
Development

 1 Paper #468

JJDDEEVVEELLOOPPEERR 1100GG WWIITTHH TTHHEE FFUUSSIIOONN SSTTAACCKK AANNDD JJHHEEAADDSSTTAARRTT––
IISS IITT OORRAACCLLEE FFOORRMMSS YYEETT??

Peter Koletzke, Quovera

Laws of Serendipity
1. In order to discover anything, you must be looking for something.
2. If you wish to make an improved product, you must already be

engaged in making an inferior one.

Oracle has long offered tools that assist with developing applications; its current focus is with the Java IDE, JDeveloper.
JDeveloper 10g (release 10.1.3) offers the Oracle Application Development Framework (ADF), a set of features, libraries, and
methods, which greatly simplifies Java development tasks and takes advantage of the popular Java Platform, Enterprise
Edition (Java EE, formerly known as “J2EE”) technologies. Oracle is currently using ADF with a specific set of these
technologies to create its next version of E-Business Suite, called “Fusion Applications.” This technology set, or “Fusion
Stack” is centered around Java compliant technologies such as JavaServer Faces (JSF), ADF Faces (Oracle’s JSF component
set), and ADF Business Components (ADF BC, a database communication framework).
Working within JDeveloper can be a primarily declarative and visual experience and in this way, developers can create Java EE
web applications in an environment that is closer to Oracle Forms than any tool previously released.
This white paper describes JDeveloper, Application Development Framework (ADF), the Fusion Stack, and how they can
assist with development of a Java-based application. It also discusses the development process used to create applications
using these technologies. In addition, this paper provides an overview of the JHeadstart add-on and shows how its declarative
environment can assist Forms developers even more. Finally, the paper draws some comparisons between Forms and
JDeveloper, and offers insights about how a traditional Oracle development shop can benefit the most from the Fusion Stack
and JHeadstart. The white paper closes by attempting to answer the question many are asking: is it really possible to achieve
the productivity of an Oracle Forms environment by using the Fusion Stack (with or without JHeadstart)?

JDEVELOPER
JDeveloper is Oracle’s integrated development environment (IDE) for creating code based around standards in the Java EE
standards. JDeveloper has evolved from a its early releases based on Borland’s JBuilder to its current 10.1.3.3 release, which
supports development of all types of J2EE 1.4 code as well as some code using the newer Java EE (version 5.0) platform
standards. JDeveloper is highly-acclaimed by Java industry journals, although still sorely underused outside of Oracle
development communities. Its chief competitor is the open source IDE, Eclipse. JDeveloper is not an open source product,
although it is offered for no charge to Java developers who do not use ADF for runtime. (ADF runtime is included as part of
the Oracle Application Server license.)

Note
As of this writing, Oracle has not stated any date or range of dates for
the release of Fusion Applications as well as for Oracle Application
Server 11g and JDeveloper 11g used for Fusion Applications.
However, a technical preview version of Oracle JDeveloper 11g is
available from otn.oracle.com now. The JDeveloper 11g release is
being used to create the Oracle Fusion Applications. The core Fusion
Stack this white paper refers to is available now within JDeveloper
10g as well, although JDeveloper 11g adds support for additional
technologies used in Fusion Applications.

THE FUSION VISION
Oracle Fusion is a strategic reorganization of Oracle products. Oracle embarked on the Fusion road after acquiring various
companies who had their own application products. Oracle’s objective with Fusion is to merge the best of all those products

Development

 2 Paper #468

into a single (Fusion) applications suite. This effort will take many years, but Oracle has started the work and has stated that
their work will use the Fusion Middleware products including JDeveloper and Oracle Application Server to create the Fusion
Applications. Therefore, Oracle is very focused on enabling JDeveloper to support all requirements of the new Fusion
Applications.
A large percentage of Oracle’s business is in their packaged applications. Therefore, it is in Oracle’s best interest to make the
tool they are using to create the new Fusion Applications—JDeveloper and the technologies they use within it for their Fusion
applications—as fully featured, easy-to-use, and robust as possible. Oracle’s use of their own tools to create their highly-
popular applications is nothing new. Oracle developed its pre-Fusion applications (E-Business Suite) using Oracle Forms and
Reports. That Oracle applications has relied on Oracle development tools in the past has been one of the driving factors in the
success that Oracle customers have had in their use of the same tools for custom development.

Note
In addition to the Fusion technologies this white paper discusses,
Fusion Applications will make heavy use of Service-Oriented
Architecture (SOA), Enterprise Service Bus (ESB), and Business
Process Execution Language (BPEL). All of these are part of the
Fusion Stack for the purposes of Fusion Applications and will be well
supported in JDeveloper 11g, but work outside of Fusion Applications
can still use any or all of these technologies now in JDeveloper 10g
and in the future with JDeveloper 11g.

APPLICATION DEVELOPMENT FRAMEWORK
The first version of Oracle JDeveloper 10g (release 9.0.5) introduced Oracle Application Development Framework and each
subsequent JDeveloper release has further refined ADF. The splash screen of JDeveloper release 10g declares the motto of
“Productivity with Choice.” The choice comes from the many technologies, deployment platforms, and development styles
that JDeveloper supports. The productivity results from the ADF development method and architecture.
In addition to feedback received from expert user testing and months of feedback from a public preview release available on
Oracle Technology Network (OTN), ADF had been road tested over the course of four years by more than two thousand of
Oracle's E-Business Suite application developers. From that standpoint, ADF is a mature product even though it was first
released to the public with JDeveloper 10g.
ADF provides a common method of development for many types of code and integrates a number of popular Java EE
frameworks. Since understanding the word “framework” is important to the understanding of ADF, it is good to start with an
explanation of that term.
WHAT IS A FRAMEWORK?
The term framework is used in the Java world to refer to current application development technologies. A framework has some
features in common with an Application Programming Interface (API) or a code library: all offer generically built code that
you can use in your application. The code that implements the framework supplies an entire service that you can access using a
certain development method. Although APIs and code libraries may or may not have these characteristics, frameworks are
built around the idea of a service. For example, instead of building from scratch some key service such as a connection layer to
the database, you use an existing framework to supply that service.
One reason to use a framework is that you are able to tap into a standard way of adding the functionality to your application.
You do not need to reinvent the particular wheel that you need for a piece of your application. Another related reason is that
you do not need to redevelop code that many applications have in common. You leverage solid and (hopefully) well-debugged
code in all your applications. In addition, the most popular frameworks offer solid support at least from the user community,
if not from a vendor.
The foundation of a framework is one or more code libraries that supply the required service. For example, ADF Business
Components is an Oracle framework that offers object-relational (OR) mapping and high-level access to Java Database
Connectivity (JDBC) functions; the base classes in the ADF BC library are written generically so you can tap into their
functionality for your application.
Another framework example is Apache Struts, an open source project. Struts supplies the Controller layer of a web
application, which manages page flow and the processing of user interface events such as button clicks. As with ADF BC,
Struts base classes supply this service, and you define how it works for your application using XML files and extending the
Java base class files, if necessary.

