 Oracle Text - Content Indexing Made Easy
Doug Johnson, Booz Allen Hamilton

Introduction to Oracle Text

Oracle Text is an integrated full-text retrieval technology that is included as part of the Oracle 10g Standard and Enterprise Editions. Oracle Text implements standard SQL in order to index, search and analyze text and documents stored within an Oracle database, files on a file system or documents on the Web. Oracle Text also provides mechanisms for word theme searching, document classification, and document clustering.

Oracle Text can filter and extract content from over 150 document formats including Microsoft Word, Excel, Adobe PDF, HTML, and XML.

Arguably, Oracle Text offers the best multilingual support in the market today. Documents can be indexed and subsequently searched in most of the known languages that exist in the world. Not only are the popular western languages such as English, French, Spanish, German, etc. supported, but languages such as Japanese, Korean, Chinese, Arabic, Sanskrit, and Farsi are supported as well.

Furthermore, Oracle Text is a core component of other Oracle products like Oracle Application Server Portal, E-Business Suite, Oracle Ultra Search, Oracle Files, E-Business Suite, Metadata, and OTN.

Why Choose Oracle Text

An obvious attraction to Oracle Text is that it is provided at no extra cost with the Standard and Enterprise Editions of Oracle.

After an exhaustive evaluation of content indexing tools on the market, it was determined by our group that Oracle Text offered the best multilingual support. When the database was installed to support Unicode, Oracle Text was able to index and retrieve content in any language we needed to maintain.

Oracle Text integrates with a number of features of the Enterprise 10g license such as:

· Query optimization.

· Real Application Clusters and the Parallel Server.

· Data Partitioning.

· Security.

· OEM for Administration and Manageability.

Oracle Text allows a great deal of latitude in developing text retrieval applications. Development efforts are not constrained by proprietary interfaces or restrictions that can be found in many of the other vendor products.

Oracle is a very large company with an excellent track record of supporting and enhancing their product. It was determined that going with Oracle minimized the risk of non-support or non-enhancement of the product.

Oracle has a number of client’s who successfully use this utility. Within the intelligence community, organizations such as the NSA, FBI, CIA, and DIA have experienced great success with Oracle Text. Recently, Oracle was awarded a sizeable contract with Homeland Security.

Oracle Text allows you to implement full-text search functionality against data within the database without the introduction of additional companion or third party tools. Oracle Text is an all-inclusive solution for content indexing. It also allows full text indexing from multiple data sources including documents or text stored within the database, files residing on the network or disk, and data sources obtained from the Internet or intranet.

The Oracle Text Architecture

Now we will take a quick look at the mechanisms for processing text with Oracle Text. Oracle Text indexes content in a sequential fashion. Each phase of the process serves as input to the subsequent step. The following diagram outlines each stage of the Oracle Text process:

[image: image1.png]oIS file
system

Stoplist

Wordlist

Markup
N Werkedup | : . l
ocuments ext ext ens
Datastore | Filter || Sectioner fomn Lexer = Indexing
. a
Oracle Text |
ndex o

Figure 1 - Oracle Text Architecture 1
· Datastore
Content that Oracle Text indexes can be obtained from text within a column(s) in a table, a file system or a URL. The URL allows Oracle Text to obtain content that may be stored remotely on other servers and accessed via HTP or FTP protocols

If the text to be indexed is stored in the database it can reside in any character column (up to 4K). Otherwise the text can reside in a LOB (Large Object), which can store text up to 4GB in size.

Text can be indexed from a file system as long as the database server can access the files.

1. Omar Alonso. Oracle Text. An Oracle Technical White Paper, January 2004.
Redwood Shores, CA: Oracle, 2004, p.6

If the text to be indexed is addressable from a URL on the Internet or intranet, Oracle can extract, filter and index the data via HTP or FTP protocols.

· Filter

Recent versions of Oracle Text employ the Verity filter to perform document filtering. This filter can extract text for more than a 150 file formats, including Microsoft Word, Excel, Powerpoint, Adobe PDF, HTML, XML, exe, MS Access, etc. In previous versions, the INSO filter transformed binary documents into HTML. In 10g, the INSO filter has a new OUTPUT_FORMATTING Boolean which, when set to FALSE, produces unformatted plain text. The INSO filter can produce plain text many times faster than HTML. Oracle claims up to 30 times faster. Experience has shown this number to be fairly accurate.

Developers can also replace the default filter used by Oracle Text with their own custom-built, or vendor supplied filter. For instance, the Stellant Chicago Inso filter can be used. We can call the executable passing appropriate arguments to a number of filters.

· Sectioner
The sectioner process identifies sections that contain text. For example, if your text is an xml document, each XML tag will group content together as a unit of text. Once the text index is built, you can then search for text contained within a particular section or XML tag. Let’s say your document contained the following XML tags:

 <Content>Celery stalks at midnight, lettuce pray!</Content>

 <Metadata>Quotes from vegetables</Metadata>

 <Comment>No comment from the fruit</Comment>

The sectioner process will associate the text within each XML tag as belonging to a distinct section. The user can then search for text contained within individual sections using the WITHIN operator in the Select statement. The WITHIN operator is demonstrated in the Searching Content section. But for now, know that the user can isolate text searches for a specific section of text across all indexed documents. For example, the sectioner gives the user the ability to search for text just within the Content, Metadata, or Comment sections. For example to search for a term only in the Content section perform the following select statement after the text index has been created. Note the use of the WITHIN operator:

SELECT file_id, SCORE(1), text_col FROM content_table

WHERE CONTAINS(file_text, 'celery stalks WITHIN content', 1) > 0

ORDER BY SCORE(1) DESC;

· Lexer

The lexer takes the output from the sectioner and determines what makes a word. For western languages, the Lexer usually identifies a word as uninterrupted strings of alphanumeric characters separated by spaces. The lexer will also remove any punctuation, stopwords, or special symbols. Therefore, if we have the following string as input from the sectioner:

 Wow! It’s tomatoes standing in the way of celery! Isn’t it?

The lexer would probably convert the string above to:

 Wow tomatoes standing way celery

Stopwords are not indexed, however their position in the content is identified by the index and can be used in the search for the content. Note that any stopword can be used in place of any other stopword and still return a hit against the text. So a search on “tomatoes standing in the way” is the same as a search on “tomatoes standing on the way”. By default, if a word ends in any punctuation, include that punctuation character in the search. For instance, if the content your searching for is “How now brown cow?”, make sure to include the “?” in the search string. A search on “How now brown cow” will not return a hit unless the search predicate is enclosed within braces, i.e. ‘{How now brown cow?}’.

· Indexing Engine
The index engine maps tokens or words to the documents that contain them. While creating the pointers from the tokens to the documents, the index engine uses the stoplist and the wordlist to construct the “inverted index”. The stoplist is a list of words or themes to exclude from the index. The wordlist identifies how stem and fuzzy queries are to be expanded. For instance, if we are performing a stem word search on the word “manager”, then we will get a hit for our search for the words “manager”, “manage”, “manages”, “management”, “managing”, etc.

The reason Oracle identifies the output from the Index process as an “inverted index” is due to the fact that each word has a pointer to the document(s) that contain that word. This is an inverted view that one might expect where each document would have a pointer to the words contained within that document.

Environment Considerations

Oracle Text is a very robust and flexible utility. Text indexes can be created with a wide array of hardware and memory options. This section will provide some basic guidelines for environment settings when creating Oracle Text indexes.

It is important to keep in mind that the creation of an Oracle Text index is both an I/O and process intensive operation. Obviously, this means that it is better to have a multi-processor machine with distributed disk access when creating the text index. In creating an Oracle Text index against one million documents with an average size of 4K, it took over 3 days on a single CPU machine running at 2 GHz with 2G of memory writing to a local hard drive. The same indexing effort on a Dell 6650, with 4 - 3 GHz CPU’s, with 32G of memory took just over 3 hours!

Oracle Text supports parallel processing while creating the index with the CREATE INDEX statement. According to Oracle:

 “When you issue a parallel indexing command on a non-partitioned table, OracleText splits the base table into temporary partitions, spawns slave processes, and assigns a slave to a partition. Each slave indexes the rows in its partition. The

method of slicing the base table into partitions is determined by Oracle Text and is not under your direct control. This is true as well for the number of slave processes actually spawned, which depends on machine capabilities, system load, your init.ora settings, and other factors. The actual parallel degree may not match the degree of parallelism requested.”

“Using PARALLEL to create a local partitioned index enables parallel queries. (Creating a non-partitioned index in parallel does not turn on parallel query processing.) Parallel querying degrades query throughput especially on heavily loaded systems. Because of this, Oracle recommends that you disable parallel querying after parallel indexing. To do so, use

ALTER INDEX NOPARALLEL.” 2
10g Oracle Text New Features

With 10g, Oracle Text gives numerous new capabilities to the Database Administrator to enhance text searches and to the developer to utilize these enhancements. We will only touch on a few of these new features. Oracle has an area on Technet, specifically addressing 10g Oracle Text, which goes into more detail and depth into the subject.

