
Identity Management

 1 Paper #513

LLEEVVEERRAAGGIINNGG OORRAACCLLEE PPOORRTTAALL AASS AANN EENNTTEERRPPRRIISSEE IIDDEENNTTIITTYY

MMAANNAAGGEEMMEENNTT RREEPPOOSSIITTOORRYY
Gregory Pike, PIOCON Technologies, Inc.

OVERVIEW
Today’s technology landscape provides a myriad of solutions for enabling enterprise-wide, access right provisioning.
Provisioning strategies range from simple LDAP repositories to comprehensive Identity Management packages or complex
SOA/BPEL implementations with granular business processes. However, these robust provisioning solutions often require
highly-specialized skill sets and can be costly to purchase, deploy and maintain. However, an alternative method for managing
user identities is available to organizations already invested in Oracle Portal technology.

Although Oracle Portal primarily provides its proprietary Group objects to simplify the management of user privileges internally
(i.e. page group access), these constructs can additionally be leveraged to facilitate centralized, granular access to data and
functionality throughout the organization. Everything from an end-user’s security profile to graphical experience in external
applications can be provisioned directly from Oracle Portal.

USER PROVISIONING AND ORACLE PORTAL
The case for centralized identity management is compelling, especially considering the proliferation of disparate repositories
for user metadata in today’s workplace. Employing scattered islands of user information is inefficient, difficult to control and
may ultimately detract from the initial user experience while these separate profiles are created. Technologies like Oracle’s
Identity Management (“OIM”) product fill this void by “allow[ing] enterprises to manage [the] end-to-end lifecycle of user
identities across all enterprise resources both within and beyond the firewall.”1 Implemented properly, OIM and similar
solutions enable the enterprise to regain control of the virtual user, ensure metadata integrity, and tighten security protocols.

As an alternative to OIM, the Single-Sign-On (“SSO”) component of Oracle Application Server can play a similar role in user
provisioning by centralizing and automating the authentication process for external accounts and applications. The benefit to
the user is immediate; only a single user name and password is required for enterprise-wise access. In some cases, SSO actually
eliminates the need to create multiple accounts for new users by synchronizing with external repositories such as Microsoft
Active Directory™.

Combined with OID, the infrastructure designed to secure content in Oracle Portal can additionally fill Identity Management
roles by creatively implementing and exposing Group and Item constructs. The hierarchical nature of Groups combined with
Group membership can effectively control access to externally-developed menus or database records. Custom Portal Items
may be designed to contain a variety of user metadata and this information may be pushed to non-Portal applications using
APIs or web services. The concepts presented here are not designed to replace robust identity management solutions, but
rather explore the benefits of leveraging Portal technologies to enable provisioning concepts.

Identity Management

 2 Paper #513

LAYING THE FOUNDATION

UNDERSTANDING PORTAL GROUPS AND ITEMS

Groups primarily empower administrators to craft comprehensive but efficient security models to govern user access to Portal
objects such as Page Groups, Portlets, Providers and Items. Groups are also hierarchical in nature; Groups can themselves be
members of other Groups. Similarly, Portal Items also include a hierarchical structure (top-down only); Sub-Items may be
subordinated to parent Items much like a menu or an organizational chart. Portal Items are traditionally used to expose (and
secure) content including HTML links to pages or documents, but powerful custom Items may also be defined.

By default, Groups are not customizable and include only
three attributes supplied during creation (group name,
display name and description). Groups are created from
the Administer Tab of the Portal Builder Page in Portal.

In contrast, Portal Items are architected to represent any
type of content found on a page, including images, text
boxes and other constructs. Portal Items inherit their
properties from either default or custom types upon
instantiation. Custom Items may be configured to include
the necessary attributes to emulate real-world business
concepts. Creation of Items is a two step process that first
requires the creation of custom attributes and later gathers
these attributes into a new Item Type.

