Middleware

Extending Oracle Portal using BPEL
Branimir Jefic, Affinita Consulting Inc.
Over the past few years, Oracle has released several tools to help customers with their Portal and Content Management needs, and indeed their offerings in this space are vast and seem ever expanding. This often results in functionality overlaps between Oracle tools, causing integration and interoperability difficulties, and a challenge for customers trying to find the optimal solution. Recent acquisitions by Oracle have exacerbated this problem, and emphasized the need for the interoperability and a Fusion-like solution.
The industry as a whole is going in the direction of interoperability and there is a strong push to adopt several new standards – the most important being Web Services and BPEL (Business Process Execution Language). These two standards enable Web Services-based SOA (Service Oriented Architecture) – an architectural style that promotes loose coupling of components which greatly facilitates reusability. Oracle has firmly embraced SOA by releasing several very promising products – SOA Suite, Web Center, and BPEL Designer.
Portal Role

Oracle Portal has been on the market since the late 1990s – first in the form of a PL/SQL Cartridge, then later evolving into full J2EE support by complying with several JSR (Java Specification Request) standards. One of the key standards that Oracle Portal supports today is JSR-168 – the portlet specification which enables interoperability between portlets and portals. Without this standard, each version of an application required its own portlet API, and each of the various portals needed these portlets to be specifically tailored for implementation through that portal.
Oracle Portal offers some significant content management functionality. It enables users to store documents, classify them using metadata, supports versioning and searching. It also possesses some basic document approval functionality. However, solutions that required sophisticated workflow approvals or custom process functionality were very difficult to do.

BPEL Role

Enterprise Portal would not be complete without providing:

· process-based functionality – both synchronous and asynchronous
· integration and process support across various legacy applications and disparate technologies. To accomplish this, BPEL supports numerous connectors.
· human workflows. This is the area where Oracle Portal has serious deficiencies and although Oracle tried to alleviate the problem in each new Portal version, the workflow and process-support in Oracle Portal (including release 10.1.4) stayed rudimentary.
By introducing BPEL and leveraging Content Management Event Framework (CMEF), Portal can easily be extended to handle complex approval workflows and any custom asynchronous functionality that Portal, on its own, cannot easily do.

BPEL, an XML -based language used to orchestrate Web Services, is an integration and process technology. For years, Portal was missing stronger process capabilities and BPEL finally delivers that lacking functionality.

To enable Oracle Portal integration with BPEL, Oracle leveraged messaging technology that is already a part of the database server – Advanced Queuing (AQ). This technology provides asynchronous, reliable, standards-based integration between Portal and BPEL.
Approach Benefits

The question we will try to answer is what type of Portal functionality can be extended by using BPEL and how to implement such an application. In the overall solution, Portal Item Types provide the structure, BPEL provides the process component and Portal Pages provide the user interface.

In addition to implementing process and human workflow support to Oracle Portal, BPEL also provides the following benefits:

· loose coupling of modular components to lower implementation costs, increase enterprise agility and adaptability, enable incremental development

· leveraged use of existing IT investments by exposing existing functionality through Web Services wrappers and BPEL
· standards-based approach providing platform independence, technology reuse and preventing single vendor lock-in.
BPEL processes can also make calls back to the Portal. At any process step, Portal items and/or their metadata can be modified as part of the custom BPEL process actions. While BPEL comes with its own Worklist application and out-of-the-box BPEL portlets, it is lacking flexible BPEL worklists that can be tied to the actual content stored in the Portal. Custom-built BPEL worklist portlets can significantly provide a better user experience.

The following picture shows all 3 components and their relationships. Note:
[image: image1.emf] represents a Web Services connector .

[image: image2.emf]Client Access

Internet

External Partners/

Remote Employees

Internal Staff

Public

LAN

Notifications Workflow

User

Tasks

BPEL

On Upload

Event Framework

Java API

Item pages and

portlets

BPEL portlets

Portal (presentation, personalization, portlets)

Single Sign On (authentication, authorization)

Java API

Other pages and

portlets

(Discussion

Forum, File

Sharing), ….

