end a line

– Multiline
/* This is a multiline comment inJava, the same as in SQL. */
/* It can be one line */

– Javadoc
/** This will be written to anHTML document. */

28

public class HiThere {
public static void main (String[] args) {
System.out.println("What's Happening?");

}
}

Simple Class Example

• First line declares the class
– Specifier public – available everywhere

• Other specifiers: private, default, protected
– { } represent the start and end of the code block

• Second line declares a method – the method signature
– JVM looks for method main() when application starts
– void declares a return type of nothing
– Remainder used to pass parameters to main()method

• Third line calls external method to show message in
console – command line window

29

Anatomy of a Class
• Package that the class belongs to
• Import statements for libraries used
• Class declaration
• Variable declaration
• Methods and constructors

– Constructor
• Same name as class
• Creates the object and initializes the data

– main()
– set() and get()

• Called “accessors” or “getters and setters”
– Application-specific methods

hoof

tail
back

mouth
leg

head red dot

bottom

30

Don’t Give Me Static
• static keyword signifies a class member

– Variables and methods
– No need to create an object to use the class member
– For example, you can run main() without instantiating

Rectangle
• Static variables on the class level are like global

variables
– Only one copy exists regardless of the number of objects

created from the class
• Static methods

– Can only call other static methods
– Can only access static data (variables)
– Cannot refer to this or super

• The opposite of static is no keyword
– For example, public void main()

31

“Null” and “Void”
• Return type “void” means the method

does not return anything
• The “null statement” is used as a

placeholder (just a semicolon)
– For example after a loop statement that

requires something (same as PL/SQL
NULL statement)

• The keyword null means “nothing”
– Not like SQL NULL
– You can compare null with something

• For example: (null == null) is true
32

Example Class
package shapes;
public class Rectangle {
private int height;
private int width;
public Rectangle() {
height = 1;
width = 1;

}
public int getHeight() {
return height;

}
public void setHeight(int newHeight) {

height = newHeight;
}
public int getWidth() {
return width;

}
public void setWidth(int newWidth) {

width = newWidth;
}

}

Code block
symbol

Package statement

Constructor
Class declaration

Variable declarations
(attributes, fields)

33

Example Subclass
package shapes;
import java.util.*;
public class Box extends Rectangle {
private int depth;
private int height;
public Box() {

height = 4;
super.setWidth(3);
this.depth = 2;

}
public int getDepth() {

return depth;
}
public void setDepth(int newDepth) {

depth = newDepth;
}
public int boxVolume() {

return height * getWidth() * getDepth();
}

}

Class imports

Variables
and methods

are called
“members”

of the class.

Subclass keyword

set() and get()
methods

Package
assignment

34

Using Box
public class TestBox {
public static void main(String[] args) {
Box usefulBox = new Box();
// getHeight() is from Rectangle
// getDepth() is from Box
// height in Box is not accessible
System.out.println(
"The height is " + usefulBox.getHeight());

System.out.println(
"The depth is " + usefulBox.getDepth());

usefulBox.setWidth(5);
System.out.println(
"The volume is " + usefulBox.boxVolume());

}
} The height is 1

The depth is 2
The volume is 40

Object instantiation.
Calls Box() which calls

Rectangle()

Call to method
in external package

main() method

Output

35

Some Java Operators

~[nothing]Bitwise unary not

+||Concatenation

☺BREW()Percolate

? :DECODE()Ternary if-then-else

%MOD()Modulus (remainder)

OR
AND
!=
=

i := i + 5
i := i + 1

:=

PL/SQL

= Assignment
i++Increment

JavaFunction

||Logical OR

==Equal to

i += 5Addition assignment

!=Not equal to
&&Logical AND

36

Agenda

• Java Basics

• Object Orientation

• Anatomy 101

• Datatypes and Variables

• Control Statements

37

Variable Declarations
• You can declare multiple variables on one line

int i, j, k;
int i = 1;

• You can initialize at the same time
int i = 2, j, k = 10;

• Variable and object declarations can take
place anywhere
– Java supports objects created on the fly

• Two datatype categories
– Primitive: single value, no methods, no class
– Reference: based on classes, technically a

variable created from a class is an object

declaration
initialization

38

Primitive Types - Number
• Whole number

– byte (-128 to 127)
– short (-32,768 to 32,767)
– int (-2,147,483,648 to

2,147,483,647)
– long (-9,223,372,036,854,775,808 to

9,223,372,036,854,775,807)
• Decimal place

– float (3.4e-038 to 3.4e+038)
– double (1.7e-308 to 1.7e+308)

• More precise than float, but takes double
the space (64 bytes)

9.2 quintillion in North America
9.2 trillion in Europe and the UK

39

Primitive Types –
Character and Logical

• Character
– char (integer of 16 bytes, 0 to 65,536)
– Single character or symbol
– Handles Unicode (an international character set)

• Logical
– boolean (true or false)
– Two values only (no null logical value)
– true is not a number like –1
– No quotes around the symbol
– For example:

boolean isTrue = true;
isTrue = (2 < 1);

The only
character
primitive
datatype.