 Figure 1: Create a Group in Oracle Portal

Attribute navigation: Navigator Page Group Shared Objects Attributes Create New Attribute

Item Type navigation: Navigator Page Group Shared Objects Item Types Create New Item Type

Figure 2: Create custom attributes in Oracle Portal Figure 3: Create custom Item Types in Oracle Portal.

Identity Management

 3 Paper #513

CASE STUDIES
XYZ Manufacturing employs a wide variety of technologies throughout its organization and employees require access to varied
reports and applications all with independent security and access privileges. Portal Groups and Items centralize the
maintenance of user access in the following examples.

CASE STUDY 1: LIMITING DATA ACCESS IN ORACLE REPORTS

XYZ Manufacturing provides a standard set of Oracle Reports to its field managers, but restricts the viewable information for
each facility location. Without user provisioning, this requirement might be achieved by maintaining a User/Privilege schema
and including these supporting tables directly into the Oracle Report queries. Of course, this solution also requires
development of an administration application to maintain the users and their respective locations. Oracle’s Virtual Private
Database (VPD) used in conjunction with provisioning through Portal provides an alternate solution that dynamically adds
additional clauses to new or existing report queries. With VPD, a function is created to enable row level security and Portal
Groups provide the mechanism to feed these functions. The process requires modeling XYZ’s location hierarchy as Groups
and creating database users in the external system combined with identical Portal users. Finally, a VPD security function and
simple Portal API is created to check user privileges at report runtime.

CREATING THE SUPPORTING PORTAL GROUPS
The first step in developing supporting structures for the security function involves modeling XYZ Manufacturing’s facility
locations as a hierarchical Portal Group structure. By modeling the locations as a set of Groups, a user may be added to a
single Group and automatically gain access to all of its children. In the following example, XYZ Manufacturing’s four
locations (the lowest level of the tree) are modeled into two regions (US and Europe) with an ultimate parent for the entire
organization. In Portal, seven Groups are constructed and parents are added as members to the immediate child Groups.
In figure 4, User 1 is an explicit member of the Chicago
Group and does not gain access to any other Group in the
tree. User 2 is explicitly granted access to the Europe
Group and additionally gains access to the London and
Berlin Groups via hierarchical inheritance. To facilitate the
creation of a VPD function in the remote database, Group
names incorporate a phrase to identify this as a special
security construct (i.e. “LOC”) as well as the unique
identifier from the external table where the locations are
stored (i.e. 1,2…7). In this case, the Group “LOC-4”
represents the Chicago location and the Group description
field is used to add user-friendly metadata (i.e. Chicago
Location Group). An optional approach for adding
metadata to Groups is found in the following Case Study.

All Locations
Group

(LOC-1)

US Group
(LOC-2)

Europe
Group

(LOC-3)

Chicago
Group

(LOC-4)

Denver
Group

(LOC-5)

London
Group

(LOC-6)

Berlin
Group

(LOC-7)

User 2

User 1

M
em

be
rs

hi
p

Figure 4: To simulate a location hierarchy, Group membership moves

DOWN the tree.

Identity Management

 4 Paper #513

ENABLING ACCESS TO THE LOCATIONS

To access Group membership information in Portal, the
remote system must provide metadata identifying the user.
Although several methods may be employed to pass user
credentials, a transparent but secure option involves
creating Portal users with the same name as the remote
database user. If the remote schema owner is identified as
GPIKE, a portal user named GPIKE is also created. Since
the Portal user is created specifically to enable location
hierarchy access verification and these users will not access
the Portal directly, the password is maintained by the
Administrator and may be reused.

From the Portal Administer Tab of the Builder page, new
users are added as members to the appropriate location
Group.

 Figure 5: The Edit Group View shows LOC-1 is a member of all child

location groups and user GPIKE is a member of LOC-1.