Orchestrate

Item

Repository

Java API

Java API

Figure 1– Portal and BPEL - big picture
Portal and BPEL Features
Oracle Portal is a feature-rich product that, among many other things, comes with significant content management capabilities. It has the ability to store multimedia content and define custom metadata. More specifically, it can:
· define custom content types and custom content attributes

· support content versioning, item checkout, basic content approvals

· different levels of access rights – admin, content managers, content contributors and viewers

· WebDav support and Oracle Drive support allowing mapping of Oracle Portal page group as shared desktop drives

· Content indexing and search capabilities
Portal Item types and items

Portal offers a range of item types that can be extended with additional metadata attributes. The standard item types are:

· Regular files

· Zipped files

· Text items
· PL/SQL items
· URL links, page links, images and other miscellaneous item types

Each standard item type comes with predefined set of standard attributes such as creator, create date, modifier, last modify date, publish date, expiry date, item title, item description, etc.

In addition to the standard attributes, custom attributes that map to specific user’s content metadata requirements, can be defined in one of the following types:

· Boolean

· Date

· File

· String
· Number
· PL/SQL

· Text

· URL

Each of these base data types are implemented as a single line field, multi-line field or the list of values – both static and dynamic. After defining custom attributes, new custom item types can be built as a set of attributes (both standard and custom). During this process some additional features can be specified for the item type:

· whether each attribute is mandatory or optional

· default value for each attribute

· whether the attribute shows on Create or only on Edit Item wizards.

This ability to define custom item types is the key structural feature of any content management system.

Versioning

Portal supports item versioning out-of-the-box and level of versioning is defined at the page group level. Different levels of versioning can be enabled – none, keep every version or let users choose whether to keep the previous version. At any point in time, users with enough privileges can promote the older version to become the new current version of the item.

Access Rights

Each Portal page can have different access rights. Furthermore, developers can enable item-level access privileges. In this case, items on the same page can have different access rights.

WebDAV and Oracle Drive support

Portal content can be viewed and administered through the standard WebDAV protocol. Oracle also provides the tool, Oracle Drive, which leverages this protocol and allows mapping Portal Page Group as a shared folder on the Windows only desktop computers. Other OS desktop users can use the standard WebDAV protocol or Portal Web interface. By default, WebDAV folder is content\dav.
Content indexing and search

Portal uses Oracle Text to index all Portal content. Oracle Text processes all items, including over hundred various binary file types and extracts their text version. Text only extracts are combined with item metadata to build indexes used for keyword searching, context queries, pattern matching, mixed thematic queries, HTML/XML section searching, and so on. Portal search combines metadata attributes and “deep content” search to provide users with the most relevant search results.
Oracle Text index, or better known as the domain index, can be referenced when building custom search page. Two column indexes using Oracle Text are:
· portal.wwv_things.ctxtxt that indexes item metadata

· portal.wwdoc_document$.blob_content that indexes item binary content (e.g. Word documents)
These 2 indexes can be used with various Oracle Text operators including the most popular contains operator.
What is BPEL?

BPEL, an XML-based language used to orchestrate Web Services, is an integration and process technology. Often, BPEL is considered to be a workflow for Web Services and as such it is often referenced as the glue in SOA world.

‎[2]Oracle BPEL Process Manager provides a framework for easily designing, deploying, monitoring, and administering processes based on BPEL standards. Oracle BPEL Process Manager provides support for:

· web service standards such as XML, SOAP, and WSDL

· dehydration (enables the states of long-running processes to be automatically maintained in a database) and correlation of asynchronous messages

· service-oriented architecture (SOA)

· parallel processing of tasks

· fault handling and exception management during both design time and run time

· event timeouts and notifications

· compensation mechanisms for the implementation of long-running transactions

· scalability and reliability of processes

· management and administration of processes

· version control

· audit trails for tracing business flow history

· installation across multiple operating systems and integration with multiple application servers - Oracle Application Server, WebLogic and JBoss and multiple databases

Oracle BPEL Process Manager adds value and ease of use to BPEL functionality by providing support for the following in JDeveloper BPEL Designer:

· XML transformations, workflows, worklists, notifications, and sensors

· technology adapters (file, FTP, database, advanced queuing (AQ), Java Messaging Service (JMS), and Oracle Applications for Oracle E-Business Suite)