2. Colin McGregor. Oracle Text Application Developers Guide 10g Release 1(10.1).
Redwood Shores, CA: Oracle, 2003, P. 3-8.

On the following pages, we will briefly address the following new features found within 10g Oracle Text:

· Progressive relaxation

· CTXSYS privileges and ownerships

· Multilingual

· Query Language Specification

· Progressive Relaxation
Progressive Relaxation will automatically rewrite and re-execute a query until the query returns the desired number of hits that a user needs. Scores are placed within ranges. The user provides the different searches to run. These queries are run sequentially, de-dedupping the results until the desired number of hits are returned.

For example, the query of ‘celery stalks’ can be progressively relaxed to:

celery stalks

celery NEAR stalks

celery AND stalks

celery ACCUM stalks

Progressive relaxation is done with the following template:

SELECT score(1), pk_id, text_content FROM content_table WHERE CONTAINS (text_content, '<query>

 <textquery>

 <progression>

 <seq>celery stalks</seq>

 <seq>?celery ?stalks</seq>

 <seq>celery OR stalks</seq>

 <seq> celery NEAR stalks </seq>

 <seq>celery AND stalks</seq>

 <seq>celery ACCUM stalks</seq>

 </progression>

 </textquery>

 <score datatype="INTEGER" algorithm="COUNT"/>

</query>', 1) > 0 ORDER BY score(1) DESC;

· CTXSYS privileges and ownerships
· In 10g, user CTXSYS now only has connect, resource, and some select privileges on DB data dictionary views. CTXSYS used to be a super-user.

· The CTX packages are now run as if they were anonymous blocks, running with the rights of the invoker, versus running with the rights of the user that compiled the package.

· The index owner is now the effective user during indexing & querying, versus CTXSYS.

· With the index owner now being the effective user, user datastore procedures can now be owned by any user versus CTXSYS only.
· Multilingual Features

· Japanese and Chinese WORD LISTS can be extended and overridden with your own words.

· The Chinese lexers, which specifies the language of the text to be indexed, now supports any Chinese database character set.
· You can now use the stem ($) operator to search for Japanese terms when using the Japanese lexer.

· A new Japanese lexer attribute, DELIMITER, will force the acceptance of non-alphanumeric Japanese characters that are included within words (tokens) in the text index.
· The new World Lexer automatically supports multi-lingual content and documents via Unicode codepoint recognition.
· Characters in Chinese, Japanese & Thai words are split into overlapping sequences of 2 characters
· Characters in Arabic words get whitespace segmented then:
· vowel marks are removed
· conjuctions, particles, prepositions and pronoun suffixes are separated from the base word
· everything else get whitespace segmented
· You don’t have to specify the document language. You only have to create a preference: ctx_ddl.create_preference('mylexer','world_lexer');

· The World lexer is easier to set up than the Multi lexer, but it does not give you a lot of the functionality that is available with the Multi lexer.
 (Refer to Figure 2 - Multi-Lexer vs. World-Lexer)
· It has no language-specific features;
· German decompounding, Japanese segmentation, or Swedish alternate spelling are not supported
· Cannot define printjoins
· Cannot use themes
· Cannot perform stem-form indexing.
	Feature
	MULTI_LEXER
	WORLD_LEXER

	Definition and Setup
	use ctx_ddl API to set up individual lexers and collect them into a multi-lexer

	no programming needed

	Multi-lingual corpora (mono-lingual documents)
	Supported
	Supported

	Multi-lingual documents
	Not Supported
	Supported

	Database charset
	Any
	Unicode only (AL32UTF8 and UTF8)

	Set attributes of each language
	Supported
	Not Supported

	Document language ID
	User-identified, per document
	Not needed

	Query language identification
	User-identified, per query
	Not needed

	Arabic
	Keyword search only
	Arabic-specific features

	Chinese/Japanese
	VGRAM or Segmentation
	VGRAM only

Figure 3 – Multi-Lexer vs. World-Lexer 3
· Japanese stemming (searching for words in the document that have the same language base) is now supported, when the Japanese lexer is used
· Oracle Text now supports fuzzy matching on Japanese kana, matching to similar kana strings in the document content using clusters of similar characters
3. Oracle 10g Technical Overview.
Redwood Shores, CA: Oracle, 2004, P. 21-22.

· Query Language Specification

Let’s say that you have a document. Within your index, this document is tagged as being in French. The NLS_LANGUAGE parameter is set to English. Prior to 10g, you had to reset this parameter before each query. However, with 10g, a sub-lexer can be specified for the query to use without the need to reset the NLS_LANG setting.
Speeding up the Index Creation and Query Performance

Some factors that influence response times for index creation and query performance are:

· The type of datastore being implemented for the text index

· Current statistics

· Use of Hints

· Memory allocation

· Using LOB columns to store text

· Partitioning

· Parallelism

· Datastore
The datastore is an attribute of the text index that determines how the documents are accessed. The options for this attribute are:

	Option
	Description

	DIRECT_DATASTORE
	Data is stored internally in a text column. Each row is indexed as a single document. Your text column can be VARCHAR2, CLOB, BLOB, CHAR, or BFILE. XMLType columns are supported for the context index type.

	MULTI_COLUMN_DATASTORE
	Data is stored in a text table in more than one column. Columns are concatenated to create a virtual document, one document per row.

	DETAIL_DATASTORE
	Data is stored internally in a text column. Document consists of one or more rows stored in a text column in a detail table, with header information stored in a master table.

	FILE_DATASTORE
	Data is stoed externally in operating system files. File names are stored in the text column, one per row.

	NESTED_DATASTORE
	Data is stored in a nested table.

	URL_DATASTORE
	Data is stored externally in files located on an intranet or the Internet. Uniform Resource Locators (URL’s) are stored in the text column.

	USER_DATASTORE
	Documents are synthesized at index time by a user-defined store procedure.

Datastore Options 4
4. Colin McGregor. Oracle Text Application Developers Guide 10g Release 1(10.1).
Redwood Shores, CA: Oracle, 2003, P. 3-14.

When creating an Oracle Text Index, the time it takes to create the index can be greatly minimized by the type of datastore being employed for the index. For instance, when creating an Oracle Text index using a datastore of DIRECT_DATASTORE, where the content is filtered from the file and stored directly in a LOB column, we experienced a 3000% increase in the response time to create the index as opposed to using a URL_DATASTORE. When using URL_DATASTORE, the index process has to: access the file via a URL, pull the contents back across the network and then index the content retrieved.

· Current Statistics

By default Oracle Text uses the cost-based optimizer to determine the optimal execution plan for a query. Therefore, it is a good idea to collect statistics for your index on regular basis. To do so, just issue the following command for the table that contains the column that has been indexed:

 ANALYZE TABLE <table_name> COMPUTE STATISTICS;
You can also use the DBMS_STATS package as well. It is a good idea to re-compute statistics on a regular basis, especially if you issue frequent re-sync’s on your index.

begin

 DBMS_STATS.GATHER_TABLE_STATS(‘indexowner’, 'table_name',

 estimate_percent=>50, block_sample=>TRUE, degree=>4) ;

end ;

· Use of Hints

Response times of an Oracle Text Query can be improved by using the FIRST_ROWS or FIRST_ROWS(n) for ORDER BY Queries.

If searching for a term in a document and the result set for the query is large, response time can be optimized for initial hits by using the FIRST_ROWS hint.

For example:

Select /*+ FIRST_ROWS */ pk_id, score(1), text_col from content_table

Where contains(text_col, ‘celery stalks’, 1)>0 order by score(1) desc;

Please note that this query is rule-based and that Oracle Text chooses the index that best satisfies the ORDER BY clause. This could result in worse performance for queries in which the CONTAINS clause is very selective. Remember that FIRST_ROWS is just a hint. In cases where the contains clause can be very selective, Oracle recommends using the FIRST_ROWS(n) hint, which is fully cost-based.

So let’s say the user wants to return the first 10 rows of the select above. We would re-write the select statement with the FIRST_ROWS(n) hint as follows:

Select /* FIRST_ROWS(10) */ pk_id, score(1), text_col from content_table

Where contains(text_col, ‘celery stalks’, 1)>0 order by score(1) desc;

If you need the entire result set do not use the FIRST_ROWS hint.

· Memory Allocation
The rule of thumb about memory allocation for the creation and use of Oracle Text indexes is to use as much memory as possible. Set the system global area (SGA) as large as possible. These parameters can be set in the database initialization file. (See the Oracle Database Administrator’s Guide for information on setting and managing the SGA related parameters.)

