
Development - Testing/Quality Assurance

 1 421

AARREE WWEE DDOONNEE YYEETT??
CCEERRTTIIFFYYIINNGG AAPPPPLLIICCAATTIIOONN PPEERRFFOORRMMAANNCCEE UUNNDDEERR NNEEWW DDAATTAABBAASSEE VVEERRSSIIOONNSS OORR AARRCCHHIITTEECCTTUURREESS

David A Haas, The Nielsen Company

OVERVIEW:

Fear of the unknown can cripple a cautious development team and prevent them from making upgrades to the database or
architecture necessary to maintain technological and business relevance. Lack of knowledge on the impact of changes can
empower a reckless development team with the false confidence to make upgrades that render their application unusable. In
the end neither of these options is viable in today's fast changing world.
Application Development teams require proven techniques to evaluate the impact of a change, empowering them to make the
calculated risks necessary for success and continued relevance.
This paper will provide insight into the issues associated with testing application performance on a complex decision support
system. Illustrate the methods used to capture real-world test cases insuring that the results are relevant to the business.
Provide examples of a proven statistics based approach used to compare performance before/after an Oracle 8i to 10g
upgrade combined with underlying partition structure and block size changes, as well as a radical shift in database architecture
isolating static and dynamic data content into separate instances joined into a single virtual instance using DBlinks.

OUTLINE:

1. Starting Assumptions
A. Test database and web/app server separately
B. Execute test cases serially in a fixed order
C. Utilize an isolated server/network

2. Test Case Selection
A. Use "real world" test cases captured from actual users
B. Create a sub-set insuring full coverage of conditional paths

3. Benchmark Process
A. Perform initial iterations of individual test cases and capture total time for each
B. Evaluate the confidence interval of the average performance for each test case
C. Continue iterations until you achieve the desired confidence interval

4. Proposed Environment
A. Perform initial iterations of individual test cases and capture total time for each
B. Compare to current benchmark and focus on extreme outliers
C. Evaluate individual queries within the outlier test cases to mitigate issues
D. Repeat these steps until performance is within defined service levels

5. Final Comparison
A. Regenerate both benchmarks with new code
B. Summarize results for the business

Development - Testing/Quality Assurance

 2 421

STARTING ASSUMPTIONS
There is nothing more frustrating than completing a long database conversion project, then having the implementation
deferred, waiting for confirmation that the end-user performance is comparable to the current implementation. The common
sense principles illustrated below were developed in response to that exact situation, only after the database team took
responsibility for testing and validating the application performance under the new architecture, were we able to deliver on the
promises that had been made to the business. The lessons learned from the first attempt, which ended without a successful
delivery to production, were overcome the following year with the successful deployment of the database upgrade and
validated the year after that in another major renovation to the database architecture. The team could only be successful once
we took a test first approach; validating the performance before starting the data conversion process and preemptively
removing this delivery barrier.

TEST DATABASE AND WEB/APP SERVER SEPARATELY

While ultimately the end user perception of the entire system is the only thing that matters, it is impossible to capture and
validate performance benchmarks from this point of view. Instead it is imperative to only exercise and measure performance
on those parts of the system which are impacted by the proposed change. In our case, this meant running Java method calls
directly on the database server, without exercising the actual front end components which were not impacted by the proposed
architecture change.

EXECUTE TEST CASES SERIALLY IN A FIXED ORDER

In order to come up with a dependable benchmark, a statistically reliable estimate of the average performance for each
individual test case is required. This meant that the tests needed to execute in consistent order and serial fashion to prevent
differences in performance due to caching from prior or concurrent test cases. If the test cases were run in parallel one test
running shorter or longer would significantly impact the environment of all remaining test cases. Only by running the
individual cases serially can limit performance impact from external sources.

UTILIZE AN ISOLATED SERVER/NETWORK

The use of a dedicated database server avoids introducing variance from the network or application server from entering into
the benchmark statistics. Some variance in a limited number of test cases that do not converge towards a statistically reliable
estimate of their average performance may be inevitable. In our case, we were not able to eliminate some variance in the
results generated within the storage environment, as impact from processes on other servers within the production and
development environments were introduced via the SAN array.

Development - Testing/Quality Assurance

 3 421

TEST CASE SELECTION
In order to sell the results of the testing to the business stakeholders, the test cases need to be representative of typical usage
and not randomly generated. At the same time, full coverage must be maintained exercising all queries within the application,
including the conditional paths which impact the amount of data retrieved and the calculations performed.