Development

 3 Paper #468

FRAMEWORK USE OF XML FILES
The generic library code in a Java framework is usually customized for an application need by the use of code in an XML file.
For example, when you develop ADF BC code, you develop small XML files that define how the ADF BC library code will
run for your application. The ADF BC based classes offer generic and developer-friendly ways to access JDBC functions and
to construct SQL for those functions. Using XML files, you indicate to the framework classes how your database tables and
views are structured (column names, datatypes, constraints, and so on). Then, ADF BC constructs the correct SQL for your
tables and handles return values and messages from the database.
For ADF BC development in JDeveloper, you create and edit XML using wizards and property editors. You interact with
these editors in a declarative way and JDeveloper creates XML code from the property declarations. This style of development
and the use of XML files are common to many Java frameworks. A guiding principle of frameworks is that most of the
application-specific tweaking of the framework can and should be accomplished by using declarations in XML files, not by
writing procedural code in a Java class file. This is good news for developers who are accustomed to the declarative style of
programming such as that within Oracle Forms.
FRAMEWORK USE OF JAVA FILES
Your application may (and most likely will) require features or behavior that the base framework classes with your specific
XML declarations do not offer. Therefore, another guiding principle of Java frameworks is that they can be extended. That is,
you can supplement or replace part of the service by writing extensions (subclasses) to the base framework classes. Methods
that you write in these extensions are used automatically at runtime in addition to or instead of the methods in the base classes.
Since your extensions subclass the base classes, the rich base class functionality will still be used for other work.
When working with frameworks, a best practice is to use this feature sparingly. The more code you write to extend the
framework, the less transparent upgrades or patches to the base classes may be. In addition, you use frameworks to avoid
having to write a lot of repetitive, complex code. Therefore, if you find yourself writing a lot of code to extend the framework,
perhaps the framework is not a correct match for your needs.
ADF AS A META-FRAMEWORK
ADF provides a common development method and common set of tools that allow you to work with many different
frameworks such as ADF BC and Struts. In this sense, we can think about ADF as a meta-framework —a framework that
integrates other frameworks. Before looking at the tools that ADF offers to support integrated work with various frameworks,
we need to obtain a taste for the various frameworks that ADF supports. The best way to understand these frameworks is by
examining and briefly discussing the ADF architecture model.
ADF ARCHITECTURE MODEL
ADF is divided into four layers that roughly follow the Java EE Model-View-Controller (MVC) design pattern. Figure 1 shows
a representation of these layers and the ADF-supported technologies that fit into them. JDeveloper’s design time tools can
create code from the technologies shown in all ADF layers. You will notice separate technology tracks and communication
paths defined in this diagram for two styles of code deployments: application client and web client.
The Java EE specifications define application client as code that runs inside a Java Virtual Machine (JVM or Java runtime) on the
client machine. With application client, the developer writes the application mostly in Java. On the other side, web client is code
that runs in a JVM on an application server. Many users share the same runtime and the user interface is most commonly
rendered in a web browser on the client’s desktop machine. The web client concept also supports uses for other shared server
runtimes such as wireless (cellphone or PDA) and telnet (when Java code is used to generate user interface items in character
mode). For a browser web client application, Developers use HTML and Java markup tag languages primarily, although Java
library code is always present in an underlying layer (usually in pre-existing libraries).
ABOUT MVC
The MVC design pattern upon which ADF is built defines three main layers of application code:
• Model This layer represents the data and values portion of the application.
• View This layer represents the screen and user interface components.
• Controller This layer handles the user interface events that occur as the user interacts with the interface (view), controls

page flow, and communicates with the Model layer.
In concept, these layers are independent so that you can switch code in one layer to another technology and use the other two
layers without modification. For example, if you build your View layer based on JavaServer Pages (JSP) technology, you could
switch that View layer for one built with JavaServer Faces (JSF) and retain the same Model and Controller layers. In practice,
completely separating layers is difficult, but MVC is still useful as a guide and a goal.

Development

 4 Paper #468

Figure 1. ADF architecture model

BUSINESS SERVICES LAYER
ADF adds Business Services layer (shown in Figure 1) to the layers of the MVC design pattern. This layer represents data
sources and is actually a spin off of some functionality in the MVC Model layer. ADF excels and is unique in its handling of
business services (data sources). Much thought and effort have gone into providing a seamless method for connecting the
various layers of an application to its data. ADF handles the complexity of binding the user interface components to various
sources of data. The binding is handled in the Model layer and the data sources are handled in the Business Services layer.
The Business Services layer of ADF provides code for accessing data sources such as a database. Business services are
responsible for persistence—the physical storage of data for future retrieval—and object-relational (OR) mapping—translating
physical storage units such as rows and columns in relational database tables to object-oriented structures such as arrays of
objects with property values.
ADF was designed around the idea of flexibility. For example, if you are accustomed to working with business services
delivered in Enterprise JavaBeans (EJBs), you can implement the ADF Business Services layer using EJBs. ADF will then
seamlessly integrate this data access source into the other ADF layers.
ADF supports the following business services technologies:
• EJB—A standard Java EE structure for managing data from within a runtime container, consisting of entity beans,

session beans, and message-driven beans.
• Web services—Utility functions and other resources written by a provider that are available through an Internet address

and that you can incorporate into your application.
• ADF Business Components—Mentioned before, ADF BC is an evolution of Business Components for Java (BC4J),

which provides components that allow developers to design and code business objects and business logic. It offers easy
interaction with business data though SQL statements.

• Java classes—You can code Java class files, also called plain old Java objects (POJOs) or JavaBeans, that supply data from
any location (for example, files, Java objects, or a database). JDeveloper's TopLink utilities provide flexible mapping and
persistence services to these Java classes.

Development

 5 Paper #468

MODEL LAYER
The Model layer in ADF architecture (as shown in Figure 1) supplies the connection mechanism from the View layer to the
data access components in the Business Services layer. It receives instructions from the Controller layer as requests for data
retrieval and updating. The Model layer supplies data from the Business Services layer and sends a request to the View layer to
update the display. For example, when the user submits a page in a web client application, the Controller layer requests an
update of the data through the Model layer. The Model layer communicates the data change to the View layer so the visual
display can be updated when the page refreshes (in the case of a web client).
The Model layer in ADF is composed of two aspects—ADF Data Controls and ADF Bindings. Before discussing these
aspects, a brief explanation of data models is needed because data controls are defined for a data model supplied by a business
service.
DATA MODEL AND VIEW OBJECT INSTANCES
A data model is a representation of the business service objects available to a project. For example, if you create a business
services layer using ADF Business Components, you can define a data model in the application module definition using the
Application Module Editor as shown in Figure 2.
The left area of this editor shows the available data objects and the right side shows the data model—objects selected for this
application module. You can also use the business components diagram to modify or display the application module data
model.

Figure 2. JDeveloper’s Application Module Editor

This data model contains two master view object instances that represent database tables—EmployeesView1 and
DepartmentsView1. It also contains detail view object instances such as EmployeesView3, which links to the master view
object instances. The view object definitions and their attributes are available to the applications that reference the data model.
The master-detail links represent the same type of master-detail link as a foreign key constraint in the database. For Forms
developers, these links are like relations between Forms blocks—they synchronize the viewable detail records (for example,
Employees) in the context of one row in the master (for example, Departments).
ADF DATA CONTROLS AND THE DATA CONTROL PALETTE
Data controls are built from the data model and are used to abstract one or more business services into a common layer. For
example, JDeveloper projects that use different business services such as ADF BC, EJBs, and web services can access all of
them using a single tool— the Data Control Palette (shown in Figure 3). Data controls appear as a list of data model
components and you can drag them onto a user interface page to create UI components.
The Data Control Palette offers user interface controls that are appropriate to the kind of page or panel you are working
on (for a web client or Java client, respectively). The interface controls presented also depend upon whether the data source is