STEPS TO CREATE THE PORTAL API AND VPD FUNCTION

1. The PORTAL.WWV_USER_GROUPS is a simple view that contains a single row for each Portal User/Group

combination regardless of whether the user is was granted direct membership to the Group or if membership was
inherited. Stored in an ASDB schema with SELECT access to PORTAL-owned views and made available via database
link to the external system, the get_user_locations() function encapsulates the logic necessary to return a list of
allowed location IDs for the supplied user.

FUNCTION get_user_locations(f_in_username IN VARCHAR2) RETURN VARCHAR2 IS

 csv_locations VARCHAR2(32767):=’’;
 CURSOR LOC_cur (c_in_username IN VARCHAR2) IS

 SELECT to_number(regexp_replace(wug.group_name,'^LOC-','')) location_id
 FROM wwv_user_groups
 WHERE user_name = c_in_username
 AND group_name like 'LOC-%';

BEGIN

 FOR loc_rec IN loc_cur(f_in_usernane) LOOP

 IF length(csv_locations) > 1 THEN -- append a comma to the list

 csv_locations := csv_locations ||',';

 END IF;
 csv_locations := csv_locations ||loc_rec.location_id;

 END LOOP;
 RETURN(csv_locations);

END; -- function get_user_locations

Identity Management

 5 Paper #513

2. The following Virtual Private Database enabling function is compiled in the schema or database where the reports are
executed. The function takes no parameters and simply passes the invoker’s schema owner name (using the USER
keyword to the ASDB get_user_locations() function (above). The return value from the function becomes a dynamic
VPD clause automatically added to queries executed by the reports.

FUNCTION request_user_locations RETURN VARCHAR2 IS

 allowed_location_ids VARCHAR2(32767):=’’;

BEGIN

 allowed_location_ids := get_user_locations@ASDB(USER); -- Requires synonym
 RETURN ‘location_id IN (‘||allowed_location_ids||’)’; -- and a DB link!

END; -- function request_user_locations

3. To associate the request_user_locations() policy function with a hypothetical LOCATIONS_D table, first create a

database link from the external database to ASDB and a synonym to the get_user_locations() function. Finally use the
DBMS_RLS package to enable row-level security:

DBMS_RLS.add_policy (object_schema => 'XYZ_DW',
 object_name => 'LOCATIONS_D',
 policy_name => 'LOC_SECURITY',
 policy_function => 'REQUEST_USER_LOCATIONS);

SYSTEM ARCHITECTURE
Figure 6 depicts the complete solution for securing an external reporting system using Oracle Portal users, hierarchical Groups
and VPD. In (1), the user executes a report as GPIKE in the external reporting system database and the VPN policy (2)
executes a call to the portal (3) to validate the allowed locations. The portal user (4) is a member of one or more groups (5)
and this information automatically becomes an additional WHERE clauses in the originating query.

Figure 6: Report security process model.

Identity Management

 6 Paper #513

CASE STUDY 2: CREATING DYNAMIC WEB MENUS

XYZ Manufacturing decides that future web development will leverage the Oracle Portal framework; however, any legacy
applications will continue to operate using their existing environments. For administrators, this scenario presents challenges
for synchronizing security among the various legacy systems and complexity since multiple administration systems are likely to
exist. In the following scenario, XYZ creates a new, web-based reporting interface with hierarchically-structured menu-items
designed to access specific reports. The dynamic menus are constructed based upon privilege settings from the user’s Portal
group membership.

CREATING “BOTTOM-UP” GROUP HIERARCHIES
Unlike the top-down location hierarchy created in Case Study 1, a web menu hierarchy requires bottom-up membership. With
a web menu, users gain access to the individual lowest-level menu items as well as all direct parents to preserve the visual
structure of the menu. For this example, the XYZ Manufacturing’s web-enabled reporting system includes the following menu
structure:

Level 1: Menu Node Level 2: Menu Nodes Level 3: Reports
Reports Sales Sales Forecast
 Prior Year Sales
 Orders Historical Orders
 Order Detail

Table 1: XYZ Manufacturing’s reporting web menu structure

A user with access to only the Sales Forecast report must
also gain access to the Sales node at Level 2 in the menu
and the Reports node at the top of the menu. This is
accomplished by creating a series of Portal Groups with
children added as members to the direct parents.