USE "REAL WORLD" TEST CASES CAPTURED FROM ACTUAL USERS

The methods used to define the set of tests will depend on the application which is being updated; the test cases selected need
to simulate as closely as possible the type of load that will be placed on the new architecture once it goes into production. In
our case, we met this need by extracting the Java method calls submitted by actual users, available in logging tables on the live
site. This provided a known good set of prompt values which worked well together producing results which were business
relevant.

• The sample was taken from reports run within the past three months, against the most current data version, in order to
insure that the data used in the report was still available and avoid any potential with application changes.

• The sample was limited to clients who were hand selected to guarantee a good cross section of client types. Clients with
extensive custom data and without, covering the discrete usage patterns of the Manufacturer, Retailer and Broker clients,
who rely on diverse aspects within the Spectra suite of applications.

• The sample was limited to reports whose run time fell within typical usage ranges. This avoided issues with reports whose
execution time was too short, where it would be impossible to detect performance changes; or too long, that would be
impractical to execute in multiple iterations.

CREATE A SUB-SET INSURING FULL COVERAGE OF CONDITIONAL PATHS

Once the sample has been defined, a representative sub-set of test cases should be selected that maintains the level of coverage
achieved from the sample. We met this need by implementing a process to analyze the contents of both the sample and the a
sub-set which assured full coverage of each report type and conditional paths within each client, along with a second process
which generated a representative sub-set of tests that could be used for analysis. The statistics for both the sample and the
sub-set were summarized in an XML document, allowing us to understand the level of coverage and adjust the set of clients or
date range as needed to generate a complete set of test cases.

An example of the XML documents for the sample and sub-set.

Development - Testing/Quality Assurance

 4 421

BENCHMARK PROCESS
Like the selection of the test cases, the process used to execute those tests is also highly dependant on the application whose
performance is being evaluated. In our case, in order to execute the Java method calls directly against the database server; we
utilized a JMeter framework to execute the test cases, capture the execution time for each test case and loop through a
predetermined number of iterations. The input to this framework is a text file containing all of the Java method calls for a
given test case, along with unique identifying information; including the report type, a unique report id and a client designation.
The output is a text file containing the timestamp at the start of execution, the elapsed execution time in milliseconds, the
identifying information for the test case, followed by the result code and any error messages which may have been generated.
We considered having JMeter return more detailed information about the execution time for each method within a test case or
even each SQL statement within the various methods. However, this information was not necessary until an actual
performance issue had been identified and would have greatly complicated the analysis of the performance of the individual
test cases within the sub-set.

SAMPLE INPUT:
Report Builder by Stores:3232207:AHB;call SP_CREATE_CLEANUP_TABLE('0003232207')call
GeotradeList.getListExpansion('0003232207','19','27^20','STR.AHB^TRADE.GEO')call
GeotradeList.getTradeReferenceList('0003232207','19','1','STR.AHB^TRADE.GEO','','30')call
GeotradeFacts.getGTFacts('0003232207','19','STR.AHB^TRADE.GEO','NAME')call
GeotradeFacts.factRowsToColumns('0003232207','19','T_GT_ID_LIST_','T_GT_FACTS_','T_R2C_','
NAME')call
GeotradeSegmentation2.getDefaultBaseData('0003232207','19','STR.AHB^TRADE.GEO','1','T
_GT_COUNTS_TEMP_')call
GeotradeFacts.getGTFacts('0003232207','19','STR.AHB^TRADE.GEO','27275^LST.MEM^LST.MEM^LST.
MEM','T_MY_FACTS_','T_CELLS_')call
GeotradeFacts.getGTFacts('0003232207','19','STR.AHB^TRADE.GEO','LATITUDE^STR.LOC^TXT^DBL.F
CL^LONGITUDE^STR.LOC^TXT^DBL.FCL','T_MAP_FACTS_','T_MCELLS_')call
GeotradeFacts.getGTParentsByGTL('0003232207','19','STR.AHB^TRADE.GEO','CLT.NONE','0')