If frequent ORDER BY queries are being performed then increase the size of the SORT_AREA_SIZE parameter.

Before creating an Oracle Text index it is a good idea to manually set the PGA aggregate to 20% of the SGA memory, and to ensure that the workarea size policy is set to auto. The following commands are a good rule of thumb before text index creation:

Assume the index is being created on a server with 32Gig of RAM. The SGA reserves 16Gig:

alter system set pga_aggregate_target=3g;

alter session set workarea_size_policy=AUTO;

· Using LOB columns to store text

As stated earlier in this document, the type of datastore policy implemented for the Oracle Text index can greatly impact the speed at which the index is created. It can be thousands of times faster to create an index against content that is stored in a CLOB column as opposed to referencing a column that is a URL or filename where the content then has to be retrieved across a network or Internet.

Furthermore, when implementing text storage with a LOB column, it is best to store the column out of line in a separate tablespace. According to Oralce, “Since Oracle Text fetches columns to memory, it is more efficient to store wide base table columns such as LOBs out of line, especially when these columns are rarely updated but frequently selected. When LOBs are stored out of line, only the LOB locators need to be fetched to memory during querying. Out of line storage reduces the effective size of the base table making it easier for Oracle Text to cache the entire table to memory. This reduces the cost of selecting columns from the base table, and hence speeds up text queries.” 5
5. Colin McGregor. Oracle Text Application Developers Guide 10g Release 1(10.1).
Redwood Shores, CA: Oracle, 2003, P. 7-15.
Therefore, when creating the LOB column to store the text to be indexed, it is a good practice to associate that column with a different tablespace than that of the parent table. The code to create a text index using the DIRECT_DATASTORE option will be discussed later in this document. For now, the following example shows how to alter a LOB column to be associated with a different tablespace:

ALTER TABLE CONTENT_TABLE (TEXT_COL CLOB)

LOB(TEXT_COL) STORE AS (TABLESPACE text_lob CHUNK 16K nocache logging);

· Partitioning

In Oracle Text it is possible to create local partitioned CONTEXT indexes on partitioned tables. Each partition of the table will have its own set of index tables. This will cause multiple indexes, one for each partition, but the results of a query against the partitioned table will be combined to produce a single result set.

The following code shows how to create a local partitioned text index on a partitioned table:

CREATE INDEX index_name on table_name(column_name)

INDEXTYPE IS ctxsys.context

PARAMETERS (' MEMORY 900M SECTION GROUP xmlgroup

 STORAGE mystorage LEXER mylexer DATASTORE mydatastore') PARALLEL 4

LOCAL;
If you have a partitioned table with a local text index on it you can experience performance gains when issuing a CONTAINS query for a range search on a partition key column, or an ORDER BY on the partition key column.

For optimal performance when querying a partitioned table with an ORDER

BY SCORE clause, query the partition. If you query the entire table and use an ORDER

BY SCORE clause, the query might not perform well unless you include a range

predicate that can limit the query to a single partition.

For example, the following statement queries the partition part_tab1 partition directly:

select * from part_tab partition (part_tab1) where contains(user_text,'oracle') > 0 ORDER BY SCORE DESC;
When creating an index on a partitioned table, you may experience considerable performance gains by creating the text index as ‘local unusable’. Then go through a partition at a time and ‘rebuild unusable local indexes’. This technique is also good in case there is some error that causes the build of the text index to abort. This way, the index on the local partition needs to be re-built, and not the entire index. Let’s say there is a 50 million row table, and each partition contains approximately 2 million rows. Then, creating the text index local to each partition means that if there is a problem on one of the partitions, the index for 2 million rows needs to be re-built instead of an index on 50 million rows. The following code shows an unusable oracle text index being built for local partitions. Then the following stored procedure shows how to go through each partition and rebuild the index.

CREATE INDEX text_index on table_name(column_name)

INDEXTYPE IS ctxsys.context

PARAMETERS (' MEMORY 900M SECTION GROUP xmlgroup

 STORAGE mystorage LEXER mylexer DATASTORE mydatastore') PARALLEL 4

LOCAL UNUSABLE;

/***create a working table to hold the status for each local index ***/

Create table rebuild_index as

 Select partition_name, ‘UNLOADED ‘ as status, SYSDATE as

 start_time, SYSDATE as end_time

From user_ind_partitions

Where index_name = ‘text_index’;

Create or replace procedure rebuild_text_index

AS

 Str1 varchar2(1000);

 Cnt number;

 Part_name varchar2(50);

 Begin

 Loop

 Begin

 Update rebuild_index set status = ‘In Process’, start_time =

 Systimestamp

 Where rowid = (select min(rowid) from rebuild_index

 Where status = ‘UNLOADED ‘ and

 partition_name in (select partition_name

 From user_ind_partitions

 Where status = ‘UNUSABLE

 And index_name = text_index’))

 Retuning partition_name into part_name;

 If (part_name is not null) then

 Str1 := ‘Alter table table_name Modify Partition ‘ ||

 part_name || ‘Rebuild unusable local indexes’;

 Execute immediate str1;

 Update rebuild_index set end_time = systimestamp,

 Status = ‘LOADED’

 Where partition_name = part_name;

 Commit;

 End If;

 Select count(*) into cnt from rebuild_index

 Where status = ‘UNLOADED’;

 Exit when cnt = 0;

 Exception

 When others then

 Err_msg := sqlerrm;

 End;

 End loop;

End;

· Parallelism

When creating the Oracle Text index, employing multiple slave processes on a multi CPU server has yielded significant performance gains. However, implementing parallel querying against the index may or may not be beneficial in terms of performance. For example using the PARALLEL option to create a local partitioned index enables parallel queries. However, creating a non-partitioned index in parallel does not turn on parallel query processing. Oracle states “Parallel querying degrades query throughput especially on heavily loaded systems. Because of this, Oracle recommends that you disable parallel querying after parallel indexing. To do so, use ALTER INDEX NOPARALLEL.” 6 In other words, use parallel to create the index, then, modify the index with ALTER INDEX NOPARALLEL after the index has been created.

6. Colin McGregor. Oracle Text Application Developers Guide 10g Release 1(10.1).
Redwood Shores, CA: Oracle, 2003, P. 7-22.

Types of Oracle Text Indexes
Four different index types can be created within Oracle Text. The following table outlines the different types of indexes and their description:

	Index Type
	Description
	Supported Preferences and Parameters
	Query Operator
	Notes

	CONTEXT
	Use this index to build a text retrieval application when your text consists of large coherent documents. You can index documents of different formats such as MS Word, HTML or plain text.

With a content index you can customize your index in a variety of ways.

This index type requires a resync after DML operations on the base table.
	All create index preferences and parameters are supported except for INDEX SET.

Supported parameters include index partition clause the format, charset,language columns.
	CONTAINS
	Supports all documents services and query services. Supports indexing of partitioned text tables.

	CTXCAT
	Use this index type for better mixed query performance. Typically, with this index type, you index small documents

or text fragments. Other columns in the base table, such as item names, prices and descriptions can be included in the index to improve mixed query performance.

This index type is transactional,

automatically updating itself after DML to base table. No CTX_DDL.SYNC_INDEX is necessary.
	INDEX SET

LEXER

STOPLIST

STORAGE

WORDLIST (only prefix_

index attribute

supported for Japanese

data)

Format, charset, and

language columns not

supported.

Table and index partitioning not supported.

	CATSEARCH

Grammar is called

CTXCAT, which supports logical operations, phrase queries, and wildcarding.

The CONTEXT

grammar can be

used with query

templating.

Theme querying is supported.

	Larger and takes longer to build than a CONTEXT index.

The size of a CTXCAT

index is related to

the total amount of

text to be indexed,

number of indexes

in the index set, and

number of columns

indexed.

Does not support

table and index

partitioning,

documents services

(highlighting,

markup, themes,

and gists) or query

services (explain,

query feedback, and

browse words.)

	CTXRULE
	Use CTXRULE index to build a document classification or routing application. TheCTXRULE index is an index created on a table of queries, where the queries define the classification or routing criteria.

	
	MATCHES
	Single documents

(plain text, HTML,

or XML) can be

classified using the

MATCHES operator,

which turns a

document into a set

of queries and finds

the matching rows

in the CTXRULE

index.

	CTXPATH
	Create this index when you need to speed up existsNode() queries on an XMLType column.
	STORAGE
	Use with existsNode()
	Can only create this index on XMLType column.

Index Types 7

7. Colin McGregor. Oracle Text Application Developers Guide 10g Release 1(10.1).
Redwood Shores, CA: Oracle, 2003, P. 3-3
Basically, there are two types of applications developed with Oracle Text. One is a text query application. The other is a document classification application.