Development

 6 Paper #468

a collection of data (such as an ADF view object instance with multiple rows), a single value (such as an attribute in a view
object instance), or a single structure (such as a row). Different binding objects are supported depending upon the type of data
and the controls available in the Data Control Palette will change based on these considerations.
Some of the user interface components available for view object-level components such as EmployeesView1 and
DepartmentsView2 are Read-Only Table, Navigation Buttons, Input Form, Read-Only Form, Select Row Link.
Some data model components that are available for attributes include Value, Label, Text Field, Password Field, and List of
Values.
Data controls are available from the Data Control Palette, which appears automatically when you display a visual editor (or
when you select View | Data Control Palette). All data model objects defined for business services in the workspace will be
available. When you drag and drop a data model object from this palette to a visual editor, a menu will appear that displays the
list of available interface controls. After you select a component from this menu it will appear in the visual editor. Figure 4
shows this action for a Read-Only Table built from the EmployeesView3 detail view object definition.
In addition to data value components, the Data Control Palette also offers “operations” such as Commit and Rollback to send
the current data in the Model to the Business Services layer (and, in the case of ADF BC, to the Oracle database). Other
navigational operations such as Create, Find, First, Next, Last, and Delete appear on the data set (ADF BC view object
definition) level.
ADF BINDINGS
Bindings are code or definitions that declare which data from a business service will be
connected to a user interface control or structure. One of the challenges in the classic
definition of MVC has been where to place the data-binding functionality. ADF
Bindings act as the connection layer from the View components to Business Services
components. Bindings are defined using a combination of property values containing
expression language (EL) values that reference definitions in a PageDef XML file.
These bindings are created and maintained automatically by actions in the JDeveloper
IDE but are available for editing, if needed. The binding attaches the component to
data from the business service at run time.
CONTROLLER
The Controller layer in ADF is used only for web client code as shown in Figure 1.
The Controller layer defines page flow—which page is presented when an action occurs
on another page—as well as the processing actions that occur between pages (such as
a database query). Since the Controller handles the order in which pages appear, one
page need not have a hard-coded link to the next page. This makes the page flow
design more flexible because the Controller can apply conditional logic to determine
the next page to be displayed. The Controller layer is also responsible for sending data
entered in the View layer to the Model layer where it can be processed.
Although you can use any controller mechanism (even one you write yourself) for web
client code you create in JDeveloper, the tools in the current release of JDeveloper 10g
support the Struts framework mentioned earlier. It also supports the JSF controller;
this controller is bundled with user interface (View layer) components inside the JSF
framework (explained later in this paper).
VIEW
The View layer in ADF (shown in Figure 1) includes application client and web client
technologies that are used to render user interfaces.

 Figure 3. Data Control Palette

Development

 7 Paper #468

Figure 4. Dragging and dropping controls from the Data Control Palette

APPLICATION CLIENT
As mentioned, application client code runs in a Java Virtual Machine on the client. It does not require an application server
because all application code is stored and runs on the client machine although it may access business services code such as
ADF BC that is deployed on a web tier server as EJB session beans. It uses libraries such as Swing (included with the Java Java
SE Development Kit or JDK) to supply interface items such as windows, panels, text items, labels, and menus. Swing controls
incorporate the Controller layer so no additional framework is needed to intervene between the View and Model layers of an
application client module.
WEB CLIENT
ADF supports a number of web client view technologies that display in a browser. For web client applications, the code is run
on an application server and generates a page that is displayed in the client's display device (such as a web browser). These
technologies are primarily coded with tag languages that are supported by various Java class libraries (called tag libraries). These
libraries present the user interface using standard controls for the appropriate device (such as HTML in a web browser). When
the user submits a web page that contains input values, the page is processed by the Controller layer.
Although you can use any View layer technology in JDeveloper, the following technologies are fully supported by the
JDeveloper tools:
• JSP technology JSP is a popular Java EE coding style that combines HTML and JSP tags. You can also embed Java

snippets that perform programming functions such as conditional processing and iteration. JSP files run on an application
server and usually output HTML to the client browser.

• JSF framework JSF is an evolution of JSP technology. It includes controller services and a full life cycle that processes
page submissions, drawing interface components, and updating the Model values. This is the style that the industry is
turning to for new applications because it has more features and is now a standard in the Java platform specifications.
JDeveloper 10.1.3 and later fully support JSF work.

• ADF UIX ADF UIX is an Oracle framework that defines a page using XML code. A unique feature of UIX is its rich
container model, which allows you to easily create a standard look-and-feel for your application. Since the page definition
is XML metadata, the page can be rendered using different viewers such as mobile devices or a desktop browser. Oracle's
E-Business Suite (Oracle Applications) currently uses UIX technology for its self-service applications although the new
Fusion Applications are being written using JSF. UIX has many features in common with JSF technology. JDeveloper
version 10.1.2 and earlier supports work with ADF UIX. JDeveloper 10.1.3 does not support ADF UIX.

Development

 8 Paper #468

JSF AND ADF FACES
As mentioned, Oracle is using a specific technology stack to create Fusion Applications: ADF BC and ADF Faces. ADF Faces
is a set of libraries that follows the JavaServer Faces standards so the story of ADF Faces starts with a brief introduction to
JSF.
WHAT IS JSF?
JSF evolved from the need to make JavaServer Pages development easier and more reusable. JSP code contains a mixture of
standard HTML markup tags and JSP-specific tags that can include embedded Java snippets (scriptlets) for processing logic
and references to Java class files (action tags) for performing operations (such as database queries) and generating additional
HTML tags. JSP developers found themselves creating reusable libraries to perform high-level operations such as displaying
the results of a query in a multi-row, multi-column HTML table. This required the use of frameworks not included in the Java
standards or customized libraries, which were even more non-standard.
In addition, JSP technology is only a solution for the View layer. It requires a separate framework for Controller functions.
The most popular framework used as a JSP Controller layer, is Struts, but this framework is not supported by the Java
standards so integration with JSP (which is a Java standard) is the responsibility of the developer.
JSF evolved from the need for standards for this type of high-level component (for example, the table for query results) and
for a built-in Controller framework. JSF is included in the Java EE 5 specification and is therefore a recognized standard.
In principle, JSF technology supports any type of client device and coding style. However, as of this writing, Sun Microsystems
offers a Reference Implementation (RI)—code libraries that prove that the standard supports real code—only for servlets (as class
libraries) and JSP technology (as tag libraries). These libraries contain classes and tags for the components and functionality
described later in this section. Since RI libraries are tested and proven implementations of the standard, you can use them as a
basis for your own code. The libraries included with the RI follow:
• JSF Core This tag library contains components, such as validators and converters, that are used in conjunction with

other components. Components in this library use the “f” prefix, for example, f:loadbundle.
• JSF HTML This tag library contains HTML user interface components, such as text input, buttons, labels, and radio

options. You refer to these components using the “h” prefix, for example, h:datatable, h:column, and h:form.
The RI also includes a render kit (a code layer that writes a particular kind of output format) for HTML output from JSP
components although the JSF standard supports development of render kits for other client devices such as PDAs.
JSF RUNTIME AND JSF CODE
JSF code runs on an application server and the JSF runtime sends a markup language (such as HTML) to a client device (such
as a web browser). A servlet (called the JSF Servlet) on the application server parses and interprets the code at runtime.
The files you are responsible for creating in JSF work (for example, for a web browser client) follow:
• JSP page file The user interface code is contained in a JSP page (with a .jsp extension) or JSP document (with a .jspx

extension). This file includes all layout elements such as text fields, buttons, and graphics that the user will see and interact
with. XML tags are used to draw these interface items. At runtime, the JSF Servlet parses the XML and runs a Java class
file from a tag library for each tag. Property values coded into the interface component are passed to the Java class as
parameter values; the Java class then performs all actions needed for that component.

• Backing bean file You can supplement the standard behavior of the JSF code by creating a backing bean—a custom Java
class file for each page file. The user interface components are available as setter and getter methods in this file, so you can
modify or supplement the normal behavior of the component. For example, if you wanted to modify the standard
behavior of a button component, you would write a method in the backing bean. This type of code is like trigger code you
would write to specify the behavior of or validate data in an Oracle Forms user interface item. The backing bean code is
doubly similar to trigger code because it is usually a snippet; you are only responsible for the customized behavior, not all
the additional code required to perform the normal function of the component.

• faces-config.xml This file (technically called the application configuration resource file) defines how the JSF Controller will
operate. As the file extension suggests, it is XML code that defines, among other functions, the page flow (how one page
calls another).