40

char Examples

// decimal equivalent of letter 'a' char myFirstChar = 97;
// using a character

char mySecondChar = 'a';
// octal equivalent of letter 'a'

char myThirdChar = '\141';
// Unicode (Hex) value for 'a'

char myFourthChar = '\u0061' ;

v_string_char CHAR(66) := 'Data type CHAR is a fixed' ||' length, multi-character string in PL/SQL';

Java

PL/SQL

41

Typing Based on a Class
• Use the new operator:

String testString;
testString = new String();
OR
String somestring = new String();

• Most any class can be used to create an object
– Exceptions: abstract classes, classes with private

constructors
– Data and behavior of the class are available to the

object
• Wrapper classes implement primitives

– These have methods (primitives do not)

declaration
instantiation

Use StringBuffer()
if you will change

the data

42

String Class Examples

The String class defines a multi-character variable:
String myString;
myString = "Any size string here";

// You can also combine declaration and assignment
String myString = "Whatever here";

v_varchar VARCHAR2(100);
v_varchar := 'Up to 100 characters';
-- declare and assign
v_varchar VARCHAR(100) := 'Data type VARCHAR is a

variable length string in PL/SQL';

Java

PL/SQL

Java uses
double

quotes for
strings

43

Constants
• Use keyword final

– Like CONSTANT in PL/SQL
– Final variables must be initialized in same statement
– For example,

static final double PI = 3.141592;
• Can use final for methods

– Method cannot be overridden in a subclass
• Can use final for classes

– Final classes cannot be inherited

44

Variable Scope
• Variables last within the curly brackets or

structure that encloses them
for (int i = 0; i < 10; i++) {

• Like PL/SQL nested blocks
• Curly brackets for if..else, loops count

– Unlike PL/SQL
{

int masterVar;
if (true) {

int ifVar;
}

}

masterVar
available here

ifVar not
available here

i available only
during “for” loop

45

if (...) {
int i = 17;
...

}
System.out.println("The value of i = " + i);
public class VarTest {

static int i = 2;
public static void main(String[] args) {

int i = 0;
for (int i = 1; i <= 10; i++) {

System.out.println(i);
}

}

Variable Scope Examples
Error because i is

declared in the if block.

Member variable

Different variable
– local to method

Error because i is already
declared. This is OK for (i = 1; i <= 10; i++)

46

Agenda

• Java Basics

• Object Orientation

• Anatomy 101

• Datatypes and Variables

• Control Statements

47

Standard Control Structures
• Sequence

– Code executes in the order in which it is written
• Conditional branching

– if else, switch
• Iteration

– while, for, do while
• Jump statements

– break – to exit a structure
– continue – to start loop over
– return – to go back to calling routine
– No goto

• Exception handling
– Enclose in try {} catch {} block
– throws causes an explicit exception
– Like PL/SQL BEGIN..EXCEPTION..END

48

Conditional Example
class ShowQuarter {
public static void main (String[] args) {
int taxMonth = 10;
String taxQuarter;
if (taxMonth == 1 || taxMonth == 2 || taxMonth == 3) {
taxQuarter = "1st Quarter";
}

else if (taxMonth >= 4 && taxMonth <= 6) {
taxQuarter = "2nd Quarter";
}

else if (taxMonth >= 7 && taxMonth <= 9) {
taxQuarter = "3rd Quarter";
}

else if (taxMonth >= 10 && taxMonth <= 12){
taxQuarter = "4th Quarter";
}

else {
taxQuarter = "Not Valid";
}

System.out.println("Your current Tax Quarter is: " +taxQuarter);
}

}

Logical OR

comparison equals

Logical AND

49

Loop Examples
class DemoFor {
public static void main (String[] args) {
int i;
for (i = 1; i <= 10; i++) {
System.out.println("Loop count is " + i);

}
}

}
Could be: for (int i = 1; i <= 10; i++)