The purpose of a text query application is to enable users to find text that contains one or more search terms. The text is usually a collection of documents. To develop a text query application, either a CONTEXT or CTXCAT index can be built and the index can be queried with CONTANS or CATSEARCH respectively.

Oracle Text Allows searching for words or terms in hundreds of document formats. The INSO filter extracts text and the inverted index associating documents to tokens or words is constructed. Documents that are indexed can be searched by the following criteria:

· Exact word or phrase.

· Fuzzy search (words with similar or approximate spelling).

· Proximity search (words that are near each other).

· Soundex search (words that sound a certain way – phonetic).

· Stem search (words that have the same stem i.e. manage, managing, management, manager).

· ACCUM (at least one occurrence of the search term exists).

· AND (Both terms in the search exist in the document).

· Search on synonyms with the use of a thesaurus.

For a complete listing of search criteria refer to the Oracle Text Application Developers Guide 10g.

The following table demonstrates the different query operators that can be applied to a CONTEXT index:

	Type of Search
	Query Statement

	Exact word or phrase
	Select pk_id, score(1), text_col from content_table

Where contains(text_col, ‘{celery stalks}’, 1)>0 order by score(1) desc;

	Fuzzy
	Select pk_id, score(1), text_col from content_table

Where contains(text_col, ‘fuzzy(celery, 70, 10, weight)’, 1)>0 order by score(1) desc;

	Proximity
	Select pk_id, score(1), text_col from content_table

Where contains(text_col, near((bomb, Washington, D.C., 10)’, 1)>0 order by score(1) desc;

	Soundex
	Select pk_id, score(1), text_col from content_table

Where contains(text_col, ‘!colour’’, 1)>0 order by score(1) desc;

	Stem
	Select pk_id, score(1), text_col from content_table

Where contains(text_col, ‘$manage’, 1)>0 order by score(1) desc;

	ACCUM
	Select pk_id, score(1), text_col from content_table

Where contains(text_col, ‘celery ACCUM midnight’, 1)>0 order by score(1) desc;

	AND
	Select pk_id, score(1), text_col from content_table

Where contains(text_col, ‘celery AND midnight’, 1)>0 order by score(1) desc;

	Synonym
	Select pk_id, score(1), text_col from content_table

Where contains(text_col, ‘SYN(bomb, std_thesaurus OR bomb’, 1)>0 order by score(1) desc;

Document Classification using CTXRULE

A document classification application is one that classifies an incoming stream of documents based on their content. This type of index is also referred to as document routing or filtering. The CTXRULE index is created on a table of queries, where the queries define the classification or routing criteria. For example, an intelligence agency may need to classify incoming documents into categories of potential threats such as biological, nuclear, financial or political. Oracle Text enables the filtering and categorization of these documents with the CTXRULE index type. This index type indexes the rules (queries) that define each class. When documents arrive, the MATCHES operator can be used to match each document with the rules that select it. Please note that document classification is supported for plain text, html, and xml content only.

The following example demonstrates the use of a CTXRULE index with the MATCHES operator:

First we create a table to be indexed:

create table classifications

(class_id number,

rule_string varchar2(80));

Now we insert values into this table that will serve as classification rules:

insert into classifications values (1, 'nuclear and weapon');

insert into classifications values (2, 'biological');

insert into classifications values (3, 'financial and terrorism');

insert into classifications values (4, 'airlines and weapon or weapons');
Now create the ctxrule index.

create index queryidx on classifications(rule_string)

indextype is ctxsys.ctxrule;
Now match an incoming text stream against the ctxrule index.

select class_id from classifications

where matches(rule_string, ‘The group indicated an interest in the development of biological agents')>0;

· Theme Searching

By default if the indexed content is in English or French then Oracle Text indexes theme information with word information. To accomplish theme searching the “ABOUT” operator is used. For example you can search on all documents about politics. Documents returned in the search may be about elections, government, or foreign policy. The word “politics” does not need to appear in any of the documents.

Theme information is derived from the supplied knowledge base, which is a hierarchical listing of categories and concepts. The user can enhance the knowledge base by adding concepts as needed, thus making it more precise and improve the accuracy of the theme search.

The following is an example of using the about operator. This example retrieves all documents related to vegetables:

SELECT pk_id, SCORE(1), text_col FROM content_table

WHERE CONTAINS(text_col, 'about(vegetables)', 1) > 0

ORDER BY SCORE(1) DESC;

Creating the Oracle Text Index

In order to perform Oracle Text queries to search for terms and phrases within the indexed content several things are needed:

1. Oracle must be installed with a data base instance created.

2. A table that has a column that contains either a document path and file name, a url, or the text of the document.

3. An Oracle Text index.

This section will focus on the creation of a CONTEXT index. Most of the content of this section will be script that creates our test index with comments explaining the code. This section will try to highlight a number of fundamental issues related to text index creation. This is by no means an exhaustive reference on Oracle Text index creation. The subject is entirely too vast to cover in a white paper discussing fundamental Oracle Text index creation. At the end of this document are references to a number of white papers and guides that cover Oracle Text in depth.

Assuming Oracle is installed and a database instance has been created, the first thing we need in order to create an Oracle Text index is a table that has a column that either has the path and file name of the various documents to be indexed, or a URL to documents to be indexed, or the actual content to be indexed. Since Oracle Text can create an index on a column that directly contains the text to be indexed many times faster than a FILE_DATASTORE, or URL_DATASTORE, we will model our example after a DIRECT_DATASTORE where the content resides in a CLOB column.

Our examples were executed on an IBM T40 ThinkPad, with dual - 2GHz processors, and 512Meg of RAM, running Windows 2000.

First, we will log into Oracle as sysdba and create the user and tablespaces required for our text index example.

Tablespaces are created to accommodate text index tables maintained within the CTXSYS schema.

Connect sys/password@testtext as sysdba;

CREATE TABLESPACE TEXT_TS DATAFILE ‘c:\oracle\product\10.1.0\oradata\testtext\text_ts.dbf’

 SIZE 5M AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED

LOGGING

ONLINE

PERMANENT

EXTENT MANAGEMENT LOCAL AUTOALLOCATE

BLOCKSIZE 8K

SEGMENT SPACE MANAGEMENT AUTO;

CREATE TABLESPACE TEXT_LOB DATAFILE ‘c:\oracle\product\10.1.0\oradata\testtext\text_lob.dbf’

 SIZE 5M AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED

LOGGING

ONLINE

PERMANENT

EXTENT MANAGEMENT LOCAL AUTOALLOCATE

BLOCKSIZE 8K

SEGMENT SPACE MANAGEMENT AUTO;

CREATE TABLESPACE TEXT_INDX DATAFILE ‘c:\oracle\product\10.1.0\oradata\testtext\text_indx.dbf’

 SIZE 5M AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED

LOGGING

ONLINE

PERMANENT

EXTENT MANAGEMENT LOCAL AUTOALLOCATE

BLOCKSIZE 8K

SEGMENT SPACE MANAGEMENT AUTO;

CREATE TABLESPACE INDX DATAFILE ‘c:\oracle\product\10.1.0\oradata\testtext\index.dbf’

 SIZE 5M AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED

LOGGING

ONLINE

PERMANENT

EXTENT MANAGEMENT LOCAL AUTOALLOCATE

BLOCKSIZE 8K

SEGMENT SPACE MANAGEMENT AUTO;

Create the tablespace for the schema textuser

CREATE TABLESPACE textuser_ts DATAFILE ‘c:\oracle\product\10.1.0\oradata\testtext\textuser_ts.dbf’

 SIZE 5M AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED

LOGGING

ONLINE

PERMANENT

EXTENT MANAGEMENT LOCAL AUTOALLOCATE

BLOCKSIZE 8K

SEGMENT SPACE MANAGEMENT AUTO;

Next, the tablespace to accommodate the clob field that will contain the text to be indexed is created:

CREATE TABLESPACE EDMS_LOB DATAFILE ‘c:\oracle\product\10.1.0\oradata\testtext\edms_lob.dbf’

 SIZE 5M AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED

LOGGING

ONLINE

PERMANENT

EXTENT MANAGEMENT LOCAL AUTOALLOCATE

BLOCKSIZE 8K

SEGMENT SPACE MANAGEMENT AUTO;

Create the user.