Reports

Sales Reports

Sales Forecast

Figure 7: Available menu items for a user privileged to view only one report

Figure 8: To simulate a menu, Group membership moves UP the tree.

Identity Management

 7 Paper #513

COMBINING PORTAL GROUPS AND ITEMS
Portal Groups provide a powerful framework for developing hierarchical access to content but they lack the breadth of
additional metadata that allow them to serve as a repository for dynamic web menu items. However, when Portal Groups and
Items are joined into a single construct, the combined object provides a powerful tool for describing and applying a highly-
customizable user security model to menus. Since Portal Items can include any number of custom attributes, a Menu Item
Type is designed to store metadata such as the displayed text, the menu item type (node or report), the order the item appears
in a menu and an optional URL for the lowest level items to invoke a report when clicked.

Figure 9: Portal Groups and Associated Items are combined to create a powerful provisioning tool.

Combined Portal
Groups and Items

Identity Management

 8 Paper #513

CREATING CUSTOM ITEM TYPES AND THE HIERARCHICAL MENU
1. Create attributes from Navigator Page Groups Shared Objects Attributes Create New Attribute screen:

Figure 10: Create a custom attribute for Menu Item types.

2. Create a custom item type from Navigator Page Groups Shared Objects Item Types Create New Item Type

screen Click to edit the item properties. The custom attributes are added under the Edit Item Type Attributes screen:

 Figure 11: Create the custom Menu Item Type Figure 12: Add the custom Attributes to the Menu Item type.

3. Create a page to contain the hierarchical menu as a set of Items and Sub-Items. The page itself is not accessed or viewable

by users and does not require formatting, however it serves as a helpful visual aide for administrators to review the
complete menu structure. In order to successfully traverse the menu with queries, subordinate items are created as Sub-
Items; only menu items with no parents are created as Items.

Figure 13: Create the menu structure with by adding 7 Menu Items. Remember to preserve the hierarch by using sub-items.

Identity Management

 9 Paper #513

4. Enable Item Level Security for the entire page as well as for each individual Item that is added to the page. Granting
access to the associated Group in the menu hierarchy links the two constructs (i.e. Sales Item Sales Group) and
allows the Item to serve as the repository for the menu item metadata.

 Figure 14: Enable Item Level Security Figure 15: Link Groups to Items with Item Level Security

CREATING CONSOLIDATION GROUPS TO EASE ADMINISTRATION

Because the Group hierarchical structure for a menu is
built in a bottom-up fashion, administration can be tedious
without the help of a Consolidation Group. In the
absence of a Consolidation Group, granting access to all
reports in the menu requires the administrator to add the
user to each individual lowest level Group. Although this
example depicts only four report options, a real-word
scenario might have dozens or even hundreds of reports.

In Figure 15, the menu structure is inverted from Figure 8
to depict the lowest levels (individual reports) at the top
and additionally includes a Consolidation Group (the All
Menu Items Group). A Consolidation Group can include
any logical subset of the reports that might be granted to a
large number of users. It is conceivable that a Sales or
Orders Consolidation Group (no to be confused with the
Sales and Orders Groups that govern the menu items only)
might be added to simplify the administration of different
user roles.

In this example, User 1 sees the Order Detail Group,
Order Group (the immediate “child” in this inverted view)
and the Reports Group (ultimate “child” in this inverted
view) while User 2 inherits access to all Menu Items from
the Consolidation Group.

Reports Group

Sales Group Orders Group

Sales Forecast
Report Group

Prior Yyear Sales
Group

Historical Orders
Group

Order Detail
Group

All Menu Items Group

User 1

User 2

M
em

be
rs

hi
p

Figure 16: Granting access to an “All Menu Items Group” eases

administration.

