Middleware

BPEL 101
Chris Ostrowski, TUSC
Introduction
One of the most challenging aspects to understanding Service Oriented Architecture (SOA) is the effort needed for managers and developers to fully understanding all of the various technologies that comprise it. Business Process Execution Language (BPEL) is one of many technologies that make up a true SOA solution. This presentation will discuss BPEL, why it exists and how Oracle has implemented BPEL as part of the Oracle Application Server.
What is SOA?

If you’ve attended Oracle or development seminars or have read the various publications and white papers devoted to Oracle and Oracle-based development, you are surely aware of the trend towards Service Oriented Architecture. Oracle has devoted a great deal of effort in making sure that their advanced development tools (i.e. Oracle JDeveloper) and deployment platform (i.e. Oracle Application Server) support all of the aspects of this new SOA paradigm. Larry Ellison has professed that all software released by Oracle in 2008 moving forward would be based on SOA. While traditional tools like Oracle Forms and Reports will still exist for some time, it is clear that Oracle is moving towards the SOA paradigm and that it expects developers using its tools to begin embracing these technologies also.

It is important, however, to note that you can use advanced development tools like Oracle JDeveloper to create traditional applications that do not take advantage of SOA. Oracle has also put a lot of effort into a tool called Application Express which is not specifically designed to be used in an SOA environment (although, with a little work, can be). All of Oracle’s current development tools do not have to use the SOA architecture to be useful. Oracle is, however, putting a great deal of time and effort into its SOA offerings.

Definition

Google SOA and you’ll find many different definitions and interpretations. The definition that comes closest to Oracle’s view of SOA is:

“An architecture for building business applications as a set of loosely-coupled black-box components orchestrated to deliver a well-defined level of service by linking together business processes”.

Let’s break down this definition further:

Loose coupling describes a resilient relationship between two or more systems or organizations with some kind of exchange relationship. Each end of the transaction makes its requirements explicit and makes few assumptions about the other end. The Loose coupling concept has multiple dimensions. For example, integration between two applications may be loosely coupled in time using Message-oriented middleware - meaning the availability of one system does not affect the other. Alternatively, integration may be loosely coupled in format using middleware to perform Data transformation - meaning differences in data models do not prevent integration. In Web Services or Service Oriented Architecture, loose coupling may mean simply that the implementation is hidden from the caller.

“Black box” is a technical term for an object when it is viewed primarily in terms of its input and output characteristics. In computing, a black box program is one where the user cannot see its inner workings or one which has no side effects and the function of which need not be examined, a routine suitable for re-use.

Benefits

An Oracle published white paper (“Oracle Service-Oriented Architecture Suite”, available at http://www.oracle.com/technology/tech/soa/pdf/soa-suite-wp.pdf) talks about some of the main benefits of implementing SOA:

SOA helps address the fragmented IT landscape and addresses the difficulties associated with silos of IT infrastructure and applications. It enables greater flexibility through:

· Greater Interoperability – SOA, and the industry standards underpinning it, enable existing silo’d applications to interoperate seamlessly and in an easier to maintain manner than any traditional EAI solution.

· Increased Reuse – Once legacy systems and applications are service-enabled, these services can be reused, which results in reduced ongoing development costs and results in reduced time to market. Further, business processes built as an orchestration of services can also be exposed as services – further increasing reuse.

· More Agile Business Processes – SOA reduces the gap between the business process model and implementation. This enables changes to business processes already implemented as orchestrations of services to be to be easily captured and implemented.

· Improved Visibility – SOA can give improved business visibility by enabling business capabilities exposed as services, and the status of in-flight business processes automated with BPM technology, to be rapidly integrated into service-enabled enterprise portals aiding business decision-making.

· Reduced Maintenance Costs – SOA development encourages duplicated overlapping business capabilities (services) that span multiple applications and systems to be consolidated into a small number of shared services. This enables elimination of redundant services and reduces the cost of maintaining systems by providing a single point of change for application logic. Further, SOA gives IT the means to gradually phase out legacy systems and applications whilst minimizing disruption to the applications that are built on, or are integrated with, them using SOA principles. This frees up funds for new projects.

Major SOA Components

SOA is made up of numerous components. Any vendor who advertises an SOA solution must implement these features in one way or another:

· Web Services – It is not a coincidence that Web Services and SOA share the word “Service”. Web Services use standard interfaces to communicate with each other and allow developers to write new web services (as long as they adhere to the standards). A key to any SOA implementation is an adherence to standards. Oracle Application Server and Oracle JDeveloper are fully web services compliant. Oracle provides a graphical tool called the Web Services Manager Control to (you guessed it) manage web services (Figure 1).