· third-party adapters, including J.D. Edwards OneWorld, PeopleSoft, SAP R/3, Siebel, Tuxedo, CICS, VSAM, IMS/TM, and IMS/DB

Oracle BPEL Process Manager is developed in Java and runs on a J2EE application server. In addition to deploying and running BPEL processes, it offers advanced functionality that makes it one of the most powerful BPEL servers at the time of writing this paper. Oracle also offers a BPEL Designer that enables BPEL process development using an intuitive graphical editor instead of writing BPEL code by hand and provides the capability of automated deployment of BPEL processes. This is all done through the use of familiar JDeveloper interface.

BPEL Process Manager runs on a J2EE-compliant application server, in this case the Oracle Application Server OC4J (Oracle Containers for Java). In addition to the OC4J version, Oracle also provides versions for the open source JBoss, IBM WebSphere and WebLogic Server.

As more COTS (commercial off-the-shelf) applications expose their functionality through Web Services, BPEL will play the important role of connecting them in a meaningful way.

How BPEL extends Portal

Portal’s lack of process-like functionality provides a strong case for BPEL use in conjunction with the Portal. Oracle has also already configured AQ queue that is used to pass Portal events messages (e.g. adding a new item or updating item on the Portal page) to the queue consumers – that is the BPEL process. Some of the most common uses of BPEL in Portal context are:

· complex human workflows with user approval tasks
· various notifications (email, SMS, PDA) as Portal does not support them
· custom process-type functionality and Java extensions, e.g. custom action on deleting a Portal item
· integration with existing and legacy systems leveraging BPEL adapters
Most frequent use of the BPEL technology with Portals is for complex human workflows and task management. Human workflow systems have to support the communication between people and systems. To accomplish this, every human workflow has to provide basic functions like task management, identity management, notifications, tracking, and interoperation with business-process management (BPM) systems.
Another significant BPEL use is for extending Portal process functionality. Java portlets do provide the framework to extend Portal pages functionality, but not everything can be accomplished with Java portlets as they are invoked synchronously only on page access. BPEL adds additional process functionality to Portals in the form of Web services orchestration, XSLT transformations, numerous technology and third party adapters, various channels notifications as well as any custom Java-written programs.
Portal and BPEL integration
Portal integrates with BPEL using Oracle’s messaging technology – Advanced Queuing. The following picture shows Portal and BPEL integrated over AQ.

[image: image3.emf]Notifications Workflow

User

Tasks

BPEL

Advanced

Queuing

Oracle Portal

Content

Management

Metadata

and

Taxonomy

Management

Pages and

portlets

WWSBR_EVENT_Q

Figure 2 - Oracle Portal, AQ and BPEL
BPEL is a lot more flexible and feature-rich than its predecessor Oracle Workflow, which was a fully proprietary Oracle solution for workflows. Furthermore, Oracle Workflow is not longer being developed; therefore the gap between products will continue to grow. Given the value of BPEL, it is probable that the Open Source community will continue to contribute to its functionality.

How Portal and BPEL communicate

In the SOA architecture, asynchronous communication between components of distributed applications typically use some form of message queuing mechanism. Using this approach allows:

· application independence requiring interoperability between disparate interfaces. All that needs to be known to the application is the message format (XML payload) used for communicating between systems and the ability to subscribe to the Message Queue so both parties can post/consume a message.

· the ability to leverage messaging system features. Typically, a messaging system provides security, guaranteed delivery and persistency of messages until they are consumed. This offers the benefit of isolating the development team from network details.

· choice of technology. Any of the communicating component technologies or implementation details can be completely replaced with an improved approach as long as the XML message format remains the same. This way it is possible to fully modularize development of system components and work independently on performance improvements for each component.

Portal 10.1.4 comes with Content Management Event Framework (CMEF), a framework that allows integration with any product capable of consuming event messages from AQ. As BPEL comes with the AQ adapter as one of the technology adapters, the BPEL configuration required to consume Portal AQ messages is well-documented. See ‎[5] for detailed instructions on CMEF and BPEL configuration.

BPEL leverages Java Connector Architecture (JCA) to consume AQ messages. The following is the excerpt of the WSDL file that defines this connection.