Development

 9 Paper #468

ADF FACES
ADF Faces is a set of JSF components that adds to JSP pages with JSF components a set of rich user interface controls. ADF
Faces is highly integrated with JDeveloper, and the developer’s experience is closer to the experience in Oracle Forms than
anything else that has come before. In addition, as mentioned earlier, ADF Faces is one of the technologies being used to
build the Fusion Applications. It is an evolution of ADF UIX but is written to comply with the JSF standard.

Note
Oracle donated ADF Faces to the open-source Jakarta MyFaces
Project (myfaces.apache.org) in early 2006. This places its source
code in the public domain, which means that, although Oracle will
enhance and support ADF Faces for its customers, the larger Java
community will also contribute to its functionality. The ADF Faces part
of the MyFaces project is called “Trinidad.”

ADF Faces improves on the JSF reference implementation libraries in the following areas:

• A larger component set ADF Faces provides over 100 tags, many of which are visual user interface items such as
container components for various styles of layout, menus, trees, tables, shuttle controls, button bars, and selection lists. In
addition, ADF Faces also includes date and color pickers as well as media viewers. The upcoming section “ADF Faces
Components” describes some of the available components.

• More layout components ADF Faces ships with a set of tags that can be used as layout containers for components.
For example, the af:panelPage tag draws an HTML table with a set of prebuilt areas for various components, such
as branding graphics, a tab header, global navigation buttons, a content area, and a copyright area. Including this tag on a
JSF page allows you to plug components into those areas without having to worry about how the HTML table cells and
rows are drawn to maintain the arrangement of those components.

• More properties ADF Faces provides properties for features such as Hint and Label on an af:inputText item.
Without using ADF Faces, you would need to add RI output text items for both the hint and the label.

• Partial page rendering Several ADF Faces components, such as af:tree, af:treeTable, af:menuTree, and
af:showDetail, offer partial page rendering (PPR)—a combination of prebuilt JavaScript and HTML frames that allow
just a section of the page to be redrawn. A good example of a PPR component is af:table. (JSF tags are best identified
using a prefix—in this case “af”—that identifies the library where the tag is located in addition to the tag name.) The
af:table component draws a standard HTML table, but adds column headings that allow the user to click and
automatically sort the rows by the values in the column. When sorting in this way or scrolling through sets of records, only
the table data area is redrawn. The rest of the page remains static. This results in a more interactive interface that can
enhance user productivity. PPR uses the same core technologies as Asynchronous JavaScript and XML (AJAX), which
currently has much Java industry attention because of its enhanced user experience

• Automatic graphics file generation Some components, such as af:commandButton, create graphic files when
run. This eliminates the need to create and manage separate files for graphics. The text property of the tag specifies the
label that will appear on the graphics file. For international support, you can bind the text property to a message bundle file
that is specific to the language of the user. That way, the label will be dynamically loaded based on the user’s language
preference. An example of button code and how it is displayed appears here:

<af:commandButton actionListener="#{bindings.Commit.execute}"
 text="Save"
 disabled="#{!bindings.Commit.enabled}"/>

• ADF BC support As with any standard Java EE View layer technology, ADF Faces work well with ADF Business

Components. You can quickly bind values from ADF BC to ADF Faces component properties. Also, the Data Control
Palette in JDeveloper provides automatic binding of some components, such as master-details layouts.

Development

 10 Paper #468

ADF FACES COMPONENTS
Figure 5 shows some simple ADF Faces components from the Core library that are focused on displaying single-valued items.
Figure 6 shows some more complex ADF Faces Core components that are used for layout, navigation, and displaying of
multiple rows or values. You will recognize some of these components because they have close parallels in Oracle Forms.
Components available include the following:

• af:selectInputDate This component displays a text item with a graphical LOV button. When the user clicks this
button, a calendar window will appear and wait for the user to scroll through the months and select a date. The selected
date will be returned to the associated text item.

• af:inputText This component is a standard text item that includes a prompt property (like the Prompt property of a
Forms item). Another of its many properties is Required (like the Required property of a Forms item); if this property is set
to “true,” the framework will validate that a value is entered when the page is submitted. As shown in Figure 5, it will also
display an asterisk (“*”) before the prompt to suggest to the user that this field value is mandatory.

• af:selectOrderShuttle This component (shown in Figure 6) displays a shuttle control—two text areas filled with
selections—that allows the user to select more than one value for a single field. All headings, graphics buttons, and text
areas are built into this component and its child components.

• af:commandMenuItem This component displays a button (action item) formatted as a tab, navigation bar item, or
subtab determined by which container component surrounds it. When the user clicks this item, an event is triggered.

Figure 5. Item-oriented ADF Faces components

When working with ADF Faces, you do not code HTML tags directly. Instead, you use ADF Faces components that will be
rendered in a web browser using HTML tags. For example, ADF Faces offers a component, af:inputText, which renders
an HTML form input item when displayed in a web browser. The af:table and af:column components render as an
HTML table.

Development

 11 Paper #468

Figure 6. Other ADF Faces components

CONTAINER COMPONENTS
Some ADF Faces tags act as containers, which hold other components. The process of
creating a file with ADF Faces usually starts with adding container component tags, and
then inserting other UI components within the container components. ADF Faces offers
containers, such as af:panelPage, that contain a number of facets (predefined areas), as
shown in the structure window navigator on the right.

These predefined areas use JSF facets to provide default positions for objects such as
navigation buttons, copyright information, and branding logos. After dragging this
component onto the page, you can drag other components into each of the facet areas you
need to use.
ADF Faces containers have a parallel concept in Oracle Forms, where, before adding user
interaction objects such as items and checkboxes, you create windows to contain canvases
that, in turn, hold the user interaction objects. All ADF Faces containers provide
automatic layout capabilities that reposition child components when the container is
resized. This capability is somewhat like that of frames in Oracle Forms, although in the
case of ADF Faces, the container’s automatic layout applies at runtime as well as at design
time.
TAG LIBRARIES
Just as JSF offers Core and HTML tag libraries, ADF Faces offers Core and HTML tag
libraries (prefixed with “af” and “afh,” respectively). Some of the ADF Faces components
are parallel to JSF RI components. For example, the JSF RI component h:inputText
has an ADF Faces equivalent, af:inputText, used to present a text entry field. You can distinguish between these
components in code, because of their prefixes (“h” for JSF RI and “af” for ADF Faces).

ADF FACES PROPERTIES
In general, ADF Faces components offer more properties and built-in functionality than the JSF RI components. For
example, the ADF Faces af:inputText component includes a label property (for a prompt) that is not included with the
comparable JSF RI component. This property is much like the Prompt property of an Oracle Forms item because it is a

Development

 12 Paper #468

property of the object, not a separate boilerplate object. Also, unlike the JSF RI component, the ADF Faces component
validates items marked as required using JavaScript, which does not require a communications trip to the server.

Figure 7 shows a property list for an ADF Faces component, af:inputText (that corresponds to an Oracle Forms text
item with Item Type of “Text Item.” If you are an Oracle Forms developer, you will see many familiar properties (cross
referenced in Table 1) just as you will find other familiar features as you continue to work with ADF Faces and JSF.

Figure 7: Property list for an af:inputText component

ADF Faces af:inputText
Property

Oracle Forms Item Property

Access Key Access Key (only for a push button or radio group item)

Binding Column Name (or, if blank, the name of the item)

Columns Width

Disabled Enabled

Events (Item-level triggers)

InlineStyle properties in the Color and Font property categories

JavaScript Events (item-level triggers, not properties)

Label or LabelAndAccessKey Prompt

MaximumLength Maximum Length

ReadOnly Insert Allowed and Update Allowed

Rendered Visible

Required Required

Development

 13 Paper #468

ADF Faces af:inputText
Property

Oracle Forms Item Property

Rows Height (with the Multi-Line property)

Secret Conceal Data

StyleClass Visual Attribute Group

Tip (appears under the item) Tooltip (pops up over the item)

Valign (for items) or HAlign
(for containers)

Justification

Value Initial Value

Wrap Wrap Style

Table 1: ADF Faces af:inputText Properties Compared With Oracle Forms Item Properties

Note
Some Oracle Forms item properties define database-oriented
functionality. This functionality is usually implemented in properties on
the ADF BC objects contained in the Model layer code.