SAMPLE OUTPUT:
timeStamp,elapsed,label,responseCode,responseMessage,dataType,bytes
08/18/06 18:12:17,142498,AHB^3232207^Report Builder by Stores,,,,0
08/18/06 18:14:39,265381,AHB^3233202^Retail Interaction by Stores,,,,0
08/18/06 18:19:05,19983,AHB^3234834^Target Snapshot,,,,0
08/18/06 18:19:25,71435,AHB^3233654^Store Proximity,,,,0
08/18/06 18:20:36,205324,AHB^3236346^Target Ranking by Stores,,,,0
08/18/06 18:24:01,2237246,AHB^3237368^Report Builder by Stores,,,,0
08/18/06 19:01:19,194689,AHB^3237782^Account vs Market (Demographics),,,,0
08/18/06 19:04:33,88784,AHB^3238600^Account vs Market (Demographics),,,,0
08/18/06 19:06:02,117789,AHB^3241288^Target Ranking by Stores,,,,0

PERFORM INITIAL ITERATIONS OF INDIVIDUAL TEST CASES AND CAPTURE TOTAL TIME FOR EACH

With all of the preparations completed, it’s time to execute the sub-set of test cases. Run a limited number of iterations first in
order to generate some basic data about the performance of the sub-set and determine the stability of the test cases. The
results are aggregated for each individual test case across all of the iterations; calculating the number of executions for a given
test case and the standard deviation of the execution time in milliseconds, along with the average, minimum and maximum
execution time. In our case, we did this by importing the text file into Microsoft Excel and building pivot tables to generate
the aggregate data. This allowed the stats to be updated in a couple of mouse clicks, one to refresh the data from the log and a
second to refresh the pivot table. There were some performance issues within Excel once the number of iterations increased
and the size of the spreadsheet went over 5mb; leaving plenty of time to get a cup of coffee or cruise the web while the stats
were updating.

Development - Testing/Quality Assurance

 5 421

EVALUATE THE CONFIDENCE INTERVAL OF THE AVERAGE PERFORMANCE FOR EACH TEST CASE

Using the aggregated performance data, calculate a 95% Confidence Interval for each test case using the number of
observations along with the standard deviation computed from the available executions. Without getting deep in the statistics;
this is basically the amount of time +/- between the current computed average and the actual true average performance for a given
test case. To increase the relevance of the results to the business stakeholders, the times in milliseconds were converted to
“hh:mi:ss” format to increase readability. Since the confidence intervals are reported in actual time, another measure of the
interval relative to the average execution time for the test case is required. A variation of several minutes may be acceptable on
a large test case running more than an hour, but be totally unacceptable on a small test case running under two minutes. In
order to quantify this difference, divide the confidence interval by the average execution time for the test, to provide a relative
measure of how out of confidence the current estimate is in relation to total time required for that test case. While neither of
these measures on their own provides enough information to evaluate the accuracy of the average performance, the
combination of the two allows the tuning efforts to focus on the actual outliers within the sub-set.

Report Id Sample Average Minimum Maximum StdDev 95% Conf. Relative
4389084 30 5,595 2,517 11,883 2,471 884 15.80%
4449490 30 27,124 5,257 45,759 14,269 5,106 18.83%
4258152 30 307,397 148,857 393,427 76,007 27,198 8.85%
4380454 30 22,089 12,892 33,693 6,886 2,464 11.15%

An example of the aggregate data and derived calculations (done in milliseconds) for each test case across all iterations.

Report Id Sample Average Minimum Maximum StdDev 95% Conf. Relative
4389084 30 0:00:06 0:00:03 0:00:12 0:00:02 0:00:01 15.80%
4449490 30 0:00:27 0:00:05 0:00:46 0:00:14 0:00:05 18.83%
4258152 30 0:05:07 0:02:29 0:06:33 0:01:16 0:00:27 8.85%
4380454 30 0:00:22 0:00:13 0:00:34 0:00:07 0:00:02 11.15%

The same data expressed in human readable format for increased clarity.

CONTINUE ITERATIONS UNTIL YOU ACHIEVE THE DESIRED CONFIDENCE INTERVAL

When deciding if additional iterations are required, identify the number of test cases without a reliable estimate of average
performance. In our case, this meant tests with confidence intervals greater than 30 seconds with variance in average
performance of more than 10% of the average execution time. Since the report generation in the system was queued, we
decided that a difference in performance of 30 seconds or less would not be detected by end users and that larger variations in
execution time were okay, as long as the variation in execution time was less than 10% of the average performance. The
proper settings for these thresholds need to be determined based on the environment being tested and the usage of the
application. In our case, at least one third of the sub-set did not have a reliable average of the estimated performance after the
initial runs. However, as the number of iterations approached 20, the exceptions had stabilized at less than five and those tests
did not appear to be converging toward a statistically reliable average. At that point, we had produced the best benchmark
possible, given the shared SAN and further executions would only extend the timeline for the project without providing any
tangible quality benefit. There were also a couple of occasions along the way when an external event caused an entire iteration
to take longer than normal, we found that it was better to include these observations in the benchmark, rather than suppressing
them, since the confidence interval was significantly impacted by the number of observations.