<jca:address location="eis/AQ/aqPortal" ManagedConnectionFactory="oracle.tip.adapter.aq.AQManagedConnectionFactory" />

Events Filtering

Portal generates event messages for certain actions on the Portal items like creation, modification and item deletion. In most cases, not all Portal events are applicable to the invoked BPEL process. BPEL’s AQ adapter has the capability to define selector which is the string value used to filter out the events applicable to the process. The selector can also combine logical operators in cases where more than one value is considered. However, the selector cannot always answer the question of whether the process should run as there might be important dependencies to be considered between message parts. In these cases, the process itself has to determine what to do with the message at the run-time.

The following is the example of selector filtering out only ADD_ITEM events:

<jca:operation

 ActivationSpec="oracle.tip.adapter.aq.inbound.AQDequeueActivationSpec"

 QueueName="WWSBR_EVENT_Q"

 DatabaseSchema="PORTAL"

 Consumer="CMEF_BPEL_ADD_ITEM"

 MessageSelectorRule="tab.user_data.action='ADD_ITEM'"

 OpaqueSchema="false" >

</jca:operation>

When more than one BPEL process is required in Portal implementation, they both have to be configured to consume the Portal AQ messages. When the AQ message is generated by the Portal (e.g. new item created) both processes will consume the message, while only one process will actually do something useful with the message. The clear disadvantage of such approach is that the process that is not interested in consumed message also runs and creates an unnecessary BPEL process instance.
Although a single BPEL process can be used to handle all possible Portal events and custom actions on them by using the BPEL choose activity, this approach is too monolithic and would pose maintenance problems. Any change in any of the custom actions on any of the events would require the entire process redeployment.

For the above reasons, it is good practice to develop the Controller process that consumes all Portal AQ messages, but does not implement any custom actions. Each custom action is implemented as separate Action BPEL process. Based on the message type received, Controller will invoke appropriate BPEL Action process(es). This approach follows the SOA principles of using BPEL for processes orchestration. The advantage of this approach is also to create fewer process instances as only the required process(es) run as the result of the Portal event.

[image: image4.emf]BPEL

Orchestrate

Portal

Pages

and

items

Controller process

Initiate

Action

 processes

Figure 3 - BPEL Controller process
BPEL Portal payload

CMEF defines the payload that is used to transfer messages from Portal to the BPEL process. It has the following format:

<inputVariable>

 <part name="WWSBR_EVENT">

 <WWSBR_EVENT>

 <RAW_EVENT>INSERT</RAW_EVENT>

 <STATE>PUBLISHED</STATE>

 <ACTION>ADD_ITEM</ACTION>

 <OBJECT_ID>144927</OBJECT_ID>

 <OBJECT_SITE_ID>0</OBJECT_SITE_ID>

 <OBJECT_LANGUAGE>us</OBJECT_LANGUAGE>

 <PAGE_ID>146784</PAGE_ID>

 <PAGE_SITE_ID>336</PAGE_SITE_ID>

 <OBJECT_CLASS>ITEM</OBJECT_CLASS>

 <EVENTS_USER>BJEFIC</EVENTS_USER>

 <EVENTS_DATE>2008-01-28T11:41:14.000-05:00</EVENTS_DATE>

 <ID1>35</ID1>

 <SITE_ID1>0</SITE_ID1>

 <GROUP_ID>104614</GROUP_ID>

 <OBJECT_PATH>/PAGE/Upload%20Item%20Stats/R44C9BB909F83F4C4E040A8C039…</OBJECT_PATH>

 <OBJECT_UID>R44C9BB909F83F4C4E040A8C03951069A_446C3BD49AE0C628E040A8…</OBJECT_UID>

 </WWSBR_EVENT>

 </part>

</inputVariable>
Important parts of the message are:
· ACTION representing Portal event type (e.g. ADD_ITEM)
· OBJECT_ID representing Portal item ID

· PAGE_ID representing Portal page ID
· PAGE_SITE_ID representing Portal Page Group ID
· OBJECT_PATH representing a portion of the Portal item URL

· OBJECT_UID containing Portal item GUID (item global ID)