CREATE USER textuser IDENTIFIED BY password

 DEFAULT TABLESPACE textuser_ts

 TEMPORARY TABLESPACE TEMP

 PROFILE DEFAULT

 QUOTA UNLIMITED ON textuser_ts;

Grant connect, resource to textuser;

Next, we will log into Oracle as CTXSYS and set some environment options:

Connect ctxsys/password@testtext;

The user and index owner is textuser. The following grant makes life easier when calling ctxsys procedures

grant ctxapp to textuser;

GRANT EXECUTE ON CTX_CLS TO textuser;

GRANT EXECUTE ON CTX_DDL TO textuser;

GRANT EXECUTE ON CTX_DOC TO textuser;

GRANT EXECUTE ON CTX_OUTPUT TO textuser;

GRANT EXECUTE ON CTX_QUERY TO textuser;

GRANT EXECUTE ON CTX_REPORT TO textuser;

GRANT EXECUTE ON CTX_THES TO textuser;

GRANT EXECUTE on CTX_ADM to textuser;
Execute ctxsys.ctx_adm.set_parameter(‘LOG_DIRECTORY’, ‘c:\’);

Execute ctxsys.ctx_output.start_log('indexlog');

Execute ctxsys.ctx_adm.set_parameter(‘MAX_INDEX_MEMORY’, 80000000);

Execute ctxsys.ctx_adm.set_parameter(‘DEFAULT_INDEX_MEMORY’, 40000000);

The code above establishes a directory to write the log for index creation. Then the text index log file is started. Then the maximum memory used for index creation is set to at least 50% of the total SGA. Finally, the default memory to be used for index creation is set to 50% of the total SGA.

Now log into the schema that will own the text index.

Connect textuser/password@testtext;

Alter session set workarea_size_policy=AUTO;

Alter session set pga_aggregate_target=35M; //keep this to 20% of SGA

The code above is used to set the work areas used by memory-intensive operators to be sized automatically, based on the PGA memory used by the system, the target PGA memory set in PGA_AGGREGATE_TARGET, and the requirement of each individual operator. You can specify AUTO only when PGA_AGGREGATE_TARGET is defined.

Now create the table that will contain the text index.

Create table text_content

(FILE_ID NUMBER NOT NULL,

 SOURCE_URL VARCHAR(1025) NOT NULL)

TABLESPACE textuser_ts

PCTUSED 0

PCTFREE 10

INITRANS 1

MAXTRANS 255

STORAGE(INITIAL 64K

 MINEXTENTS 1

 MAXEXTENTS 2147483645

 PCTINCREASE 0

 BUFFER_POOL DEFAULT)

LOGGING

NOCACHE

NOPARALLEL

MONITORING;

ALTER TABLE text_content

 ADD CONSTRAINT file_id_pk PRIMARY KEY (FILE_ID) USING INDEX TABLESPACE INDX;

Once the table is created, the CLOB column titled FILE_TEXT is added and associated with a different tablespace.

ALTER TABLE text_content ADD (FILE_TEXT CLOB)

LOB(FILE_TEXT) STORE AS (TABLESPACE text_lob CHUNK 16K

Disable storage in row nocache logging);

The clob column titled file_text is used to store the text that will be indexed. This data will be stored in a separate tablespace, and since storage in row has been disabled, any text in this field under 4K will be placed in the text_lob tablespace. No text will be stored with the rest of the row in the table.

Now a preference object will be created for the INSO filter. An attribute for the preference will be set that specifies text extracted by the filter will be plain text and not HTML. Finally we will create a policy and associate it with the filter preference. The policy associated with the INSO filter will be used to extract content from files pointed to by source_url. The content will be stored in the file_text column.

exec ctx_ddl.create_preference(preference_name => 'fast_filter', object_name => ‘INSO_FILTER');

exec ctx_ddl.set_attribute(preference_name => 'fast_filter', attribute_name => 'OUTPUT_FORMATTING', attribute_value => 'FALSE');

exec ctx_ddl.create_policy(policy_name => 'my_policy', filter => 'fast_filter');

For this exercise, the text extracted from files will be placed within XML tags. There will be a <CONTENT> tag that will contain the text extracted. There will also be a <METADATA> tag that will contain information about the source files. By placing the content in XML tags, the sectioner process will associate our text with individual sections specified by the tags. This will allow searches for content contained within specific sections or XML tags. To have the sectioner group content within sections, section groups must be created before the index is built. The following code shows how to construct XML Section Groups.

EXEC ctx_ddl.create_section_group('xmlgroup','XML_SECTION_GROUP');

EXEC ctx_ddl.add_zone_section('xmlgroup','METADATA','METADATA');

EXEC ctx_ddl.add_zone_section('xmlgroup','CONTENT','CONTENT');

To provide for optimal text index performance it is suggested that system tables associated with the creation and maintenance of the text index be assigned to several different tablespaces other than the tablespace assigned to the schema that owns the index. The following code creates a storage preference and associates the various text index system tables to different tablespaces that were created at the beginning of this exercise:

Begin

 ctx_ddl.create_preference('mystorage', 'BASIC_STORAGE');

 ctx_ddl.set_attribute('mystorage', 'R_TABLE_CLAUSE', 'tablespace TEXT_TS

 lob(data) store as (disable storage in row cache)');

 ctx_ddl.set_attribute('mystorage', 'K_TABLE_CLAUSE', 'tablespace TEXT_TS

 storage (initial 10M next 10M)');

 ctx_ddl.set_attribute('mystorage', 'I_TABLE_CLAUSE', 'tablespace TEXT_TS

 storage (initial 10M next 10M) lob(token_info) store as (tablespace

 text_lob cache)');

 ctx_ddl.set_attribute('mystorage', 'N_TABLE_CLAUSE', 'tablespace TEXT_TS

 storage (initial 1M)');

 ctx_ddl.set_attribute('mystorage', 'P_TABLE_CLAUSE', 'tablespace TEXT_TS

 storage (initial 1M)');

 ctx_ddl.set_attribute('mystorage', 'I_INDEX_CLAUSE', 'tablespace TEXT_INDX

 storage (initial 1M) compress 2');

END;

Now preferences for the type of lexer and datastore to be used for the index creation process are specified. For this exercise the WORLD_LEXER is being utilized. The World Lexer allows indexing on documents that contain different languages. The datastore being used will be the DIRECT_DATASTORE since the content is stored directly in the column.

BEGIN

 ctx_ddl.create_preference('mylexer', 'world_lexer');

 ctx_ddl.create_preference('mydatastore', 'DIRECT_DATASTORE');

END;

The next thing to do is populate our table to be indexed.

Insert the following rows to populate the table that will be indexed. Once the rows below have been inserted, execute a stored procedure to read the content from the files, filter it, and store the text to the file_text column. The code to perform the text extraction and filtering is included as Appendix A within this document. The stored procedure is titled pkg_ioug_text.add_text.

insert into text_content (file_id, source_url) values (1, 'business_requirements.dot');

insert into text_content (file_id, source_url) values (2, 'functional_requirements.dot');

insert into text_content (file_id, source_url) values (3, 'html_file.html');

insert into text_content (file_id, source_url) values (4, 'machine.config');

insert into text_content (file_id, source_url) values (5, 'oracle_clean_install.doc');

insert into text_content (file_id, source_url) values (6, 'OracleText_DevGuid.pdf');

insert into text_content (file_id, source_url) values (7, 'proposed_weekly_schedule.xls');

insert into text_content (file_id, source_url) values (8, 'response_for_oratext.ppt');

Now we start the log to track the progress of the Oracle Text Index creation process.

Execute ctx_output.start_log('indexlog');

 Finally, we are ready to create the Oracle Text Index.

CREATE INDEX text_content_idx

ON text_content(file_text) INDEXTYPE IS CTXSYS.CONTEXT

PARAMETERS (' MEMORY 45M SECTION GROUP xmlgroup

 STORAGE mystorage LEXER ctxsys.BASIC_LEXER DATASTORE mydatastore');

Re-sync of the Text Index

Each time content is added to the indexed table or any DML operation is performed on the indexed table, the Oracle Text index will require a re-sync operation. Re-sync will apply any changes and incorporate them into the text index. Every time a row is added or modified in the indexed table an entry is made to the ctxsys.ctx_pending table. This table keeps track of the rows that need to be incorporated into the text index. Therefore, if the system is adding document rows to your indexed table, you should re-sync the index periodically to maintain index integrity. The frequency of the re-sync will depend on how current the index needs to be maintained. The re-sync operation can be placed in the job scheduler to be initiated on specified intervals. The following code can be executed to perform a re-sync operation every 15 minutes:

Begin

 Sys.dbms_scheduler.create_job(

 Job_name => ‘”textuser”.”resync_text_index”’,

 Job_type => ‘PLSQL_BLOCK’,

 Job_action => ‘begin

 Ctxsys.ctx_ddl.sync_index(‘text_content_idx’);

 End;’,

 Sart_date => systimestamp at time zone ‘-5:00’,

 Job_class => ‘DEFAULT_JOB_CLASS’,

 Comments => ‘This job re_syncs the text index every 15 minutes’,

 Auto_drop => FALSE,

 Enabled => FALSE);

 Sys.dbms_scheduler.set_attribute(name => ‘”textuser”.”RESYNC_TEXT_INDEX”’, attribute

 =>’restartable’, value => TRUE);

 Sys.dbms_scheduler.set_attribute(name => ‘”textuser”.”RESYNC_TEXT_INDEX”’, attribute

 =>’repeat_interval’, value => ‘FREQ=MINUTELY;INTERVAL=15’);

 Sys.dbms_scheduler.set_attribute(name => ‘”textuser”.”RESYNC_TEXT_INDEX”’,

 attrinbte=> ‘start_date’, value => systimestamp at time zone ‘-5:00’);

 sys.dbms_scheduler.enable(‘”textuser”.”RESYNC_TEXT_INDEX”’);

END;

Or a resync can be performed for sqlplus by issuing the following command:

exec ctxsys.ctx_ddl.sync_index(‘text_content_idx');

Alternately, an index can be kept current automatically, either periodically (for example every 10 minutes) or when inserts/updates are committed. This is accomplished by using the new SYNC command, available in 10g, when creating the index.