An example of the aggregate data used to look across all test cases and determine if additional iterations were required.

Development - Testing/Quality Assurance

 6 421

PROPOSED ENVIRONMENT
With a solid benchmark for the current environment, it’s time to implement the proposed change and generate a second
benchmark for comparison. This phase of the validation can require a great deal of time to complete, depending on the scope
of the changes being evaluated and their impact on the application, doing this in an agile way by generating statistics which are
“good enough” allows for a quicker release of the architecture improvements. If possible, validate the performance before
converting all of the data into the new structure, eliminating the manual effort required to keep both architectures in synch.
When this approach was initially developed; we were upgrading the database behind the suite of applications from Oracle 8i to
10g, changed the partitioning structure and increasing the underlying block size for the largest data tables. Given the difficulty
in switching between versions within the testing environment, a solid benchmark under 8i was crucial before starting the
benchmark under the 10g version. In contrast, while evaluating the static/dynamic database split with the latest upgrade; all
that was needed to flip back and forth between environments was a JDBC URL change within the JMeter framework. This
allowed us to spend a lot less time upfront on the initial benchmark and begin the tuning effort sooner. Both approaches can
be valid; it all depends on the specifics of the architecture change and the difficulty in switching between environments.

PERFORM INITIAL ITERATIONS OF INDIVIDUAL TEST CASES AND CAPTURE TOTAL TIME FOR EACH

Perform a limited number of iterations initially in the proposed environment; then work through the performance issues and
make the required application changes. While a few iterations may not provide a statistically reliable estimate of the average
performance, it only takes a couple of runs to shake out the worst performance issues. The statistics calculated for each test
case are identical to those calculated above for the test cases within the benchmark; including the confidence interval and
relative performance. Depending on the scope of the change, the first iteration may not complete within a reasonable time,
cancel it if necessary, tune the longest running test cases and start again. Basically, the number of iterations depends on how
many should complete overnight; setting the stage for another day of looking at the test cases with the worst performance
increases, identifying and tuning the problem queries, then checking in the application changes and starting the process again.

COMPARE TO CURRENT BENCHMARK AND FOCUS ON EXTREME OUTLIERS

Take the two benchmarks that are good enough and lay them next to one another to look at the performance differences;
focusing on the absolute difference +/- in average execution times across both architectures, along with the delta “(new-
old)/old” to provide a relative measure of the difference in performance. Focus on the most extreme differences within the
sub-set, selecting a number that’s large enough to provide some variety, since a fix to one test case may resolve several others,
without having so many tests to review that it delays more forward with a new build and generating a new benchmark. In our
case, that meant starting with an actual difference of more than 5 minutes with at least a 10% relative change and working
down from there. Reducing the absolute time threshold until it approached the 30 second mark; continuing to adjust the
cutoff to highlight the dozen test cases with the worst performance. In addition to the comparison above, review any test
cases where the percentage difference in performance is more than one standard deviation above the average of all test cases;
this helps to identify tests with very large deltas, even if the absolute time difference is below the threshold. Another
aggregate statistic which is useful, is the comparison of the confidence intervals for the individual test cases across both
benchmarks, determining if the interval from the proposed environment is less than or equal to the one from the current
environment, providing another measure of the similarity in performance.