As the payload does not contain the item metadata attribute values, they have to be retrieved from the Portal item repository using the Portal APIs or directly accessing Portal items database tables. The BPEL functions that can be used to obtain item metadata are lookup-table and query-database.
orcl:lookup-table(table, inputColumn, key, outputColumn, datasource) function returns a string based on the SQL query generated from the parameters. The string is obtained by executing

SELECT outputColumn FROM table WHERE inputColumn = key
against the data source that can be either a JDBC connect string or a data source JNDI identifier. For example
orcl:lookup-table('employee', 'id', '1234', 'last_name', 'jdbc/rcpscDS')

will return the last name of the employee with id 1234.
The BPEL activity that can be used to execute an ad-hoc SQL query is orcl:query-database, e.g.

ora:getNodeValue(orcl:query-database(concat("select count(*) cnt FROM ib_metadata WHERE id =", bpws:getVariableData('inputVariable','WWSBR_EVENT','/ns4:WWSBR_EVENT/OBJECT_ID')), false(), false(), 'jdbc/rcpscDS'))

query-database function returns node set and to extract values from it, getNodeValue function can be chained.
Often, there’s a need to look up the User privileges and Portal Groups membership to determine the next step in the process flow. This can be accomplished by using the BPEL function ora:getUsersInGroup(groupId).
Useful BPEL functions

The BPEL functions are documented in BPEL Developer’s guide ‎[2], but some of the most useful are:
· create-delimited-string

· current-date

· countNodes

· get-content-as-string

· getNodeValue

· getUserProperty

· getFaultAsString

· query-database
· lookup-table

· readFile

BPEL User Tasks

The most common Portal use of BPEL is for human workflows. BPEL supports several workflow types that can be used to build workflows and approvals of almost any complexity:

· simple, simple with escalation and simple with renewal

· sequential and sequential with escalation
· parallel and parallel with final reviewer
· automatic renewal

· ad-hoc (or dynamic) approval workflows
· FYI tasks

· Task continuation workflow
[image: image5.png]BPEL
Process

Workflow Services.

=

Task Identity
Action service
Handler

=

Portal

Tosk ’
gagnen | o

v
E=

Task Notification
Routing Service.
Service
Tdentity Notification
Management Channels
) E-mail
Loap Application Server Wireless.
nzN Dot oice
“sms

Figure 4 - BPEL Workflow Services
To be able to act on BPEL tasks, Oracle provides BPEL worklist portlet and the Worklist application. While they can be used for basic Portal/BPEL implementation and task management, they are far from providing enough flexibility to adapt to the user’s requirements.

BPEL tasks do not have any Portal item information – other than item IDs available in the BPEL payload. Often, this information is not sufficient to determine what to do with the task from our worklist. One way is to grab the item ID, go back to the Portal and inspect the item along with its metadata, then go back to the worklist to approve/reject the item. This is far from convenient and user-friendly.

Also, BPEL does not provide the search capability that can search BOTH task and item metadata. For example, to search all tasks that expire in 2 weeks whose item primary classification equals “family photos”. To provide such functionality it is necessary to:

· combine BPEL task and Portal item metadata

· provide user-friendly portlet that can search and display combined results

· provide custom portlet that allows acting on BPEL tasks and push the task to the next step in the workflow – this can be simple approval/rejection or more complicated multi-value content-based workflow transitions

Custom BPEL portlets

As the standard out-of-the-box BPEL worklist portlet does not provide insight into Portal item metadata, it is often required to build a custom BEPL worklist portlet. Such a portlet needs to combine BPEL Task metadata and Portal item metadata in a unified informative view that contains information for users to determine the course of action and push the task/item to the next step in the workflow.
Reference ‎[1] includes several examples of how the BPEL task information can be obtained from Java code.

