Development—Database Programming

Optimal Query Execution Plans—An Impossible Dream?
Iggy Fernandez, Database Specialists
We discuss the difficulty of the query optimization problem and conclude that SQL performance requires the concentrated attention of the application developer.

A Funny Story and a Confession

I scratch out a living in a dusty corner of a telecommunications company, babysitting a brood of databases and feeding them whenever they are hungry for disk space. One day an irate developer submitted a high-priority request that we find out why Oracle was “not responding to simple queries.”

We found that that the developer had submitted a seven-way join without any joining criteria whatsoever, i.e., a query of the form SELECT * FROM TABLE#1, TABLE#2, TABLE#3, TABLE#4, TABLE#5, TABLE#6, TABLE #7. Poor Oracle was gamely trying to perform a seven-way Cartesian product of the tables but would probably have needed a century to complete the task since the estimated query cost recorded in the V$SQLPLAN view was quite literally ten thousand trillion!

When we asked the developer why he had not specified any joining criteria, he said that he first wanted to determine if Oracle could handle a “simple” query before submitting a complex query. We offered to send him the query execution plan for his “simple” query but he said that he did not know how to interpret query execution plans. He probably did not know much about SQL either.

Although I was amused, I must admit that, even though I am an experienced Oracle DBA, I regularly unleash SQL queries upon a mission-critical database without first satisfying myself that it would be efficiently executed. Old habits die hard.

Guilty as charged, your honor.

The Impossible Dream

SQL is what is called a “non-procedural” language; i.e., an SQL query simply identifies a subset of data in the database without specifying how to go about extracting that data. The promise of relational technology was that the SQL programmer would be relieved from most of the responsibility for making the best use of computer resources and would only need to consider the “logical data model,” not the “physical data model.” The intention was that the major responsibility would be divided as follows:

1. First, the responsibility would devolve to the database engine, which would provide a selection of data processing algorithms (e.g., merge join, hash join, parallel processing, etc.), data storage methods (e.g., index-organized tables, table clusters, data partitioning, etc.), and indexing methods (e.g., b-tree indexes, index-organized tables, partitioned tables, partitioned indexes, function indexes, reverse-key indexes, bitmap indexes, table clusters and hash clusters, etc.).

2. Second, the responsibility would devolve to the database administrator who, in partnership with the application architect, would convert the “logical” database design into a “physical” database design and choose storage methods and indexing methods geared to the requirements of the application. The database administrator would also work with the users of the application to ensure that there was sufficient computer capacity (CPU, memory, I/O bandwidth, and network bandwidth) to meet the current and future needs.

3. Finally, the responsibility would devolve to a special component of the database engine called the “Query Optimizer,” which would rely on statistical information such as row counts and histograms, to make decisions about table processing order and index usage and to choose from among available data processing algorithms; the goal being to identify the “query execution plan” that minimizes the consumption of computer resources and the time required.

Dangerous Beliefs

The non-procedural nature of SQL has led to many dangerous beliefs revolving around the theme that application programmers have no responsibility for the performance of the SQL statements they write. Here is a representative list.

4. DBAs bear chief responsibility for the performance of SQL statements.

5. Applications should be designed without reference to the way data is stored, e.g., index-organized tables, hash clusters, partitions, etc.

6. Application programmers should not tailor their SQL statements to make use of existing indexes. DBAs should instead create traps to catch badly performing SQL at runtime and create new indexes as necessary to make them perform better.

7. It is not necessary to review the Query Execution Plan of an SQL statement before releasing it into a production environment. It is further not necessary to freeze the Query Execution Plan of an SQL statement before releasing it into a production environment. It is desirable that Query Execution Plans change in response to changes in the statistical information that the query optimizer relies upon. Such changes are always for the better.

8. The most common cause of poorly performing SQL is the failure of the DBA to collect statistical information on the distribution of data for the use of the query optimizer.
 This statistical information should be refreshed frequently.