Identity Management

 10 Paper #513

PUTTING IT ALL TOGETHER – DYNAMICALLY DETERMINING GROUP ACCESS (MENU ITEMS)
As with the locations hierarchy, the final step for using Portal menu security is to expose the list of allowable Menu Items for a
particular user. Since information regarding the structure and order of the menu as well as the URLs for the reports is also
included via the attached Items, it is preferable to create a view into this information and return the data in the order the menu
might be displayed. The view returns the following rows for a user with access to the entire menu (member of the All Menu
Items Group) and the data is used to dynamically render a menu using JSPs or PL/SQL Server Pages and JavaScript.

Item ID Title Parent ID Item Type URL Sort Order (rel)
1 Reports <NULL> Node <NULL> 10
2 Sales 1 Node <NULL> 10
4 Sales Forecast 2 Report /reports/sales.html 10
5 Prior Year Sales 2 Report /reports/prior.html 20
3 Orders 1 Node <NULL> 20
6 Historical Orders 3 Report /reports/hist.html 10
7 Order Detail 3 Report /reports/detail.html 20

Table 2: Rows returned from the dynamic menu view for a user with full access

The query on the following page was constructed to return a SIBLINGS-sorted list of available menu items for the supplied
user. Optionally, the query could include a passed Portal Page name to enable implementation of multiple menus. The query
was designed with Subquery Factoring (better known as the WITH clause) to maximize efficiency and could include any
number of custom attributes to enable the external application to properly render and control a web menu.

Table or View Name Description

wwv_things Master list of all Portal objects.

wwpob_page$ Allows the query to be limited to a single menu on a single page using the
parent_name column.

wwsec_group$ Master list of Portal groups.

wwsec_sys_priv$ Ties items to groups with Item Level Security.

wwv_user_groups Direct and inherited Group membership by user.

wwsbr_item_types Specify custom menu Item Type.

wwsbr_item_type_attributes Attributes for the custom menu Item Type.

wwsbr_attributes Attribute names for the custom menu Item Type

wwv_thingattributes Values contained in attributes for each instantiation of a custom menu Item.
Table 3: Table descriptions for a dynamic menu item query

Identity Management

 11 Paper #513

DYNAMIC MENU QUERY

This query returns an ordered list of allowable menu items provided portal.wwctx_api.set_context is first executed for the specified
user to ensure that tables are synchronized with Oracle Internet Directory (OID). Please note the bolded clauses which are
provided at run time but hard-coded here for discussion purposes.