When deployed as a portlet, displaying the BPEL worklist does not require additional authentication and the Portal session is reused to get the BPEL context. Here is the code excerpt that creates the BPEL context from the portlet deployed in Portal
// handle to worklist service & context

IWorklistService worklistService = WorklistService.getWorklistService();

// function

IWorklistContext ctx = null;

String localeSource = (String) displayParams.get("localeSource");

ProviderSession pSession = pReq.getSession();
if (pSession != null)

 {String wlCtxKey = PortletRendererUtil.portletParameter(pReq, "worklistContext");

 ctx = (IWorklistContext)pSession.getAttribute(wlCtxKey);

 String wlRmtUserKey = PortletRendererUtil.portletParameter(pReq, "remoteUser");

 String sessionRemoteUser = (String)pSession.getAttribute(wlRmtUserKey);

 if (ctx == null)

 {if (request.getRemoteUser() != null)

 {request.setAttribute("fromPortlet", "true");

 request.setAttribute("localeSource", localeSource);

 request.setAttribute("portletLocale", pReq.getLocale());

 ctx = worklistService.createContext(request);

 pSession.setAttribute(wlCtxKey, ctx);

 pSession.setAttribute(wlRmtUserKey, request.getRemoteUser());

 }

}

 }

return ctx;
Once the ctx context object is initialized, the Task worklist can be obtained using IWorklistService.getWorklistTasks method. Such worklist can further be filtered out by Portal Item metadata. To accomplish this, the relevant item metadata has to be retrieved from the Portal database for each task. Database view can be useful in this scenario as described in section Combining BPEL and Portal Items Metadata.

After displaying the worklist, the actions on tasks can be performed using customTaskOperation and CompleteAndRouteTask methods of the IWorklistService interface.
Combining BPEL and Portal items metadata

Combining BPEL and Portal metadata can be accomplished by using Java APIs or by using SQL that can join both BPEL and Portal tables. The latter assumes that both BPEL and Portal co-exist in the same database OR that BPEL task tables are available through the database link from the Portal database.

The BPEL tables that have information about BPEL tasks are, by default, in ORABPEL schema and they are:

· pc_taskassignee

· pc_taskpayload

· pc_task

· pc_taskHistory

· pc_taskAssigneeHistory
The Portal tables that keep item metadata are in the PORTAL schema and they are:

· wwv_things
· wwv_thingattributes

· wwsbr_attribute$
It is recommended to create database views that join BPEL and Portal tables in order to isolate complexities and data model changes from the code. In situation where BPEL and Portal do not reside in the same database, materialized views or database links should be considered.

Custom tasks reports using omniportlet

Various reports can be generated by using the above-mentioned combination of Portal item and BPEL task metadata. One option is to create a Portal page with 2 portlets: first - Parameters portlet that defines search criteria values and second - omniportlet that combines item and task metadata using parameters passed from the Parameter portlet.
BPEL custom actions
A BPEL process can also be configured to perform custom action to the Portal items using Portal APIs. As these APIs are typically PL/SQL-based, it is recommended to use BPEL’s database adapter to invoke stored PL/SQL programs for custom Portal actions.

The database adapter can invoke any stored PL/SQL program passing required parameters. BPEL Designer adapter wizard will generate all the required supporting files – WSDL file, XSD schema and variables corresponding to the stored program signature.

Although both BPEL and Portal share the same Oracle Internet Directory (OID), there are different types of sessions used when invoking custom Portal APIs. Hence, invoking Portal APIs from BPEL requires Portal authentication with the Portal account. Unfortunately this currently has to be hard-coded directly in the PL/SQL code using set_context PL/SQL procedure. To minimize the impact of such a design, set_context procedure can be isolated in the separate packaged procedure that will be invoked as the first step in invoking any other BPEL-related PL/SQL program.

Modify item metadata / status

Using the above described approach, any item metadata can be modified by the BPEL process. Frequently, the task status needs to be copied to the item status attribute. This provides for tighter integration between BPEL processes and Portal items since by looking at Portal items, we can determine the current step in the workflow. Typically, item status attribute values are a superset of the Workflow statuses since items are not always in the Workflow.

[image: image6.emf]BPEL

Invoke

BPEL process

Database

PL/SQL stored

program

Partner

Link

wsdl file

-JNDI

-stored

program

name

xsd file

-parameters

Figure 5 - Database Adapter
-- update status

portal.wwsbr_api.set_attribute(p_site_id => caid, p_thing_id => item_id, p_attribute_site_id => 0, p_attribute_id => v_attributeId, p_attribute_value => status);

portal.wwpro_api_invalidation.execute_cache_invalidation;
Invoke other custom processes

While CMEF provides for launching workflows on specific Portal events, it does not allow us to launch a BPEL process on a user request. For example, if the existing Portal item requires re-approval or if only a portion of the workflow has to be re-executed, we have to write the custom Portal code.