Loop count is 1
Loop count is 2
Loop count is 3
Loop count is 4
Loop count is 5
Loop count is 6
Loop count is 7
Loop count is 8
Loop count is 9
Loop count is 10

class DemoWhile {
public static void main (String[] args) {
int i = 1;
while (i <= 10) {
System.out.println(
"Loop count is " + i);

i++;
}

}
}

println() handles
mixing of data types

increment
operator

50

Exception Handling
• Code block is surrounded by handler

– Like PL/SQL (BEGIN EXCEPTION END)
• try – Used to start the block
• catch – Defines which exception you are

waiting for
• finally – Code that executes after the try

block (regardless of exceptions)
• throw – If you want to raise

your own exception in the code
• throws – Declare which exception you

will be throwing

51

Exception Handling Example
public class TestException extends Object {

public static void main(String[] args) {
int numerator = 5, denominator = 0, ratio;
try {

ratio = numerator / denominator;
System.out.println("The ratio is " + ratio);

}
catch (SQLException sqlexcept) {

// display SQL error message
sqlexcept.printStackTrace(); }

catch (Exception except) {
// display generic error message
except.printStackTrace(); }

finally {
System.out.println("After finally.");

}
System.out.println("The end.");}}

Will throw a divide-
by-zero error.

Always run

Not run if an unhandled
exception occurs 52

Some Gotchas
• Be careful of automatic rounding

– E.g., the result of an int/int is an int:
int numA = 2, numB=3;
System.out.println("result=" + numB/numA);

• Be careful of order of precedence
System.out.println("result1=" + 4 + 5);
System.out.println("result2=" + (4 + 5));

• Use { } around all if statement clauses
– Only one statement executes after if
if (anInteger == 0)
anotherInteger = 5;
someInteger = 10;

result1=45
result2=9

This always
executes

result=1

53

Bibliography
• Java 2, The Complete Reference, 5th Ed

– Herb Schildt, Osborne McGraw-Hill
• Thinking in Java (online or hard copy)

– Bruce Eckels, www.mindview.net
• Head First Java

– Kathy Sierra, Bert Bates, O’Reilly
• Java Tutorial

– java.sun.com
• Refactoring: Improving the Design

of Existing Code
– Martin Fowler, Addison-Wesley

54

Real programmers
can write assembly code

in any language.

—Larry Wall .

Quote

55

Quiz Time
1. Is for and FOR the same in Java?
2. How do you define a procedure in

Java?
3. What is a constructor?
4. What’s wrong with the following Java?

string EmpName = 'SCOTT';
5. What does this mean?

public static void main()

56

Quiz Time
6. What does the symbol “Test”

represent in the following?
public class Test
public Test()
public void test()
int test;

7. What is the main container for Java
code?

8. What is a subclass?
9. What is a method?

57

Summary
• Java has the basic language elements
• Java is a case-sensitive language
• All Java code is inside classes
• Classes are grouped into packages
• Variables can be typed from primitive

data types or from classes
• Recognized naming conventions
• Other than syntax, the big difference

between Java and PL/SQL is OO

58

Designer
Handbook
Designer
Handbook

Developer
Advanced
Forms & Reports

Developer
Advanced
Forms & Reports

JDeveloper 3
Handbook
JDeveloper 3
Handbook ORACLE9i

JDeveloper
Handbook

• Founded in 1995 as Millennia Vision
Corp.

• Profitable for 7+ years without outside
funding

• Consultants each have 10+ years
industry experience

• Strong High-Tech industry background
• 200+ clients/300+ projects
• JDeveloper Partner
• More technical white papers and

presentations on the web site

http://www.quovera.com

� Books co-authored with Dr. Paul Dorsey,
Avrom Roy-Faderman, & Duncan Mills

� Personal web site:
http://ourworld.compuserve.com/homepages/Peter_Koletzke

ORACLE
JDeveloper 10g
Handbook

� Please fill out the evals – paper 460

59

Quiz Answers
1. No. Java is case sensitive.
2. Java only has methods not procedures, but a

method with a void return corresponds to a PL/SQL
procedure.

3. It is a code unit used to create an object.
4. You need to use double quotes to delimit strings.

Also, by convention, variables are initial lowercase.
In addition, the standard string class is spelled
“String”.

5. The method, main, is available to all callers (public).
It returns nothing (void) and you do not need an
object to call it (static). In addition, if this signature
had a String array for an argument, you could call
main() from the command line by running the class.

60

Quiz Answers
6. These are, a class, a constructor, a

method, and a variable, respectively.
7. The class is the direct container for

Java code.
8. A subclass is a class declared as a

child of another class using the
keyword “extends”.

9. A method is the main code unit in
Java. Methods are contained in class
files.