WITH temp AS (-- This query gets 1 row for each item/attribute combination
 SELECT t.masterthingid id,
 t.title,
 t.parentid,
 wa.name item_name,
 DECODE(ta.valuetype,'text',ta.value,ta.numbervalue) item_value,
 pg1.name parent_page
 FROM portal.wwv_things t,
 portal.wwpob_page$ pg1,
 portal.wwsec_group$ gp,
 portal.wwsec_sys_priv$ p,
 portal.wwv_user_groups wg,
 portal.wwsbr_item_types wit,
 portal.wwsbr_attributes wa,
 portal.wwsbr_item_type_attributes wita,
 portal.wwv_thingattributes ta
 WHERE t.siteid = SUBSTR(p.name,1,INSTR(p.name,'/')-1)
 and t.masterthingid = substr(p.name,instr(p.name,'/')+1,8)
 and p.object_type_name = 'ITEM' -- ITEM / GROUP
 and p.grantee_group_id = gp.id
 and p.grantee_type = 'GROUP'
 and t.siteid = pg1.siteid
 and pg1.id = 1
 and wg.group_name = gp.name
 and wg.user_name = UPPER('GPIKE') -- Provided at run time.
 and wit.name = 'MenuItem' -- The name of the custom item type.
 and wit.id = t.subtype
 and ta.masterthingid = t.id
 and wita.item_type_id = wit.id
 and wita.attribute_id = ta.attributeid
 and wa.id = wita.attribute_id
)
SELECT id,title, parentid, menu_item_type, report_id, url, sort_order –- Order the result
FROM (-- A classic pivoting mechanism to place all attributes in a single row
 SELECT temp1.id, -- Needed for the CONNECT BY
 temp1.parentid, -- Needed for the CONNECT BY
 temp1.title, -- The menu item text
 temp1.item_value menu_item_type, -- Is this a node or a leaf
 temp2.item_value report_id, -- What report to run
 temp3.item_value url, -- What portal page to show
 temp4.item_value sort_order -- Order of the item in the menu
 FROM temp temp1, temp temp2, temp temp3, temp temp4
 WHERE temp1.id = temp2.id
 AND temp2.id = temp3.id
 AND temp3.id = temp4.id
 AND temp1.item_name = 'MenuItemType' -- Custom item type attribute.
 AND temp2.item_name = 'MenuItemReportID' -- Custom item type attribute.
 AND temp3.item_name = 'MenuItemURL' -- Custom item type attribute.
 AND temp4.item_name = 'MenuItemSortOrder' -- Custom item type attribute.
)
CONNECT BY parentid = PRIOR id
START WITH parentid = 0
ORDER SIBLINGS BY sort_order; --Orders the menu items in the order displayed

Identity Management

 12 Paper #513

SYSTEM ARCHITECTURE
A dynamic web menu is realized using two options with both ultimately leveraging a combined Group-Item construct in
Portal. In Option 1, the requesting web application (from JSPs or PL/SQL Server Pages) connects directly to a local database
where the menu item query is exposed as a database view over a DB link. In this situation, the query is modified to include
USER and perhaps Portal Page to enable appropriate filtering. In Option 2, the web application requests the menu items
from a web service and passes the username and the desired menu. The web service employs any one of many options for
retrieving the menu items including execution of a stored database function that inquires on the view.

Figure 17: Report security process model.

Identity Management

 13 Paper #513

CASE STUDY 3: DEVELOP AN ENTERPRISE PROVISIONING API OR WEB SERVICE

For the organization that selects Oracle Portal as a user provisioning solution, using the default Portal Administration screens
may hinder full integration with external systems. Often, legacy applications already include administration systems and while
Portal may be used as the central data repository, the external systems are still leveraged for user creation and maintenance.
Fortunately, all of the functionality described here is accessible via Portal APIs. However, exposing these APIs directly to
external systems is unwise from a security standpoint and requires developers to understand the sometimes complex
relationships between Portal Users, Groups and Items. As an alternative, the Portal APIs may be repackaged as an Enterprise
Provisioning API (EP-API) that provides the mechanisms to create users and manage preferences. This repackaged API is
exposed either directly through database links for Oracle-based external applications or using a web service.

CREATING AN ENTERPRISE PROVISIONING API
Because the included APIs from Oracle are often complex and require a detailed understanding of Portal, the EP-API is
designed to simplify integration for the external developer. The robust EP-API should include the ability to perform the day-
to-day user management functions available in Portal’s administration screens. The following list describes the base
functionality provided by a robust EP-API:

• Create and delete/inactivate Portal users.
• Grant or revoke user access to Portal Groups.
• Inquire on the allowed Groups for a user.
• Create new Groups and modify their hierarchical

structures.

• Create new Items and associate these to Groups.
• Modify the custom attributes for Portal Items.
• Inquire on existing Portal hierarchies.
• Inquire on enterprise access privileges to facilitate

reporting and audit.

ORACLE PORTAL APIS
A complete understanding, or even an overview, of the supplied Oracle Portal API’s is beyond the scope of this document,
however the majority of the functionality described here is accessed using the WWSEC_API and WWSBR_API packages. See
http://www.oracle.com/technology/products/ias/portal/html/plsqldoc/pldoc1012/index.html for a complete description of
all Portal APIs. The following list describes the candidate components be exposed through an EP-API.