An example of the aggregate data used to look at the differences across all test cases to determine which cases required further analysis

EVALUATE INDIVIDUAL QUERIES WITHIN THE OUTLIER TEST CASES TO MITIGATE ISSUES

With a single test case under consideration, it was now possible to execute the test again in both architectures and capture the
execution time for each SQL statement generated by the test case. Compare the two logs side by side by cut/paste them into

Development - Testing/Quality Assurance

 7 421

Excel or some other tool, then calculate the difference in time on a statement by statement basis. In our case, there were
generally only a handful of statements within the hundreds that were generated which were at the root of the performance
difference. Once the problem statements have been identified, compare the execution plans and actual performance for these
queries within the two environments to identify the optimizer hints or other changes required to achieve comparable
performance.
TRUNCATE TABLE G_GEOTRADE_ 63 TRUNCATE TABLE G_GEOTRADE_ 78 15 23.81% 0:00:00
 -- ^63^20 -- ^78^20
INSERT INTO T_VALUE_LIST_80042 INSERT INTO T_VALUE_LIST_80042
 -- 1SELECT DISTINCT S.BASE_CL_ 297 -- 1SELECT DISTINCT S.BASE_CL_ 219 -78 -26.26% 0:00:00
 -- ^297^21 -- ^219^21
INSERT INTO G_GEOTRADE_DATA INSERT INTO G_GEOTRADE_DATA
 UNION ALL SELECT /*+ INDEX(B)*/ 26563 UNION ALL SELECT /*+ USE_NL(L B 31454 4891 18.41% 0:00:05
 -- 2372^26563^22 -- 2372^31454^22
INSERT INTO G_GEOTRADE_DATA INSERT INTO G_GEOTRADE_DATA
 UNION ALL SELECT /*+ INDEX(B)*/ 18578 UNION ALL SELECT /*+ USE_NL(L B 194801 176223 948.56% 0:02:56
 -- 1^18578^23 -- 1^194801^23

An example of the side by side comparison of the SQL log’s to identify which queries required tuning.

REPEAT THESE STEPS UNTIL PERFORMANCE IS WITHIN DEFINED SERVICE LEVELS

Keep looping here until all of the issues have been addressed and the performance is comparable across both architectures.
Avoid the temptation to focus successive iterations on specific tests with past performance issues. In order to continue to
compare the times across the benchmarks, the entire sub-set of test cases need to continue to be executed to maintain a
consistent environment. As an added benefit, this provides a way to quickly identify tests which are negatively impacted by the
tuning efforts. In our case, we generally found that the fixes which addressed the worst issues within one test case, also
corrected issues within other test cases, even those which were well under the detection threshold. However, the opposite is
also true, when fixes to one test case with a given set of prompts actually causes issues with other tests, which is another reason
that more frequent executions under the updated code base, is essential to stay on track and avoid having to rollback too many
changes once an issue surfaces.

Development - Testing/Quality Assurance

 8 421

FINAL COMPARISON
Once the tuning is finished and the performance of the application in the proposed environment is comparable to the current
environment. It’s time to summarize all of the information available to report back to the business stakeholders seeking
approval to proceed with the proposed change. This can be difficult, since no one has the time to sit down and go through all
of the numbers; the results need to be boiled down to a couple of PowerPoint slides that anyone can understand.

REGENERATE BOTH BENCHMARKS WITH NEW CODE

First make sure that there are two solid benchmarks available for comparison, since the application was changing along the way
it’s best to repeat the initial benchmark with the latest code base, if possible. The benchmark in the proposed environment
needs to be strengthened beyond the small number of iterations used for tuning. Reliable estimates of average performance in
both environments are essential to the success of the final comparison. A benchmark is solid once the majority of the test
cases fall into the desired confidence interval and the remaining exceptions shows no sign of converging toward a reliable
estimate of the average performance.

SUMMARIZE THE RESULTS FOR THE BUSINESS

This is probably the most difficult part of the entire process; finding ways to summarize the performance differences in as few
slides as possible without obscuring the risks associated with the architecture change. One way to summarize the results of the
individual test cases is to group them into ranges by both the actual time difference and the percentage change; showing a
normal distribution of the test cases with the majority of the cases on the center line, with no detectable difference in
performance.
For the actual differences in average execution times, we chose ranges of plus or minus 30 seconds, 30 seconds to 1.5 minutes,
1.5 to 3 minutes and more than 3 minutes. For the percentage changes in average execution time, we settled on plus or minus
50 percent, 50-100 percent, 100-200 percent and more than 200 percent. Different ranges may be required, depending on the
range of the performance differences within the application under evaluation and the type of change being implemented, the
key is to attempt to show a normal distribution with a small number of exceptions at the outside edges.

DBlinks Progress Report Page 1February 12, 2008 Confidential & Proprietary
Copyright © 2007 The Nielsen Company

Final Results: Actual Difference in Average Execution Time

• Over 92% of the benchmark reports run 1½ min slower or less on average, with 80% of the
reports showing no detectable difference (or an improvement) in performance.