DEVELOPING AN ADF FACES APPLICATION
Although you can create an ADF Faces application in a number of different ways with JDeveloper, the process follows these
general steps:
1. CREATE THE APPLICATION
As with any JDeveloper development, work starts with creating an application (application workspace) using the Create
Application dialog shown here:

You can access this dialog by selecting New from the right-click menu on the Applications node of the JDeveloper navigator.
Alternatively, you can select File | New from the menu to open the New Gallery, where you can select from a number of
applicable objects to create.

Development

 14 Paper #468

In the Create Application dialog, you select an Application Template of “Web Application [JSF, ADF BC],” which will create
two projects, Model and ViewController. These projects will be set up with the proper library references so that you can create
database access ADF BC components (in the Model project) and user interface ADF Faces and JSF components (in the
ViewController project).
2. DEFINE THE MODEL PROJECT
Since the user interface components require database access components, you need to create a draft of the Model components
next. You can use the ADF BC wizards to accomplish this (in the New Gallery’s Business Tier\ADF Business Components
category). Alternatively, you can use the Business Components diagrammer to draw new business components or to represent
database tables and views. The diagrammer can then generate business component code.
The ADF BC objects you set up will represent the database tables and views in your application. You will set up an application
module that serves as a link from ADF BC code to the View layer code. You will also set up an entity object for each table to
which you need to issue INSERT, UPDATE, or DELETE statements. In addition, you will set up view objects for tables and
views you need to SELECT from. To synchronize master-detail data, you set up a view link. You can refine the business
components iteratively with the View layer once you have the basic components defined.
3. CREATE THE JSF NAVIGATION DIAGRAM
Once you have a rough cut of the business components created, you can start developing the View layer user interface code.
You can start with the JSF Navigation Diagram (shown in Figure 8). This tool allows you to lay out pages and navigation cases
(lines that indicate which page will follow each page).

Figure 8. JSF Navigation Diagram

4. CREATE THE JSP PAGES
You can start creating the JSP pages from the navigation diagram by double clicking a page symbol to start the JSF JSP
Wizard. This wizard creates a JSP file that you will use to lay out interface items. An alternative development path is to create
and lay out the page files, then create the page flow diagram. The method you use is up to you, but if you start with one
method (creating the JSF navigation diagram first or creating the page files first), you will probably find yourself iterating
between the two methods during development. If you are creating pages before the diagram, you start the JSF JSP Wizard
from the New Gallery.
5. LAY OUT THE PAGES
The typical next step is to add the content of the pages. Using the Visual Editor, shown in Figure 9a, you drag and drop
components from the Component Palette (shown in Figure 9b). You can alternatively drag and drop data controls from the
Data Control Palette, shown and described previously.

Development

 15 Paper #468

The difference between dropping components from the Component Palette and dropping components from the Data Control
Palette is that the Data Control Palette method creates bound objects—components that are connected to data or actions in the
business components project. Since some components (for example, navigational controls such as tabs and non-data-oriented
buttons) do not require a connection to the Model project, you will select from both palettes when laying out a page.

Figure 9. Visual Editor and Component Palette

The order in which you drop components and objects on the page does not matter, but it is a best practice to drop container
components, such as the af:panelPage component first. That way, when you drop components onto the page, they can
be positioned in the proper location within the containers. Selecting the proper container component is a key to effective
design with ADF Faces, so you will want to become familiar with these components (look for components named with a
“panel” prefix).
6. TUNE THE COMPONENT PROPERTIES
One of the strengths of ADF Faces is the large range of properties it offers. This feature allows you to modify the behavior of
an ADF Faces component with a simple declarative setting, rather than creating a programmatic solution. The method you use
for setting property values of an ADF Faces component is the same as the method you use for setting properties of an Oracle
Forms control. That is, you select the component in the Visual Editor (Layout Editor in Forms Builder), and interact with the
Property Inspector (Property Palette in Forms Builder). Figure 10a shows the Property Inspector view of an
af:inputText item.
In addition to modifying components of the user interface components, you may need to modify the properties of the
bindings used to connect them to the business components. You can access these bindings from the Structure window (shown
Figure 10b) by displaying the binding file for the JSP page.
7. TEST THE CODE
Running JSF code in JDeveloper is just a matter making a page active in the editor, selecting a page in the navigator, or
selecting a page symbol in the JSF Navigation Diagram, and clicking the Run button. Then, JDeveloper starts the Embedded
OC4J Server, which replicates the Java EE runtime environment on the Oracle Application Server. The browser will open and
display the selected page. This is similar to running Forms in a standalone OC4J process from Forms Builder. Running the
application before you perform modifications to the code generated by the visual environment is useful so you can check the
default behavior and make note of changes, which are required.

Development

 16 Paper #468

Figure 10. Property Inspector and Structure Window

8. WRITE BACKING BEAN AND ADF BC CODE
The preceding steps have required little
or no code editing. They have used
JDeveloper’s visual and declarative tools
to generate ADF Faces code. These
methods will take you a long way towards
completion of an application. However, it
is most certain that they will not suffice
for most enterprise application needs. At
some point, you will need to write some
code. All code you create in JDeveloper
from any of the visual or declarative tools
is available in the Code Editor (shown on
the right). When you need to supplement
or otherwise go beyond what is exposed
in the visual and declarative environment,
you will use the Code Editor.
9. DEPLOY THE CODE
After the iterative process of working
with the visual and declarative tools,
creating code, and testing the application
is complete, you need to package the
application files into an enterprise
application archive (EAR) file that will be
copied to the application server. All files in the Model and ViewController projects will be packaged together in the same file
so that the application can be run from the application server. JDeveloper provides a deployment profile file that contains all
details about the application and the libraries on which it depends. A right-click menu option in the navigator creates the EAR
file based on the settings in this deployment profile.

Development

 17 Paper #468

JHEADSTART
JHeadstart is an add-on (extension) to Oracle JDeveloper that generates a large amount of UI code from declarations in an
XML file. It was created and is enhanced and maintained by Oracle Consulting’s Center of Excellence in the Netherlands.
JHeadstart requires a separate license agreement with Oracle Consulting, but you can download from the JHeadstart Product
Center’s website and try a limited preview version without cost. (Search for “JHeadstart Product Center” using google.com)
Once you install JHeadstart (using Help | Check for Updates in the JDeveloper menu), additional JHeadstart items will
appear in the right-click menus and the New Gallery.
JHeadstart generates user interface code that would take much time to create manually using standard JDeveloper tools.
Modifying these files uses the same techniques you use for building applications without JHeadstart. JHeadstart also generates
page flow Controller code for default page styles such as form and table. It automatically adds insert, update, delete, and search
functionality based on settings you make in the application definition. As an added benefit, if you are interested in using the
ADF Faces tree or shuttle components, JHeadstart saves you from the significant manual effort required to properly set up
those components.

Note
JHeadstart is not part of the Fusion Stack and is not being used to
create Fusion Applications. However, it creates code using in Fusion
Stack technologies (ADF Faces, JSF, and ADF BC) so all the
generated code is easily maintained and integrated with any other
Fusion Stack technology code.

JHeadstart offers an even more robust declarative environment than native JDeveloper and includes two generators:
• JHeadstart Designer Generator (JDG) This optional generator migrates module definitions you have created in

Oracle Designer to application definitions for a JSF and ADF Faces application. This generator is intended to be a one-
time migration tool not a bridge between environments or a way to generate Java EE code from Designer. Once you run
the JDG, you work with the definitions only in JDeveloper. In addition, the JDG requires Model project definitions (ADF
BC). As a precursor to running the JDG, you can run the ADF Business Components Generator to create ADF BC
objects from Designer Schema Model objects.