The following code initiates the new instance of the BPEL workflow process.

NormalizedMessage nm = new NormalizedMessage();

nm.setPayload(xml_payload);

try

{

// Invoking of the BPEL process
deliveryService.post("IBWorkflow","initiate",nm);

}

catch(Exception e)

{

System.out.println("Exception during the BPEL process initiate" + e);

}
The complete example of invoking the custom BPEL process can be found in ‎[1].

Using the Portal Controller process is of great help here as well as it allows splitting the processes into smaller workflow pieces where each piece can be invoked independently. This approach allows executing just a portion of the larger workflow.

Conclusion
Using BPEL, Portal functionality can be significantly expanded to include complex human workflows as well as any custom process-based functionality spanning disparate systems. Process-based extensions with BPEL are necessary if Portal is to be used for content management purposes. In the overall content management solution, Portal Items and metadata provide the structure, BPEL provides the process component and Portal provides the user interface and “ease-of-use” features.

BPEL is integrated with the Portal using Oracle’s Advanced Queuing messaging technology and Content Management Event Framework. This approach allows SOA-based integration with loose-coupling of composite applications. By using BPEL the Controller process design pattern, better control of the process execution is achieved. While CMEF provides events-based integration for actions performed on Portal items, it is still necessary to develop a custom portlet that can launch a BPEL process from a user request – without changing the actual Portal item.

Using BPEL’s task management services, human workflows can be quickly designed and integrated with the Portal. BPEL is also an integration technology that comes with many technological and third party adapters opening up the Portal beyond just the PL/SQL and Java world. Several BPEL functions make this integration easier.
While BPEL’s out-of-the-box functionality provides Worklist portlets, it is not flexible enough to combine the Portal item metadata with the BPEL Task metadata. To solve the problem, custom worklist BPEL portlet can be implemented. A single OID is used for both Portal and BPEL. Combining Task metadata and Portal item metadata, a unified view of the user’s worklist can be achieved. Using BPEL APIs, actions on BPEL tasks can be performed through the Portal portlet and vice versa – BPEL process can perform actions on Portal items and their metadata using Portal APIs and DB Adapter.
The key benefits of this architectural choice are excellent user experience through the use of Portal, Single Sign On, and SOA-based solution providing adaptability while delivering a standards-based solution.
About the Author
Branimir Jefic is an OCP (Oracle Certified Professional) and JCP (Java Certified Programmer) with over 14 years of Oracle experience. He has worked on over 40 projects involving Oracle technologies. During his career he has worked as Oracle Developer, DBA, Portal/Java developer, ERP/CRM 11i developer and Apps DBA. He has worked with Oracle Portal since Web Server 2.1 (1997). In the past 8 years, Branimir has specialized in designing complex Portal and ERP systems based on Oracle technologies. He presented at IOUG in 2007 and has been a member of the Oracle Ottawa User’s group since 1998 where he has delivered several presentations as well.

References

[1] Oracle Application Server Portal 10g Release 2 (10.1.4) – Customized Portlets with BPEL, November 2006
[2] Oracle BPEL Process Manager Developer's Guide 10g Release 2 (10.1.2.0.2)
[3] Oracle BPEL Process Manager Developer's Guide 10g (10.1.3.1.0)
[4] Oracle Application Server Portal Developer's Guide 10g Release 2 (10.1.2)
[5] Oracle Application Server Portal 10g Release 2 (10.1.4) – Content Approvals with BPEL, May 2006

[6] Integrating Portal, Content Services and BPEL to reduce TCO in Medical Education, IOUG, Collaborate 2007, paper #542

14

Paper #506

_1262010596.vsd
Title

Client Access

_1264260493.vsd
Title

Advanced Queuing

_1264260976.vsd
Title

_1263741335.vsd
Title

Database

wsdl file

- JNDI
- stored program name

Invoke

BPEL process

_1234212837.vsd