Back to School—Relational Algebra and SQL

Here is a slightly paraphrased “rough and ready” definition of a relational database from An Introduction to Database Systems (Eighth Edition) by Chris Date.

A relational database is a database in which: The data is perceived by the user as tables (and nothing but tables) and the operators available to the user for (e.g.) retrieval are [relational] operators that derive “new” tables from “old” ones.

Let’s examine some “relational operators” and use them to answer the question: Which suppliers supply all parts? Here, first, is the data.

Table 1. The Part table.

	PartName

	HAMMER

	NAIL

Table 2. The Supplier table.

	SupplierName

	NEW YANKEE WORKSHOP, INC.

	OLD YANKEE WORKSHOP, INC.

	TOOL TIME, INC.

Table 3. The Quote table.

	SuppplierName
	PartName
	Quote

	NEW YANKEE WORKSHOP, INC.
	HAMMER
	$1.99

	NEW YANKEE WORKSHOP, INC.
	NAIL
	$0.19

	OLD YANKEE WORKSHOP, INC.
	HAMMER
	$1.89

	TOOL TIME, INC.
	HAMMER
	$2.09

	TOOL TIME, INC.
	NAIL
	$0.19

Next, here are the definitions of five relational operators. We will need just three of them in order to answer the question.

Table 4. Five relational operators

	Operator
	Definition

	Selection
	Form another table by extracting a subset of the rows of a table of interest using some criteria.

	Projection
	Form another table by extracting a subset of the columns of a table of interest. Any duplicate rows that are formed as a result of the projection operation are eliminated.

	Union
	Form another table by selecting all rows from two tables of interest. If the first table has 10 rows and the second table has 20 rows, then the resulting table will have at most 30 rows since duplicates will eliminated from the result.

	Difference
	Form another table by extracting only those rows from one table of interest that do not occur in a second table.

	Join
	Form another table by concatenating records from two tables of interest. For example, if the first table has 10 rows and the second table has 20 rows, then the resulting table will have 200 rows—and if the first table has 10 columns and the second table has 20 columns, then the resulting table will have 30 columns.

We can compute the answer to the question in a sequence of five steps. At each step, we use one of the relational operators listed above and create an intermediate result table.

9. In the first step, we use the Join operation and form an intermediate result table by concatenating records from the Suppliers table and the Parts table. All combinations of SupplierName and PartName occur in this table.

Table 5. All SupplierName and PartName combinations.

	SupplierName
	PartName

	NEW YANKEE WORKSHOP, INC.
	HAMMER

	NEW YANKEE WORKSHOP, INC.
	NAIL

	OLD YANKEE WORKSHOP, INC.
	HAMMER

	OLD YANKEE WORKSHOP, INC.
	NAIL

	TOOL TIME, INC.
	HAMMER

	TOOL TIME, INC.
	NAIL

10. In the second step, we use the Projection operation and form another intermediate result table by extracting the SupplierName and PartName columns from the Quotes table. This is the list of valid SupplierName and PartName combinations.

Table 6. Valid SupplierName and PartName combinations.

	SupplierName
	PartName

	NEW YANKEE WORKSHOP, INC.
	HAMMER

	NEW YANKEE WORKSHOP, INC.
	NAIL

	OLD YANKEE WORKSHOP, INC.
	HAMMER

	TOOL TIME, INC.
	HAMMER

	TOOL TIME, INC.
	NAIL

11. In the third step, we use the Difference operation and form a third intermediate result table by extracting only those rows from the intermediate result table created in the first step that are not to be found in the intermediate result table created in the second step. The occurrence of a certain combination of SupplierName and PartName in this new intermediate table indicates that the supplier in question does not supply the indicated part.

Table 7. Invalid SupplierName and PartName combinations.

	SupplierName
	PartName

	OLD YANKEE WORKSHOP, INC.
	NAIL

12. In the fourth step, we use the Projection operation and form yet another intermediate result table by extracting only the first column from the intermediate result table created in the third step. This is the list of suppliers who do not supply at least one part.