• JHeadstart Application Generator (JAG) This tool creates ADF Faces JSP pages and code in the faces-config.xml file
from definitions in an application definition. It is highly configurable and work in JHeadstart is oriented towards the goal
of running this generator.

You will only use the JDG if you have created fully-defined modules in Oracle Designer, and you wish to move them into
JDeveloper’s environment without rethinking or rewriting
them. In addition, after you run the JDG, you work with
the migrated modules using the Application Definition
Editor and you then run the JAG. Since you can use the
application definition and JAG with or without starting
with Designer definitions, this paper will focus on the
most commonly-used JHeadstart tools: the application
definition and the JAG.
APPLICATION DEFINITION
The application definition is a set of properties declared using
elements in an XML file. The JHeadstart Application
Generator uses these properties to determine the code it
will generate. You interact with this file using the
Application Definition Editor (shown on the right).
The editor is set up with a hierarchical navigator on one
side and a property editor on the other side, much like
Forms Builders’ Object Navigator and Property Palette.
Selecting a node in the navigator opens its properties in
the property editor. The toolbar in the editor allows you to
create nodes, copy and paste nodes, copy and paste
properties, and generate the application. If you have used

Development

 18 Paper #468

Oracle Designer, you can think about the Application Definition Editor in the same way as the Repository Object
Navigator—it exposes all elements and properties in the repository used to generate the application.
Some of the nodes in this navigator are shown in Figure 11. So that you can get a taste of the flexibility of JHeadstart and the
types of code you can generate, it is useful to take a brief look at these nodes and some of the properties they offer.
SERVICE
The JHeadstart service level applies to an entire application. It is assigned an application module from the Model project, and
all view object instances declared for that application module are available to the JHeadstart nodes under the service. The
service element contains properties such as the following:
• UI Pages Directory This property defines the top-level directory for all JSF pages generated by the JAG.
• Overall Layout Style This is the category of page navigation that the JAG will generate: Menu or Wizard.
• Resource Bundle Type The value of this property declares whether messages will be generated into a Java file or a

plain property-value file.
• Unselected Label in Dropdown List This property declares the default null value label for pulldown items (poplists)

in the entire application.

Figure 11. Application Definition Nodes

GROUP
The group level of properties corresponds to a single view object instance in the application module. For example, the
Employees group shown in Figure 11 corresponds to a view object that represents a query to the EMPLOYEES table. Other
than the view object assignment, the most important property of the group is Layout Style, which allows you to declare the
general appearance of the page and the type of page flow that will be generated. You can assign the following values to this
property to create different types of pages:
• form to create a single record layout page.
• table to create a multi-record rows and columns layout.
• table-form to create a page flow where the user selects a record on the table page and views it on a form page.
• select-form to generate a page where the user select a record from a list and views it on a form page.
• tree to generate a list of hierarchically-related records in a navigator style display.

Development

 19 Paper #468

• tree-form to create a tree page on the left and an edit page on the right containing edit fields for the node selected in the
tree.

• parent-shuttle to create a shuttle control representing a detail table populated by the shuttle.
• intersection-shuttle to generate a shuttle control representing a detail table populated from two parent tables.
In addition to the basic layout and page flow style, you can define search options for each of these pages using a property of
the group. The ability to insert, update, and delete records are defined as properties for the group, a well. You can think of the
group as holding the same type of properties as a block in Forms.
ITEM
The item level under the group holds settings for the field- or column-level properties, just like items Forms. Some of the
properties of the JHeadstart follow. You will see parallels with properties of Forms items:
• Hint The text in this property will display under the field on the screen.
• Prompt This is a field label for the item.
• Display Type This is set based on the datatype of the attribute. See the sidebar “A Note about Pulldowns (Poplists)”

for information about setting this property for pulldown controls.
• Column Sortable ADF Faces table columns include a property that causes a button to be displayed in the column

heading. Clicking this button will sort the rows in the table based on the value in that column. This property generates the
sort behavior for this item when the item is used in table layouts.

• Width and Height The JAG generates components with default sizes. These properties allow you to define the size of
the item if it should be different from the default.

• Display This property declares whether the item should be shown on the screen.
• Display in Table Layout If you set this property to “false,” the JAG will not add the item to table-style layouts but will

still generate it into form-style layouts (if Display is set to “true”). This is useful for tables with many columns. So that the
user is not forced to scroll horizontally, you can exclude columns from the table display if the columns are not required to
identify a record.

You have no doubt noticed that some of these properties are very similar to those explained for the af:inputText
component earlier in this paper. This is no coincidence. In fact, the JHeadstart properties of an item in some cases (such as
Hint and Prompt) will be assigned to corresponding properties for the af:inputText component that the JAG generates.

A Note about Pulldowns (Poplists)
You can define a pulldown list for an item with just a few definitions.
First, you need to create a Domain element in the application
definition. You specify whether the domain is a static list of hard-
coded values or a dynamic list based on a view object. Then you set
the item properties: Domain as the name of that new domain and
property Display Type as “dropDownList.”

DETAIL GROUP
Detail groups have the same properties as groups but they are displayed either on a separate page accessible with a Details or
subtab button or on the same page as the master record. The detail group requires a master-detail view link defined in the
application module as explained in the earlier section on the data model of the application module. The group’s Same Page
property defines whether the detail group appears on the same page or on a separate page accessed with a subtab or Details
button click.
LOV
LOV definitions generate LOV functions for specific items. You create a separate group for each LOV view object (like a
record group in Forms). The group properties are set: Use as List of Values? checked and Layout Style as “table.” Then you set
the item Display Type property to “lov” to generate a text item with an LOV button. Under the item in the navigator, you create
an LOV subnode with an attribute mapping (LOV view object attribute to the attribute for the base view object on the page).
This feature alone can save much time from the largely manual process that JDeveloper alone requires to create LOVs. Figure
11 shows an LOV node defined for the ManagerId item.

Development

 20 Paper #468

Note
You can assign more than one item on the screen from a single LOV
group.

REGIONS – ITEM, DETAIL GROUP, AND REGION CONTAINER
Regions represent areas on the screen; you create regions and then assign properties and region contents to them. You can
create three types of regions in JHeadstart as follows:
• Item region This type of region holds items. You can assign a heading for the region and define in how many columns

the items will appear. This type of region is like an item group in Designer. Figure 12 shows two item regions generated
into a page—one with a two-column layout and another with a three-column layout.

• Detail group region This region type holds detail group items. You use this for nested groups that appear on the same
page as the master group. (That is, the Same Page property must be checked.)

• Region container This region type acts as a housing for item regions and detail group regions. You set a layout style of
horizontal, vertical, or stacked to place objects in specific locations on the page.

Figure 12. Generated item regions

DEFAULT APPLICATION DEFINITION
When you create an application definition file (using the New Application Definition Wizard), you can choose to create a
default definition. This default definition mirrors the application module definition’s data model as shown in Figure 13. In
Figure 13a, the application module data model shows top level nodes for Countries, Employees and Departments. Each top-
level node has one or more sub- (detail) groups. The default application definition created from this application module
(Figure 13b) mirrors this data model. Each top-level view object instance in the application module shows up as a top-level
group in the application definition. Each detail view object instance becomes a detail group in the application definition. The
view link instances in the data model define the master-detail relationships between the groups in the application definition.
TEMPLATES IN JHEADSTART
JHeadstart uses some default templates declared using the Velocity template framework (jakarta.apache.org/velocity) to
generate the basic look and feel of a component, but you can replace the defaults at any level. That means if one item requires
a specific template but the rest of the application does not, you can declare a specific template just for that item. You create
templates most easily by copying and modifying the existing templates shipped with JHeadstart. Then you declare the name of
your template on the Templates tab of the Application Definition Editor for the node to which you want to apply the
template.
All elements on the page are generated using templates so you can have very detailed control of the output of the JAG.
Although the Velocity templates are only used at runtime, parts of the page are included from separate common files using the

Development

 21 Paper #468

ADF Faces af:region tag. The af:region tag in the JSP file includes another file in a specific part of the screen at
runtime. This means that you can define common layout elements in a small set of files. Changes to the general appearance of
the application are then easier because modifying the centralized set of files will affect the look and feel of all pages.
100% GENERATION?
In Designer Forms Generator, 100% generation is always a goal because, if you have no post-generation changes, you can
work only declaratively with your application and allow the generator to create the runtime code. Although this is not a guiding
goal of JHeadstart (as the name implies), mastery of the templates is a key to 100% generation. Velocity provides a scripting
language that can help you squeeze the most out of the JHeadstart generator. This means that you have a high level of control
over the generated output (again, if you have mastered the template approach and language).