CREATE INDEX text_content_idx

ON text_content(file_text) INDEXTYPE IS CTXSYS.CONTEXT

PARAMETERS (' MEMORY 45M SECTION GROUP xmlgroup

 STORAGE mystorage LEXER mylexer DATASTORE mydatastore

 SYNC (every “SYSDATE+10/1440”) ’);

CREATE INDEX text_content_idx

ON text_content(file_text) INDEXTYPE IS CTXSYS.CONTEXT

PARAMETERS (' MEMORY 45M SECTION GROUP xmlgroup

 STORAGE mystorage LEXER mylexer DATASTORE mydatastore

 SYNC (on commit) ’);

One impact of re-syncing the text index is that it can become fragmented. Therefore, it is recommended that the index be optimized on a periodic basis to remove old data and minimize index fragmentation. There are various modes that can be used for index optimization. Chapter 7 of the Oracle Text 10g Reference manual discusses these. The following example shows the Optimize command with the FULL option. This option will optimize the entire index or a portion of it. This method compacts rows and removes deleted rows. It is recommended that the following method be set up to run in the scheduler at least once a week during a time period where activity against the Oracle Text index is at a minium.

begin

 ctx_ddl.optimize_index('text_content_idx','FULL');

end;
CTX Report Package

Optimal query performance. Quick turn around. Minimal input. These are just a few of the things that end-users either desire or expect from a query. Data is expected to be returned based on what was asked for. Have you ever executed a web-based search and received hundreds of responses, yet only a handful were relevant?

Oracle Text gives the capability to create indexes, to search based on themes, words (which can also be numbers or foreign language symbols), otherwise known as tokens, or phrases. It also enables the ability to view text data.

These Oracle Text capabilities help to support end-user expectations when performing a search, but what can be done when the return rate is not what is expected? How can problems with Text indexes be researched? How can Text issues be resolved?

The CTX_REPORT package, first introduced in 9i and enhanced with 10g, can be used to create reports on text indexes and queries. These reports can assist with performance tuning or problem solving.
CTX Report Package Procedures

There are 9 main procedures within CTX Report, as mentioned in Figure 2 – Procedures.

	CTX_REPORT.DESCRIBE_INDEX
	creates a report describing

	CTX_REPORT.DESCRIBE_POLICY
	an existing index or policy

	CTX_REPORT.CREATE_INDEX_SCRIPT
	creates a SQL*Plus script that can be used to recreate a

	CTX_REPORT.CREATE_POLICY_SCRIPT
	text index or policy

	CTX_REPORT.INDEX_SIZE
	creates a report showing the internal object names for a text index or text index partition, along with their tablespaces, allocated and used sizes

	CTX_REPORT.INDEX_STATS
	creates a statistical report on an index showing information on optimal row fragmentation, most fragmented tokens, the amount of bad data in an index, number of indexed documents, number of unique tokens an index contains, average size of an indexes tokens and index fragmentation

	CTX_REPORT.QUERY_LOG_SUMMARY
	create a log of queries and a report of logged queries, in order to perform query analysis

	CTX_REPORT.TOKEN_INFO
	used mainly to diagnose query problems

	CTX_REPORT.TOKEN_TYPE

	A lookup function which translates a name into

a numeric token type

Figure 2 - Procedures
· CTX_REPORT.DESCRIBE_INDEX
CTX_REPORT.DESCRIBE_POLICY
These commands, which can be called as either a procedure or as a function, create reports that describe an index or policy, including:
· index metadata settings

· indexing objects used

· object attributes settings

· index partition information

procedure CTX_REPORT.DESCRIBE_INDEX

 (index_name IN VARCHAR2,

 report IN OUT NOCOPY CLOB,

 report_format IN VARCHAR2);

function CTX_REPORT.DESCRIBE_INDEX

 (index_name IN VARCHAR2,

 report_format IN VARCHAR2)

 return CLOB;

	index_name
	name of the index

	report
	CLOB locator to write the report to, overwritten with each execution

	report_format
	TEXT (default = FMT_TEXT)

XML (FMT_XML)

 procedure CTX_REPORT.DESCRIBE_POLICY

 (policy_name IN VARCHAR2,

 report IN OUT NOCOPY CLOB,

 report_format IN VARCHAR2);

 function CTX_REPORT.DESCRIBE_POLICY

 (policy_name IN VARCHAR2,

 report_format IN VARCHAR2)

 return CLOB;

	policy_name
	name of the policy

	report
	CLOB locator to write the report to, overwritten with each execution

	report_format
	TEXT (default = FMT_TEXT)

XML (FMT_XML)

· CTX_REPORT.CREATE_INDEX_SCRIPT
 CTX_REPORT.CREATE_POLICY_SCRIPT
These commands, which can be called as either a procedure or as a function, create SQL scripts that can be run to recreate an index or policy.

procedure CTX_REPORT.CREATE_INDEX_SCRIPT
 (index_name IN VARCHAR2,

 report IN OUT NOCOPY CLOB,

 prefname_prefix IN VARCHAR2);

function CTX_REPORT.CREATE_INDEX_SCRIPT

 (index_name IN VARCHAR2,

 prefname_prefix IN VARCHAR2);

 return CLOB;

	index_name
	name of the index

	report
	locator to write the script to, overwritten with each execution

	prefname_prefix

	Optional preference names prefix;

The index name will be used if not specified or NULL

procedure CTX_REPORT.CREATE_INDEX_SCRIPT

 (policy_name IN VARCHAR2,

 report IN OUT NOCOPY CLOB,

 prefname_prefix IN VARCHAR2);

function CTX_REPORT.CREATE_POLICY_SCRIPT

 (policy_name IN VARCHAR2,

 prefname_prefix IN VARCHAR2);

 return CLOB;

	policy_name
	name of the policy

	report
	locator to write the script to, overwritten with each execution

	prefname_prefix

	Optional preference names prefix;

The index name will be used if not specified or NULL

· CTX_REPORT.INDEX_SIZE
This command, which can be called as either a procedure or as a function, creates a report listing the following information:

· the names of the internal index objects

· objects tablespaces

· objects allocated sizes

· objects used sizes

procedure CTX_REPORT.INDEX_SIZE
 (index_name IN VARCHAR2,

 report IN OUT NOCOPY CLOB,

 part_name IN VARCHAR2,

 report_format IN VARCHAR2);

function CTX_REPORT.INDEX_SIZE

 (index_name IN VARCHAR2,

 part_name IN VARCHAR2,

 report_format IN VARCHAR2)

 return CLOB;

	index_name
	name of the index to describe

	report
	locator to write the report to, overwritten with each execution

	part_name

	Optional name of the index partition;

All objects of all partitions will be displayed if NULL

	report_format
	TEXT (default = FMT_TEXT)

XML (FMT_XML)

· CTX_REPORT.INDEX_STATS
This procedure creates a statistical report on an index, including some of the following information:
· optimal row fragmentation

· most fragmented tokens

· amount of bad data in an index

· number of indexed documents

· number of unique tokens an index contains

· average size of an indexes tokens

· index fragmentation

 procedure index_stats

 (index_name IN VARCHAR2,

 report IN OUT NOCOPY CLOB,

 part_name IN VARCHAR2,

 frag_stats IN BOOLEAN,

 list_size IN NUMBER,

 report_format IN VARCHAR2);

	index_name
	name of the index to describe

	report
	locator to write the report to, overwritten with each execution

	part_name
	if index is locally partitioned then part_name is mandatory

	frag_stats
	TRUE = calculate fragmentation

 statitics

FALSE = do not calculate

 Fragmentation statistics

	list_size
	Number of elements in each list

 (maximum = 1000)

	report_format
	TEXT (default = FMT_TEXT)

XML (FMT_XML)

· CTX_REPORT.QUERY_LOG_SUMMARY
This procedure must be run as CTXSYS. It creates a report of queries logged and gives the ability to see the common queries, to analyze queries and for tuning purposes. The following kinds of information can be deduced from this log summary:
· queries issued