Table 8. Suppliers who do not supply all parts.

	SupplierName

	OLD YANKEE WORKSHOP, INC.

13. In the fifth and final step, we use the Difference operation once again and obtain the final result we were seeking by extracting only those rows from the Suppliers table that do not occur in the intermediate result table of the fourth step. This is the required list of suppliers who do supply all parts!

Table 9. Suppliers who supply all parts.

	SupplierName

	NEW YANKEE WORKSHOP, INC.

	TOOL TIME, INC.

Just as numbers and arithmetical symbols such as addition and multiplication can be combined into an arithmetical expression, so also can tables and table operators be combined into a relational algebra expression. We can specify the above sequence of steps in a single expression as shown below.

Supplier MINUS (PROJECTION((Part JOIN Supplier) DIFFERENCE (PROJECTION(Quote))))

Here is the SQL version of the above relational algebra expression. Multiple formulations are possible and the one shown here uses a technique called subquery factoring to produce the intended result using the same series of short steps that we used in the foregoing discussion.

Listing 1. Suppliers who supply all parts.

WITH

-- Step 1: Join operation

 supplierpart AS

 (SELECT suppliername, partname

 FROM supplier, part),

-- Step 2: Projection operation

 validsupplierpart AS

 (SELECT suppliername, partname

 FROM quote),

-- Step 3: Difference operation

 invalidsupplierpart AS

 (SELECT suppliername, partname

 FROM supplierpart

 MINUS

 SELECT suppliername, partname

 FROM validsupplierpart),

-- Step 4: Projection operation

 unwantedsupplier AS

 (SELECT suppliername

 FROM invalidsupplierpart),

-- Step 5: Difference operation

 wantedsupplier AS

 (SELECT suppliername

 FROM supplier

 MINUS

 SELECT suppliername

 FROM unwantedsupplier)

SELECT suppliername

 FROM wantedsupplier;

The Query Optimization Challenge

Perhaps the most important aspect of relational algebra expressions is that, except in very simple cases, they can be rearranged in different ways to gain a performance advantage without changing the results. The following two expressions are equivalent expect in the order in which data columns occur in the result—this is a presentation detail, not one that changes the meaning of the result, and can be easily remedied before the results are shown to the user.

Table_1 NATURAL JOIN Table_2

Table_2 NATURAL JOIN Table_1

Now, a NATURAL JOIN operation on two tables is commonly performed with the help of an index on the second table; this scheme requires as many index lookups as there are records in the first table i.e. the driving table. Since index lookups are an expensive operation, the rule of thumb is that the smaller of the two tables should be selected as the driving table.

The problem of efficiently determining the most efficient rearrangement of a relational algebra expression is a very complex one; some of the challenges are described in the following sections.

The Laws of Large Numbers

The number of ways in which a relational algebra expression can be rearranged increases dramatically as the number of operations increases. The relatively simple expression (Table_1 NATURAL JOIN Table_2) NATURAL JOIN Table_3 involving three tables can be arranged in the following twelve equivalent ways.

Listing 2. Joining three tables.

(Table_1 NATURAL JOIN Table_2) NATURAL JOIN Table_3

(Table_1 NATURAL JOIN Table_3) NATURAL JOIN Table_2

(Table_2 NATURAL JOIN Table_1) NATURAL JOIN Table_3

(Table_2 NATURAL JOIN Table_3) NATURAL JOIN Table_1

(Table_3 NATURAL JOIN Table_1) NATURAL JOIN Table_2

(Table_3 NATURAL JOIN Table_2) NATURAL JOIN Table_1

Table_1 NATURAL JOIN (Table_2 NATURAL JOIN Table_3)

Table_1 NATURAL JOIN (Table_3 NATURAL JOIN Table_2)

Table_2 NATURAL JOIN (Table_1 NATURAL JOIN Table_3)

Table_2 NATURAL JOIN (Table_3 NATURAL JOIN Table_1)

Table_3 NATURAL JOIN (Table_1 NATURAL JOIN Table_2)

Table_3 NATURAL JOIN (Table_2 NATURAL JOIN Table_1)

The exhaustive consideration of every possible way in which a complex expression can be rearranged would take more time than is practical and therefore the query optimizer considers only a subset of the possibilities. For example, it might limit itself only to “deep left trees” (such as the first six possibilities in Listing 2) or it may impose arbitrary limits on the total number of possibilities that it will consider or the amount of time that it is willing to spend on the problem. This means that the most efficient rearrangement might not be found.