Figure 13. Application module data model and JHeadstart navigator nodes

Caution
While mastery of templates and the Velocity language is helpful to get
the most out of the JAG, this type of work is not for novice
programmers. Working with template code requires much care and
experimentation. However, as with many aspects of JDeveloper work
and template work in general, you can relegate the template work to
senior developers and assign the less experienced developers the
work of defining properties and running the generator, which will use
the customized templates.

JHEADSTART DEVELOPMENT PROCESS
The JHeadstart development process consists of first creating a functional Model project with ADF BC in JDeveloper using
standard JDeveloper techniques or by using the Designer business components generation tool. Then, you enable JHeadstart
on an empty ViewController project. This sets up the project with the proper library references and adds templates and other
files to the project directories. Next, you create an application definition file using the right-click menu in the navigator or
using the New Gallery. The relationships between database objects, ADF BC objects, and JHeadstart objects is shown in
Figure 14. Figure 14 also shows the JAG and its output.

Development

 22 Paper #468

After those setup steps, you iterate between modifying the application definition, generating it, and running it. This iteration
continues until you have gotten as much out of JHeadstart settings as possible. You then turn off generation for one or more
pages, and modify the pages manually using the standard JDeveloper tools. You can continue to tweak settings and regenerate
for those pages whose generation switches are on, but eventually, you will stop generating. As with a JDeveloper application
without JHeadstart, you then deploy the completed code to the application server.
JHEADSTART APPLICATION GENERATOR
The JAG uses template information and information in the application definition to create JSF pages and a faces-config.xml
file. The application that you create with JHeadstart follows the “Fusion Stack” technology choices: ADF BC, JSF, and ADF
Faces. You run the generator from a button in the Application Definition Editor or from a right-click menu option on the
application definition file in the navigator.

Figure 14. JHeadstart database use and code generation

The JAG reads the application definition file and builds a set of pages for each group in the definition. It reads all subgroup,
LOV, and item information and generates appropriate regions, buttons, and text items on each page using the formats
declared in the templates.
BEST PRACTICE
JHeadstart is updated frequently and, with the proper license, you can download patches and new releases to update your
installation. The process of upgrading often includes migrating the application definition to the new release and regenerating
your applications. If you have made significant changes to the generated code, you will need to redo those changes. Therefore,
the JHeadstart team suggests that you keep a log of the post-generation changes you make to each page or file so that you can
restore those changes after regenerating the application using the new release. This practice insulates you from version changes
and allows you to take advantage of the new features and bug fixes published by the JHeadstart team.
GENERATED CODE SAMPLE
Figures 15 through 17 (generated by Steven Davelaar, Oracle Consulting, and reprinted from the book Oracle JDeveloper 10g for
Forms & PL/SQL Developers, by Koletzke and Mills, Oracle Press, McGraw-Hill/Osborne) show samples of the type of code
you can generated with JHeadstart. Each figure is labeled with the style of code generated into it. If you are accustomed to
Designer Forms Generator work, you will see parallels in the types of layouts you can create only with declarations in the
repository.

Development

 23 Paper #468

Figure 15. Advanced search, editable table, inline overflow

IS IT ORACLE FORMS YET?
Now that you’ve had a taste of the JDeveloper tools, ADF and the ADF development process, and the JHeadstart add-on to
JDeveloper, it is time to draw some conclusions about JDeveloper’s productivity and how it can help an Oracle development
shop.
As JDeveloper has evolved from its first release, developing Java-oriented applications has become easier and easier. Most
“traditional” Oracle PL/SQL and Forms developers have probably looked at JDeveloper sometime in the past and have
rejected it as too difficult to use or as having too steep a learning curve to be productive for new applications. They have
wanted a tool that is as easy as Oracle Forms for quickly creating application front end code.
RIGHT. SO, IS IT FORMS YET?
Despite the vast improvements made to JDeveloper’s developer interface and the ease-of-use that ADF and its tools bring, the
answer to this question is a still guarded “No, but it’s a close second.” To soften that statement a bit, a comparison like this is
unfair. Tools oriented towards vastly different technologies can never be the exactly the same. Therefore, any new technology
and new tool used to work with it will seem very foreign and require learning and adjustment. For example, consider your first
introduction to Oracle Forms. It took a while for you to assimilate the fundamentals of Forms and how to think about a
solution using that tool. It also took years of working with the tool to be able to address complex application requirements in a
creative way.

Development

 24 Paper #468

Figure 16. List of values, stacked children, shuttle

Figure 17. Tree, form, editable table, stacked overflow

There is no question that the technologies behind Oracle Forms (a proprietary 4GL environment) and JDeveloper (based on
Java standards) are different and that the standard Java-based approach is seemingly more complex because it allows you to
modify any code that the tools generate. Although much of the behavior of Oracle Forms is modifiable using properties, there
is always some of the behavior that you cannot control without replacing items with Pluggable Java Components (PJCs), or
rewriting the standard Forms DML mechanism (using ON- triggers).
Code you create in Oracle Forms is contained in a binary (FMB) source code file that can only be accessed by the Forms
Builder (or API code you write in C++ or Java). On the other hand, all code you create in JDeveloper is contained in ASCII
text files that you can modify with any text editor. Since everything is exposed, you have more options for modifying behavior

Development

 25 Paper #468

and this leads to a perception of more complexity. A general rule of all development environments is that the more control
you have over the application, the more responsibility you have to write code that makes it work properly. JDeveloper softens
this responsibility greatly by generating a large amount of code needed for plumbing (sometimes called scaffolding)—standard
internal operations that include communication between various layers of the application.
A QUICK COMPARISON
The technologies are different. It naturally follows that the development methods are different so a comparison at those levels
is not fair. It is possible to offer some comparisons between the tools in the realm of productivity of various development
operations as well as in the realm of general features. Table 2 attempts such a comparison. Some of these statements contain
disclaimers that they are “apples and oranges” comparisons because the environments are so different.

Development
Operation or Feature

The “Winner”

Declarative and visual
environment

A tie: Both have the same basic capabilities. Forms’ Layout Editor allows you to place
components precisely, but JDeveloper’s Visual Editor allows you to add container
components that manage the layout and maintain relative positions even when the window
is resized at runtime. JHeadstart development is completely declarative although you may
need to modify some visual aspects as a post-generation change.
In its current version, JHeadstart does not offer visual editing of the Velocity templates
from which all objects are generated. This is not a severe limitation because you can verify
the layout of an object in a standard JSP file using the JDeveloper visual editor. You then
copy and paste the resulting code into a Velocity template.

RAD for standard
functions

A tie: Quick prototyping of standard DML and query operations require about the same
amount of time and effort in both tools. As a related sidebar, JDeveloper has won several
industry competitions over other Java IDEs for development speed and accuracy.

RAD for complex
functions

Neck and neck: Forms is slightly ahead of JDeveloper without JHeadstart. With
JHeadstart, some complex functions (such as advanced search features, LOVs and table-
based poplists) are automatically generated so JDeveloper with JHeadstart is ahead of Forms
for some UI requirements.