· successful queries

· unsuccessful queries

· number of time a query was issued

· any combination of the aforementioned

 procedure query_log_summary

 (logfile IN VARCHAR2,

 index_name IN VARCHAR2,

 result_table IN OUT NOCOPY QUERY_TABLE,

 row_num IN NUMBER,

 most_freq IN BOOLEAN,

 has_hit IN BOOLEAN);

	logfile
	name of the logfile that contains the queries

	index_name
	name of the context index for the summary report; report will summarize all context indexes if NULL

	result_table
	name of the in-memory table; default is set to the value of the LOG_DIRECTORY parameter

	row_num
	number of result rows reported into the table; used in conjunction with most_freq and has_hit

	most_freq
	TRUE = return most frequent queries

 (default)

FALSE = return least frequent

 queries

	has_hit
	TRUE = return successful queries

 (default)

FALSE = return unsuccessful queries

Logging is started with the command CTX_OUTPUT.START_QUERY_LOG. This command logs all queries made, to all context indexes used, until the CTX_OUTPUT.END_QUERY_LOG command is called.
· CTX_REPORT.TOKEN_INFO
This command, which can be called as either a procedure or as a function, shows decoded information for a token in order to figure out problems with a query.
procedure CTX_REPORT.TOKEN_INFO
 (index_name IN VARCHAR2,

 report IN OUT NOCOPY CLOB,

 token IN VARCHAR2,

 token_type IN NUMBER,

 part_name IN VARCHAR2,

 raw_info IN BOOLEAN,

 decoded_info IN BOOLEAN,

 report_format IN VARCHAR2);

function CTX_REPORT.TOKEN_INFO

 (index_name IN VARCHAR2,

 token IN VARCHAR2,

 token_type IN NUMBER,

 part_name IN VARCHAR2,

 raw_info IN BOOLEAN,

 decoded_info IN BOOLEAN,

 report_format IN VARCHAR2)

 return CLOB;

	index_name
	name of the index to describe

	report
	locator to write the report to, overwritten with each execution

	token
	reference the token text

	token_type
	reference the token type; case sensitve tokens are: theme, zone, attr, path and path attr

	part_name

	name of the index partition;

mandatory if index is locally partitioned

	raw_info
	TRUE = the report will add a hex dump of the raw data

FALSE = no hex dump

	dcoded_info
	TRUE = will decode the token

 information

FALSE = will not decode the token

 information

	report_format
	TEXT (default = FMT_TEXT)

XML (FMT_XML)

· CTX_REPORT.TOKEN_TYPE
This function converts a name (English) into a numeric token type.

function CTX_REPORT.TOKEN_TYPE

 (index_name IN VARCHAR2,

 type_name IN VARCHAR2)

 return NUMBER;

	index_name
	name of the index

	type_name
	name (English) for token type; valid values are as follows:

 TOKEN_TYPE_TEXT – normal text token

 TOKEN_TYPE_THEME – theme token

 TOKEN_TYPE_ZONE_SEC – zone token

 TOKEN_TYPE_ORIG – original form token

 TOKEN_TYPE_ATTR_TEXT – text in attribute

 TOKEN_TYPE_ATTR_SEC – attribute section

 TOKEN_TYPE_PREFIX – prefix token

 TOKEN_TYPE_PATH_SEC – path section

 TOKEN_TYPE_PATH_ATTR – path attribute section

 TOKEN_TYPE_STEM – stem form token

Conclusion

Oracle Text is a full-text retrieval technology that is included as part of the Oracle 10g Standard and Enterprise Editions. It offers document indexing, search, retrieval, word theme searching, document classification and document clustering capabilities in numerous languages through standard SQL. Oracle Text offers a very robust document search capability that can be applied to a number of business domains such as the legal, pharmaceutical, medical, and intelligence industries just to name a few. Oracle Text is implemented extensively in various government agencies such as the CIA, FBI, DIA, and NSA. Language is no longer a barrier when it comes to document search and retrieval. Proving once again, that Oracle is unifying the world… at least when it comes to data management.
Bibliography

Alonso, Omar. Oracle Text. January 2004. Oracle Technology Network.

 <http://www.oracle.com/technology/products/text/pdf/10gR1text_twp_f.pdf>
Progressive Relaxation- a New Technique. Oracle Technology Network.

 <http://www.oracle.com/technology/products/text/htdocs/prog_relax.html>

Using CTX_Report and XML. Oracle Technology Network.

 <http://www.oracle.com/technology/products/text/htdocs/ctx_report_and_xml.html>
Oracle Text 10g Technical Overview. Oracle Technology Network.

 <http://www.oracle.com/technology/products/text/x/10g_tech_overview.html>

Appendix A – PKG_IOUG_TEXT

CREATE OR REPLACE PACKAGE pkg_ioug_text
 AS
 type ref_cursor_type is REF cursor;
 Procedure add_text;
 Procedure sp_text_search(search_token IN varchar2,
 search_type IN number,
 search_section IN varchar2,
 search_result OUT ref_cursor_type);
 function text_search(search_token IN varchar2,

 search_type IN number)
 Return SYS.XMLType;
 END;
/

CREATE OR REPLACE PACKAGE BODY pkg_ioug_text
AS
 Procedure add_text

 AS
 mylob blob := empty_blob();
 myclob clob
 := empty_clob();
 text_clob clob
 := empty_clob();
 url uritype;
 error_message varchar2(2000);
 v_url varchar2(1500);
 l_bfile bfile;
 l_filename varchar2(1025);
 Begin
 -- make sure schema creates this directory:
 -- create or replace directory my_test_files as 'C:\Text_Documents';
 for rec in (select file_id, source_url from text_content) loop
 dbms_lob.createtemporary(myclob, TRUE, dbms_lob.session);
 dbms_lob.createtemporary(text_clob, TRUE, dbms_lob.session);
 dbms_lob.createtemporary(mylob, TRUE, dbms_lob.session);
 dbms_lob.write(text_clob, 10, 1, '<CONTENT>' || chr(10));
 --v_url := utl_url.escape(rec.source_url);
 --url := httpuritype.createuri(v_url);
 --mylob := url.getblob();
 l_filename := rec.source_url;
 l_bfile := bfilename('MY_TEST_FILES', l_filename);
 dbms_lob.fileopen(l_bfile);
 dbms_lob.loadfromfile(mylob, l_bfile, dbms_lob.getlength(l_bfile), 1, 1);
 dbms_lob.fileclose(l_bfile);
 ctx_doc.policy_filter('my_policy', mylob, myclob, true);
 dbms_lob.append(text_clob, myclob);
 dbms_lob.writeappend(text_clob, 11, '</CONTENT>' || chr(10));
 update text_content set file_text = text_clob where file_id =

 rec.file_id;
 commit;
 dbms_lob.freetemporary(myclob);
 dbms_lob.freetemporary(text_clob);
 dbms_lob.freetemporary(mylob);
 myclob := empty_clob();
 text_clob := empty_clob();
 end loop;
 end;
 Procedure sp_text_search(search_token IN varchar2,
 search_type IN number,
 search_section IN varchar2,
 search_result OUT ref_cursor_type)
 AS
 search_string VARCHAR2(1000);
 v_select_stmt VARCHAR2(10000);
 file_location VARCHAR2(255);
 v_cursor ref_cursor_type;
 BEGIN
 CASE search_type

 when 1 Then

 search_string := search_token;
 when 2 Then

 search_string := '{' || search_token || '}';
 when 3 Then
 search_string := Replace(search_token, ' ', ' NEAR ');
 when 4 Then

 search_string := '$' || search_token;
 when 5 Then

 search_string := '?' || search_token;
 when 6 Then

 search_string := '!' || search_token;
 else null;
 END CASE;
 CASE search_section

 when 'metadata' THEN

 search_string := search_string || ' within METADATA';
 when 'context' THEN

 search_string := search_string || ' within CONTENT';
 else null;
 END CASE;
 v_select_stmt := 'Select /* FIRST_ROWS(10) */ file_id, source_url,

 score(1) FROM text_content
 Where contains(file_text,

 '||chr(39)||search_string || chr(39)||', 1)>0';
 v_select_stmt := v_select_stmt || ' Order by score(1) desc';
 Open v_cursor for v_select_stmt;
 search_result := v_cursor;
 END;
Function text_search(search_token IN varchar2,
 search_type IN number) Return SYS.XMLType