• The execution plan hints to mitigate the remaining performance differences resulted in much
worse performance under the other prompt selections and were rolled back.

2 3

178

26

10 9

0

25

50

75

100

125

150

175

200

> 3 min Faster > 1.5 min Faster > 30 sec Faster < 30 sec Change > 30 sec Slower > 1.5 min Slower > 3 min Slower

Difference in Average Execution Time

of

 R
ep

or
ts

 DBlinks Progress Report Page 19February 12, 2008 Confidential & Proprietary
Copyright © 2007 The Nielsen Company

Final Results: Percentage Change in Average Execution Time

• Over 86% of the benchmark reports were 100% slower or less on average, with 64% of the
reports showing no detectable difference (or an improvement) in performance.

• The average difference in execution time is only 48 seconds for the reports with a 200% increase
or more and under 2 minutes for the reports with 100% to 200% increase, in comparison, the
average improvement is just over 1 minute.

4

143

50

23

8

0

25

50

75

100

125

150

175

200

> 50% Faster < 50% Change > 50% Slower > 100% Slower > 200% Slower

Delta in Average Execution Time

of

 R
ep

or
ts

Examples of two of the slides from our latest project showing the overall impact of the architecture change.

Development - Testing/Quality Assurance

 9 421

In addition to these two summary charts, group the individual test cases in order of their usage by end users and plot the
individual percentage change in average execution time on a chart to show that the differences in performance impact within a
given set of tests. This confirms that the worst performing test cases are not indicative of a general problem, but related to
differences in the ways that the current and proposed architecture deals with various loads, based on the end user selections.

DBlinks Progress Report Page 20February 12, 2008 Confidential & Proprietary
Copyright © 2007 The Nielsen Company

Performance across Report Types
• Looking at all 228 individual prompt sets

across the 43 report types tested; 64% are
contained within the green or blue zones.

• The average difference in execution time is
only 48 seconds for the 8 entries stretching
into the red zone.

• The average difference in execution time is
under 2 minutes for the 23 entries within the
orange zone.

• The average improvement in execution time
just over 1 minute for the 4 entries in the blue
zone.

• The 9 remaining outliers running 3 minutes
longer or more under the DB links are split
evenly within the yellow and orange zones
with an average percentage change of just
over 100%.

Percentage Change in
Average Execution Time

-100% 0% 100% 200% 300%
Repor t B ui l der by Stor es

Demand Ranki ng by Stor es

Consumer P r of i l e (Gr i d)
B est P r oducts by T ar get

B est P r oducts by P r oduct

Consumer Pr of i l e (Demogr aphi cs)

T ar get Snapshot

P r oduct Snapshot

Consumer Pr of i l e (B ehavi or Scape) -

Demand Ranki ng by Account HQ

Account vs M ar ket (Demogr aphi cs)

A ccount vs M ar ket (Gr i d)

A ccount Snapshot

T ar get i ng Nat i onal Behavi or sRepor t Bui l der by Geogr aphy
P r oduct vs Account Pr of i l es (Gr i d)

Pr oduct vs A ccount Pr of i l es

Demogr aphi c Ranki ng by Stor es

Best Pr oducts by M ar ket or A ccount

Repor t B ui l der by Account HQ

T ar get Ranki ng by Geogr aphy

T ar get Ranki ng by Stor es

Demand A l l ocat i on by Stor es

Cl uster Snapshot

Stor e P r oxi mi ty

Demogr aphi c Ranki ng by Geogr aphy

T ar get i ng Local M ar ket Behavi or s

Retai l Inter act i on by Stor es

T ar get Ranki ng by Account HQ

Geogr aphy Compar i son (Demogr aphi cs)A ccount Ar ea Def i ni t i on

Demogr aphi c Ranki ng by Account HQ
A ccount vs Compet i tor s (Gr i d)

Locat i onal FactsAccount vs Compet i tor s (Demogr aphi cs)

Vi tal St at i s t i cs FactsSuper mar ket P l us(T M) FactsConsumer T r ade A r eas
Local M ar ket Snapshot

FSI by DemandLocal B ehavi or Demand by Geogr aphy
Local B ehavi or Demand by Stor esRetai l Inter act i on by Cl ust er

R
ep

or
t T

yp
es

 b
y

Pe
rc

en
t U

sa
ge

An example of the third slide showing the percentage change across the 228 individual test cases.