Complex development
tasks

Also neck and neck: The considerations here are similar to those of the RAD functions.
With an even playing field of developers who are in tune with the way each tool works, if
the complexity of the need is great, it will require creative solutions in both tools. However,
both have strengths that the other does not.
For example, creating table-driven poplists in Forms requires three elements and at least
three lines of code. In JDeveloper, the definition of the query in a view object and a few
quick selections in a binding editor accomplish the same task in a faster way. LOVs, on the
other hand, are more time consuming to create in native JDeveloper 10g than they are in
Forms, although the time to create an LOV in JDeveloper with JHeadstart is much less than
the time required in Forms. (JDeveloper 11g will offer more native LOV support, which will
may allow JDeveloper to inch ahead of Forms in this category.)

Learning curve time A photo-finish, but Forms will show as the winner in the photo: Forms hides a large
amount of internal plumbing, whereas JDeveloper allows you to access it if you want to. If
you need to modify the internals, you need to fully understand the Java EE web application
environment. You can still be productive with minimal knowledge of this environment, but
you will not be able to have ultimate control over the runtime without much study. Since
Forms does not allow you to access the internal runtime level, you do not have the option
of modifying it (and, therefore, do not need to worry about it).

Ease of extensions JDeveloper is slightly ahead: This is related to the preceding item. Extending Forms
requires writing PJCs or calling external Java class files. Extending JDeveloper code is a
natural and expected part of development work. JDeveloper allows you to access all code
that it creates and any code that you add will be revealed in the appropriate code editor or
property palette. For example, extending class files is a natural task when working with Java,

Development

 26 Paper #468

Development
Operation or Feature

The “Winner”

so adding your own functionality to an ADF BC entity object is native to that framework.
An interesting note: the tool of choice for writing Forms PJCs is JDeveloper.

Interactivity of user
interface components

Forms wins by a length but a new race will be needed in early 2008: This is not a fault
of the tool; it is an effect of the runtime environment. Forms (from release 9i on) can only
run code within an applet session of a web browser. Applets are run in a client-side JVM;
they use highly-interactive user interface controls from libraries such as Swing (included
with the Java JDK).
JDeveloper web applications, like all web applications, are run on an application server and
only display HTML-oriented controls such as HTML items, buttons, and forms in a web
browser, which is only knowledgeable about HTML. Adding JavaScript to the HTML
controls can make them more interactive, and ADF Faces builds JavaScript into the partial
page rendering feature discussed earlier. In addition, an upcoming release of ADF Faces will
include richer client components that take PPR beyond its current level.
Therefore, the future is bright for emulating the high interactivity of Forms applications
using HTML web browser components, but for now because of its nature as a client-side
runtime tool, Forms is ahead.

Number of user
interface components

JDeveloper by ten lengths: ADF Faces offers over 100 components (a handful of which
are not visual) as opposed to 22 components in the Forms palette (8 of which are drawing
shapes).

Future enhancements
and support

JDeveloper although support for Forms will not vanish: Oracle customers are heavily
invested in the Oracle Applications and in custom-built Forms applications. Oracle has
stated that there is no foreseeable end to support for Oracle Forms, but Oracle Forms has
been “functionally stable” for a number of years; enhancements to Oracle’s development
tools will be made primarily in JDeveloper. JDeveloper is also a supported tool and, since it
is being used to create the Fusion Applications, its support also has no foreseeable end.

Popularity Forms but only because it is more mature: Based on quick surveys done at conference
presentations, it seems that many traditional Oracle shops have noticed Oracle’s focus in the
Java EE world over the past several years and are starting to build new applications using
Java EE technologies.
JDeveloper has been waging an uphill battle in the Java development world against popular
open source tools such as Eclipse. Even though JDeveloper exceeds the native capabilities
of other Java IDEs, Java developers are wary of a non-open source tool.
Traditional Oracle shops, however, usually select JDeveloper as the tool because they prefer
a single-vendor solution for their software. They also prefer a vendor-supported tool over
an open source, community-supported tool. In addition, they understand that Oracle is
striving to make JDeveloper easier and easier for Forms developers. This cannot be said of
any other Java EE development tool on the market.
Moreover, Oracle is proving its interest in supporting JDeveloper and ADF for the long
term by building the Fusion Applications using those tools. This is the primary reason most
organizations chose Forms for their own custom applications—that Oracle Applications
was built with it, and it is the same now for JDeveloper and ADF Faces.

Table 2. Comparison of JDeveloper and Oracle Forms Development Operations and Features

Development

 27 Paper #468

Note
This paper does not attempt to address the decisions needed when
migrating existing Forms applications to a JDeveloper environment.
Although many third-party solutions exist for this type of migration,
from experience, if you are faced with a migration, it is best to not only
seriously evaluate these migration products, but also seriously
consider scheduling and budgeting for a rewrite of the application.
Rewrites are usually to be avoided regardless of the technologies, but
in this situation, a rewrite might serve you better from the standpoint
of maintainability in the long term.

CONCLUSION
If you are a traditional Oracle shop, JDeveloper with the Fusion Stack and, optionally, JHeadstart offers an environment in
which you are likely to be productive. As with any new environment, it is best to focus your first development effort on a
small application, if possible. That way, you will be able to write and rewrite several times with less overall time impact. Your
first application will give you experience and (hopefully) the satisfaction that this toolset can eventually make you as productive
as you are in Forms.
In addition to adjusting to the ADF method of development, you will also need to know Java (at least at a novice level) so that
you can write small snippets of code to extend the framework functions. Since JDeveloper hides much of the internal
plumbing for a Java EE web application, developers can be very productive without knowledge of everything in the Java EE
world. Although you can be productive as a development team with much of the team knowing Java at the scripting level, you
also need a Java developer who has architect-level skills. This person will guide the Java development of the rest of the team
and will write the framework extensions that are occasionally needed.
Developers will also need to have a basic grasp of HTML and XML, but fluency is not required with these either. You will
actually code very little, if any, HTML because ADF Faces generates HTML for you. You will also code very little XML
because JDeveloper’s tools and wizards do that for you. The main fact you need to know about HTML and XML is that tags
consist of the element (main name of the tag) and attributes (or properties) of that tag, which you use to modify or define the
element’s behavior. You also need to understand that some tags (such as f:facet) only make sense between the start and
end tags of another tag (such as af:panelPage). Therefore, the arrangement of both HTML and XML tags within a file is
hierarchical (tags within other tags).
This paper has described JDeveloper, ADF, the Fusion Stack, and JHeadstart tools and offered some opinions about what you
might think about when selecting a tool for a new application. Hopefully, this will help you when you need to make a decision
about using JDeveloper and the Fusion Stack for future application development needs.

Peter Koletzke is a technical director and principal instructor for the Enterprise e-Commerce Solutions practice at Quovera,
in Mountain View, California, and has 25 years of industry experience. Peter has presented at various Oracle users group
conferences more than 220 times and has won awards such as Pinnacle Publishing's Technical Achievement, Oracle
Development Tools Users Group (ODTUG) Editor's Choice, ECO/SEOUC Oracle Designer Award, ODTUG Volunteer of
the Year, and NYOUG Editor’s Choice. He is an Oracle Certified Master, Oracle ACE Director, and coauthor of the Oracle
Press Books: Oracle JDeveloper 10g for Forms & PL/SQL Developers (with Duncan Mills); Oracle JDeveloper 10g Handbook and
Oracle9i JDeveloper Handbook (with Dr. Paul Dorsey and Avrom Roy-Faderman); Oracle JDeveloper 3 Handbook, Oracle Developer
Advanced Forms and Reports, Oracle Designer Handbook, 2nd Edition, and Oracle Designer/2000 Handbook (all with Dr. Paul Dorsey).