AS
 search_string VARCHAR2(1000);
 v_select_stmt VARCHAR2(10000);
 file_location VARCHAR2(255);
 v_cursor sys_refcursor;
 search_result SYS.XMLType;
 v_context dbms_xmlgen.ctxHandle;
 BEGIN
 CASE search_type

 when 1 Then

 search_string := search_token;
 when 2 Then

search_string := '{' || search_token || '}';
 when 3 Then

 search_string := Replace(search_token, ' ', ' NEAR ');
 when 4 Then

search_string := '$' || search_token;
 when 5 Then

search_string := '?' || search_token;
 when 6 Then

search_string := '!' || search_token;
 else null;
 END CASE;
 v_select_stmt := 'Select /* FIRST_ROWS(10) */ file_id, source_url,

 score(1) AS SCORE
 FROM text_content

 Where contains(file_text,

 '||chr(39)||search_string||chr(39)||', 1)>0';
 v_select_stmt := v_select_stmt || ' Order by score(1) desc';
 Open v_cursor for v_select_stmt;
 v_context := dbms_xmlgen.newContext(v_cursor);
 search_result := dbms_xmlgen.getXMLType(v_context);
 dbms_xmlgen.closeContext(v_context);
 Return search_result;
 END;
 END;
/
Appendix B – Oracle Text Creation Code
Connect sys/password@testtext as sysdba;

CREATE TABLESPACE TEXT_TS DATAFILE ‘c:\oracle\product\10.1.0\oradata\testtext\text_ts.dbf’

 SIZE 5M AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED

LOGGING

ONLINE

PERMANENT

EXTENT MANAGEMENT LOCAL AUTOALLOCATE

BLOCKSIZE 8K

SEGMENT SPACE MANAGEMENT AUTO;

CREATE TABLESPACE TEXT_LOB DATAFILE ‘c:\oracle\product\10.1.0\oradata\testtext\text_lob.dbf’

 SIZE 5M AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED

LOGGING

ONLINE

PERMANENT

EXTENT MANAGEMENT LOCAL AUTOALLOCATE

BLOCKSIZE 8K

SEGMENT SPACE MANAGEMENT AUTO;

CREATE TABLESPACE TEXT_INDX DATAFILE ‘c:\oracle\product\10.1.0\oradata\testtext\text_indx.dbf’

 SIZE 5M AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED

LOGGING

ONLINE

PERMANENT

EXTENT MANAGEMENT LOCAL AUTOALLOCATE

BLOCKSIZE 8K

SEGMENT SPACE MANAGEMENT AUTO;

CREATE TABLESPACE INDX DATAFILE ‘c:\oracle\product\10.1.0\oradata\testtext\index.dbf’

 SIZE 5M AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED

LOGGING

ONLINE

PERMANENT

EXTENT MANAGEMENT LOCAL AUTOALLOCATE

BLOCKSIZE 8K

SEGMENT SPACE MANAGEMENT AUTO;

CREATE TABLESPACE textuser_ts DATAFILE ‘c:\oracle\product\10.1.0\oradata\testtext\textuser_ts.dbf’

 SIZE 5M AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED

LOGGING

ONLINE

PERMANENT

EXTENT MANAGEMENT LOCAL AUTOALLOCATE

BLOCKSIZE 8K

SEGMENT SPACE MANAGEMENT AUTO;

CREATE TABLESPACE EDMS_LOB DATAFILE ‘c:\oracle\product\10.1.0\oradata\testtext\edms_lob.dbf’

 SIZE 5M AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED

LOGGING

ONLINE

PERMANENT

EXTENT MANAGEMENT LOCAL AUTOALLOCATE

BLOCKSIZE 8K

SEGMENT SPACE MANAGEMENT AUTO;

CREATE USER textuser IDENTIFIED BY password

 DEFAULT TABLESPACE textuser_ts

 TEMPORARY TABLESPACE TEMP

 PROFILE DEFAULT

 QUOTA UNLIMITED ON textuser_ts;

Grant connect, resource to textuser;

Connect ctxsys/password@testtext;

grant ctxapp to textuser;

grant SELECT ON ctx_pending to TEXTUSER;

grant EXECUTE ON ctx_adm to TEXTUSER;

grant EXECUTE ON ctx_schedule to TEXTUSER;

GRANT EXECUTE ON CTX_CLS TO textuser;

GRANT EXECUTE ON CTX_DDL TO textuser;

GRANT EXECUTE ON CTX_DOC TO textuser;

GRANT EXECUTE ON CTX_OUTPUT TO textuser;

GRANT EXECUTE ON CTX_QUERY TO textuser;

GRANT EXECUTE ON CTX_REPORT TO textuser;

GRANT EXECUTE ON CTX_THES TO textuser;

Execute ctx_adm.set_parameter(‘LOG_DIRECTORY’, ‘c:\’);

Execute ctx_output.start_log('indexlog');

Execute ctx_adm.set_parameter(‘MAX_INDEX_MEMORY’, 80000000);

Execute ctx_adm.set_parameter(‘DEFAULT_INDEX_MEMORY’, 40000000);

Connect textuser/password@testtext;

Alter session set workarea_size_policy=AUTO;

Alter session set pga_aggregate_target=35M; //keep this to 20% of SGA

Create table text_content

(FILE_ID NUMBER NOT NULL,

 SOURCE_URL VARCHAR(1025) NOT NULL)

TABLESPACE textuser_ts

PCTUSED 0

PCTFREE 10

INITRANS 1

MAXTRANS 255

STORAGE(INITIAL 64K

 MINEXTENTS 1

 MAXEXTENTS 2147483645

 PCTINCREASE 0

 BUFFER_POOL DEFAULT)

LOGGING

NOCACHE

NOPARALLEL

MONITORING;

ALTER TABLE text_content

 ADD CONSTRAINT file_id_pk PRIMARY KEY (FILE_ID) USING INDEX TABLESPACE INDX;

ALTER TABLE text_content ADD (FILE_TEXT CLOB)

LOB(FILE_TEXT) STORE AS (TABLESPACE text_lob CHUNK 16K

Disable storage in row nocache logging);

exec ctx_ddl.create_preference(preference_name => 'fast_filter', object_name => ‘INSO_FILTER');

exec ctx_ddl.set_attribute(preference_name => 'fast_filter', attribute_name => 'OUTPUT_FORMATTING', attribute_value => 'FALSE');

exec ctx_ddl.create_policy(policy_name => 'my_policy', filter => 'fast_filter');

EXEC ctx_ddl.create_section_group('xmlgroup','XML_SECTION_GROUP');

EXEC ctx_ddl.add_zone_section('xmlgroup','METADATA','METADATA');

EXEC ctx_ddl.add_zone_section('xmlgroup','CONTENT','CONTENT');

Begin

 ctx_ddl.create_preference('mystorage', 'BASIC_STORAGE');

 ctx_ddl.set_attribute('mystorage', 'R_TABLE_CLAUSE', 'tablespace TEXT_TS

 lob(data) store as (disable storage in row cache)');

 ctx_ddl.set_attribute('mystorage', 'K_TABLE_CLAUSE', 'tablespace TEXT_TS

 storage (initial 10M next 10M)');

 ctx_ddl.set_attribute('mystorage', 'I_TABLE_CLAUSE', 'tablespace TEXT_TS

 storage (initial 10M next 10M) lob(token_info) store as (tablespace

 text_lob cache)');

 ctx_ddl.set_attribute('mystorage', 'N_TABLE_CLAUSE', 'tablespace TEXT_TS

 storage (initial 1M)');

 ctx_ddl.set_attribute('mystorage', 'P_TABLE_CLAUSE', 'tablespace TEXT_TS

 storage (initial 1M)');

 ctx_ddl.set_attribute('mystorage', 'I_INDEX_CLAUSE', 'tablespace TEXT_INDX

 storage (initial 1M) compress 2');

END;

BEGIN

 ctx_ddl.create_preference('mylexer', 'world_lexer');

 ctx_ddl.create_preference('mydatastore', 'DIRECT_DATASTORE');

END;

insert into text_content (file_id, source_url) values (1, 'business_requirements.dot');

insert into text_content (file_id, source_url) values (2, 'functional_requirements.dot');

insert into text_content (file_id, source_url) values (3, 'html_file.html');

insert into text_content (file_id, source_url) values (4, 'machine.config');

insert into text_content (file_id, source_url) values (5, 'oracle_clean_install.doc');

insert into text_content (file_id, source_url) values (6, 'OracleText_DevGuid.pdf');

insert into text_content (file_id, source_url) values (7, 'proposed_weekly_schedule.xls');

insert into text_content (file_id, source_url) values (8, 'response_for_oratext.ppt');

Execute ctx_output.start_log('indexlog');

 CREATE INDEX text_content_idx

ON text_content(file_text) INDEXTYPE IS CTXSYS.CONTEXT

PARAMETERS (' MEMORY 45M SECTION GROUP xmlgroup

 STORAGE mystorage LEXER ctxsys.BASIC_LEXER DATASTORE mydatastore');

PAGE
1

_1171089866.bin