 [image: image1.jpg]
Figure 1

· Modeling Business Processes – Let’s say you wanted to write an order processing system for a company. In the old days, you might write one huge COBOL program that did everything. Updating a program like this is very difficult. If you used a modular programming language like C, you could break the program into different modules (like new order, update order, cancel order, etc.). This allows greater flexibility when making changes, as you can isolate the code that needs to change. By converting each of those modules into a web service, however, you add a greater level of flexibility as any web-enabled application can call that particular service. Many times, a business process will consist of calling one or more web services. Having a tool to coordinate business processes is essential. Oracle provides a tool called Oracle Rule Author. Oracle Rule Author is the rule authoring and editing component of Oracle Business Rules. Using Oracle Rule Author you can create and modify rules, create and modify data models, easily customize rules and create and use Oracle Rule Language expressions (Figure 2).

 [image: image2.jpg]
Figure 2

· Enterprise Service Bus – The Enterprise Service bus (ESB) is a collection of software components that manage all of the messages that are being sent by the various SOA components to each other. The ESB uses a specified format for each message and knows what SOA component the message goes to. Oracle provides a graphical tool called the ESB Control to manage the ESB in Oracle Application Server 10g.

 [image: image3.jpg]
Figure 3

How BPEL Fits Into the Technology Stack

Many companies are looking at Web services and SOA as a method for addressing the integration requirements involved in building connected applications. While SOA has existed for over a decade, there was confusion about which interfaces to adopt. BPEL and Web service standards solve this dilemma by addressing common application requirements in an open, portable, and standard way. SOA optimizes business performance by using existing resources and minimizing the cost of deploying new applications. Enterprises adopting these standards and architectural approaches achieve a significant return on investment (ROI) from using the same standards-based approach to building connected applications that they used for building Web applications with Java/Java 2 Platform, Enterprise Edition (J2EE). Making Web services work is a two-step process:

1. Publish the services - Publishing a service involves taking a function within an existing application or system and making it available in a standard way.

2. Compose, or orchestrate, the services into business flows - Orchestration involves composing multiple services into an end-to-end business process.

Web services standards, including web services description language (WSDL), extensible markup language (XML), and simple object access protocol (SOAP), have emerged as an effective and highly interoperable platform for publishing services. In addition, high performance binding frameworks enable enterprises to access legacy systems and native Java code without having to wrap them in a SOAP interface.

BPEL is emerging as the clear standard for composing multiple synchronous and asynchronous services into collaborative and transactional process flows. BPEL benefits from over 15 years of research that improves upon its predecessor languages of XLANG and WSFL. BPEL provides the following features:

· Web services/WSDL as component model

· XML as data model (data loose-coupling)

· Synchronous and asynchronous message exchange patterns

· Deterministic and nondeterministic flow coordination

· Hierarchical exception management

· Long-running unit of work/compensation

Since the BPEL specification was submitted to the Organization for the Advancement of Structured Information Standards (OASIS) in March 2003, it has gained the support of nearly every major industry vendor. This provides a great benefit to enterprises that can now implement their business processes in a standard and portable way, avoiding vendor-specific rules to a degree not previously possible.

Programming in the large generally refers to the high-level state transition interactions of a process—BPEL refers to this concept as an Abstract Process. A BPEL Abstract Process represents a set of publicly observable behaviors in a standardized fashion. An Abstract Process includes information such as when to wait for messages, when to send messages, when to compensate for failed transactions, etc. Programming in the small, in contrast, deals with short-lived programmatic behavior, often executed as a single transaction and involving access to local logic and resources such as files, databases, etc. BPEL's development came out of the notion that programming in the large and programming in the small required different types of languages. BPEL is an Orchestration language - an orchestration model encompasses all parties and their associated interactions giving a global view of the system. Orchestration describes central control of behavior.

Oracle’s Implementation of BPEL

BPEL is emerging as the standard for assembling a set of discrete services into an end-to-end process flow, radically reducing the cost and complexity of process integration initiatives. Oracle BPEL Process Manager offers a comprehensive and easy-to-use infrastructure for creating, deploying and managing BPEL business processes. Oracle provides a graphical tool called BPEL Control (Figure 4).

 [image: image4.jpg]
Figure 4

Versions of the Oracle Application Server

Not all versions of the Oracle Application Server contain all of the SOA components. The “full technology stack” of the Oracle Application Server (10.1.2.0.2) contains commonly used legacy components such as:

· Oracle Forms Server

· Oracle Reports Server

· Oracle Discoverer Server

· Oracle Portal Server

This version of the Oracle Application Server does not contain SOA components. In December of 2006, Oracle released the 10.1.3 version of the Application Server. It contained the Business Rules component discussed above, but virtually nothing else; none of the legacy components (Forms, Reports, etc.) and none of the other SOA components (ESB Manager, BPEL Manager, etc.). In March 2007, Oracle released version 10.1.3.1 of the Application Server, which was referenced as the “Oracle SOA Suite” in Oracle’s marketing literature. This version still did not contain any of the legacy components, but did contain all of the SOA components:

· Oracle BPEL Process Manager

· Oracle BPEL Process Manager Control

· Oracle Business Rules

· Oracle Enterprise Service Bus

· Oracle Enterprise Service Bus Control

· Oracle Web Services Manager

· Oracle Web Services Manager Control

· Oracle Lite (Windows only)

· Oracle Application Server Cloning Tool

· Oracle TopLink

· XML Query Service

The latest and greatest version of the SOA Suite (10.1.3.3) was released in June 2007 and contained some fixes to the 10.1.3.1 release. It still does not contain any of the legacy components. Oracle has promised that the 11g version of the Oracle Application Server will integrate the legacy components and the SOA components.