API Package Function or Procedure Name Description
WWSEC_API add_group_to_list Adds a group as a member to another group.

 add_portal_user Adds a Portal profile entry to the OracleAS Portal 10G repository.
 create_list Creates a group in OID and returns the profile ID for the portal.
 delete_group_from_list Deletes a group from the list of members of another group.

 delete_list Deletes a group from OID and associated references to the group.
 delete_portal_user Deletes an OracleAS Portal 10G user profile entry.
 delete_user_from_list Deletes a user from the membership list of a group.
 grantee_list Returns a list of grantees for a named object/specified owner.
 is_user_in_group Checks whether a user belongs to a specific group.
 person_info Returns user information, given a person ID.

WWSBR_API add_item Creates a new item on a specified page in a page group.
 add_item_ils_privileges Adds item level security access privileges for one or more users or

groups to a single specified item.
 enable_ils_for_item Enables item level security for a specified item.
 modify_item Modifies an existing item.

Table 4: Selected Oracle Portal API descriptions

Identity Management

 14 Paper #513

The key to providing a usable EP-API is obfuscating the complexities of Portal’s APIs and combining multiple API calls into a
single function or procedure. For example, a “Create User” EP-API function should only include those elements of a user’s
record that are applicable to the external system and might additionally include the ability to add a new user to hierarchical
groups during the creation process.

EXPOSING THE ENTERPRISE PROVISIONING API AS A WEB SERVICE
Although the complexities of exposing PL/SQL packages as Web Services is beyond the scope of this document, Oracle’s own
Portal Center (http://portalcenter.oracle.com) provides valuable resources. Of particular note is Jason Price’s article found at
http://www.oracle.com/technology/pub/articles/price_10gws.html that describes the process of exposing PL/SQL
procedures as web services.

PORTAL PROVISIONING ADVANTAGES AND DISADVANTAGES
Oracle Portal is not a true provisioning tool and there are several considerations to evaluate prior to leveraging Group and
Item constructs to centrally manage user security and access privileges.

ADVANTAGES
• Portal’s out of the box functionality includes a

complete suite of support structures and management
screens to start provisioning immediately.

• Centralizing user metadata helps enable a help desk
model for application support.

• For current owners of Oracle Portal, user provisioning
leverages current technologies and in-house skills.

• Compatible with BPEL when appropriate APIs are
constructed.

DISADVANTAGES
• The effort of creating duplicate users in Oracle Portal

may be greater than the perceived time savings.
However, an EP-API can be employed to create users
programmatically from the external systems.

• Default portal administration pages are not intuitive;
however, a custom page or an EP-API can be
substituted.

• Exposing Portal privileges to external applications
requires careful security scrutiny.

• Centralizing user privileges upgrades the Portal to a
mission-critical system.

SUMMARY
Although there are clear benefits derived from enterprise user provisioning, barriers to entry may cause some organizations to
resist the changes. Oracle Portal enables the first steps by limiting investment in new technologies and leveraging existing skill
sets to deliver a robust model for managing the user experience and life-cycle.

ABOUT THE AUTHOR
Greg Pike is a PIOCON Technologies Managing Principal with over 15 years experience in the delivery of Oracle-based
custom applications and solutions. Mr. Pike currently focuses on Business Intelligence web applications and he is the
founder and moderator of www.singlequery.com (Oracle technology blog).

ACKNOWLEDGEMENTS
• Chip Dawes, D&D Technologies – PL/SQL security functions.
• Jeremy Simmons, PIOCON Technologies, Inc. – Graphic arts and architectural review.
• John Weicher, PIOCON Technologies, Inc. – Graphic arts and architectural review and editing.

REFERENCES
(1) Oracle identity and Access Management Suite – Key Features and Benefits, Oracle Corporation, 2006.