Oracle BPEL Process Manager

The Oracle BPEL Process Manager is a graphical tool to manage BPEL processes. From here, administrators can:

· Deploy new processes

· Define initiation parameters for the BPEL process

· View the .wsdl (Web Services Deployment Descriptors) associated with the BPEL process

· Define Activity, Variable and Fault Sensors associated with the BPEL process

· Create and monitor a test suite for the BPEL process

· View reports related to the execution of the BPEL process

· View the instances and activities of currently running BPEL processes

Development

There are numerous ways to create a BPEL process, but doing it any way other than using Oracle JDeveloper will require an intensive amount of coding on the developer’s part. Oracle JDeveloper greatly simplifies the creation of BPEL processes. In Figure 5 below, the New Gallery in Oracle JDeveloper can be used to create the basic framework of a BPEL process.

 [image: image5.jpg]
Figure 5

In Figure 6, the basic parameters of the BPEL process are defined.

 [image: image6.jpg]
Figure 6

After the basic BPEL process is defined, you can graphically edit the BPEL process in JDeveloper (Figure 7). Of note are the Design and Source tabs below the BPEL graphical representation in the middle of the Oracle JDeveloper window. Any changes made graphically in the “Design” pane are automatically reflected in the code in the “Source” window and vice versa. This method of development provides a productive environment for both code and graphical-focused developers.

 [image: image7.jpg]
Figure 7

What does BPEL code look like?

Here is an example of BPEL code that is generated by the wizards in Oracle JDeveloper:

<?xml version = "1.0" encoding = "UTF-8" ?>

<!--

//

 Oracle JDeveloper BPEL Designer

 Created: Mon Jan 07 13:48:03 MST 2008

 Author: Administrator

 Purpose: Asynchronous BPEL Process

//

-->

<process name="BPELProcess1"

 targetNamespace="http://xmlns.oracle.com/Application2/SOAComposite1/BPELProcess1"

 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

 xmlns:client="http://xmlns.oracle.com/Application2/SOAComposite1/BPELProcess1"

 xmlns:ora="http://schemas.oracle.com/xpath/extension"

 xmlns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc"

 xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20"

 xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"

 xmlns:bpelx="http://schemas.oracle.com/bpel/extension"

 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

 <!--

 //

 PARTNERLINKS

 List of services participating in this BPEL process

 //

 -->

 <partnerLinks>

 <!--

 The 'client' role represents the requester of this service. It is

 used for callback. The location and correlation information associated

 with the client role are automatically set using WS-Addressing.

 -->

 <partnerLink name="client" partnerLinkType="client:BPELProcess1" myRole="BPELProcess1Provider" partnerRole="BPELProcess1Requester"/>

 </partnerLinks>

 <!--

 //

 VARIABLES

 List of messages and XML documents used within this BPEL process

 //

 -->

 <variables>

 <!-- Reference to the message passed as input during initiation -->

 <variable name="inputVariable" messageType="client:BPELProcess1RequestMessage"/>

 <!-- Reference to the message that will be sent back to the requester during callback -->

 <variable name="outputVariable" messageType="client:BPELProcess1ResponseMessage"/>

 </variables>

 <!--

 //

 ORCHESTRATION LOGIC

 Set of activities coordinating the flow of messages across the

 services integrated within this business process

 //

 -->

 <sequence name="main">

 <!-- Receive input from requestor. (Note: This maps to operation defined in BPELProcess1.wsdl) -->

 <receive name="receiveInput" partnerLink="client" portType="client:BPELProcess1" operation="initiate" variable="inputVariable" createInstance="yes"/>

 <!--

 Asynchronous callback to the requester. (Note: the callback location and correlation id is transparently handled using WS-addressing.)

 -->

 <invoke name="callbackClient" partnerLink="client" portType="client:BPELProcess1Callback" operation="onResult" inputVariable="outputVariable"/>

 </sequence>

</process>

Summary

Web services have become widely accepted as the de facto standard for distributed business applications. BPEL, in that it formally describes processes, permits orchestration of web services. Oracle has shown its commitment to SOA in general and BPEL in particular by providing a robust set of tools to configure and monitor your SOA-based applications in the 10.1.3.x version of the Oracle Application Server. While the current version of the SOA Suite (10.1.3.x) does not provide integration with legacy components, Oracle has promised that the 11g version of the application server will feature full integration between SOA, Oracle legacy components and applications Oracle has recently purchased (Peoplesoft, JD Edwards, etc.).

12

 Paper #526