Table 10. Rearrangements of N-way Joins

	N
	Left-deep trees
	All trees
	Percentage

	1
	1
	1
	100.00%

	2
	2
	2
	100.00%

	3
	6
	12
	50.00%

	4
	24
	120
	20.00%

	5
	120
	1,680
	7.14%

	6
	720
	30,240
	2.38%

	7
	5,040
	665,280
	0.76%

	8
	40,320
	17,297,280
	0.23%

	9
	362,880
	518,918,400
	0.07%

	10
	3,628,800
	17,643,225,600
	0.02%

The Cardinality Problem

Suppose that A and B are related tables and that the optimizer is presented with a query of the following sort.

SELECT *

 FROM A, B

 WHERE <filtering criteria to be applied to records in A>

 AND <filtering criteria to be applied to records in B>

 AND <joining criteria for records in A and B>

The optimizer can use either table A or table B as the “driving table” for the query; it will apply any applicable filtering criteria to the records in the driving table before considering the joining criteria. The choice of the driving table is dictated by the number of records that remain in each table after applying the applicable filters. For example, if the filters on table B are very restrictive, it would be wise to choose table B to be the driving table.

Now consider an example involving three tables.

SELECT *

 FROM A, B, C

 WHERE <filtering criteria to be applied to A>

 AND <filtering criteria to be applied to B>

 AND <filtering criteria to be applied to C>

 AND <joining criteria for records in A and B>

 AND <joining criteria for records in B and C>

 AND <joining criteria for records in A and C>

Since only two tables can be processed at a time, the optimizer must decide which two tables to process first. For example, if the joining criteria used in associating records in table B with those in table C are very restrictive, then it would be wise to process those tables first, so as to reduce the effort required to process the query. Once again, we see that accurate estimation of the number of qualifying records at each step of query processing is the critical deciding factor in query optimization.

The optimizer attempts to solve the problem by using statistical information such as row counts and histograms. However, histograms on individual columns don’t help with filters involving multiple columns or complex computations.

Consider the following two examples.

SELECT *

 FROM carsales

 WHERE manufacturer = 'Toyota'

 AND model = 'Celica';

SELECT *

 FROM carsales

 WHERE manufacturer = 'Toyota'

 AND modelyear < 1975;

Now, the optimizer can use histograms to estimate the percentage of sales satisfying any single one of the criteria listed in the above SQL queries but has no way of accurately estimating what percentage of sales satisfy two or more criteria. To us it is obvious that all Celicas are Toyotas and that, therefore, the percentage of Celicas manufactured by Toyota equals the percentage of cars that are Celicas. It is also obvious to us that Toyota was not making cars prior to 1975 and that, therefore, the percentage of Toyotas sold before 1975 is, in fact, zero. The optimizer, on the other hand, assumes that there is never any correlation between data items and, therefore, uses the following formulae.

Probability(Manufacturer = 'Toyota' and Model = 'Celica') =

 Probability (Manufacturer = 'Toyota')

 x Probability(Model = 'Celica')

Probability(Manufacturer = 'Toyota' and ModelYear < 1975) =

 Probability(Manufacturer = 'Toyota')

 x Probability(ModelYear < 1975)

In the first case, the optimizer has underestimated the size of the result, and, in the second case, it has overestimated.

The error worsens as the number of filters increases, as in the following query, in which the optimizer will further underestimate the number of rows in the result set.

SELECT *

 FROM carsales

 WHERE manufacturer = 'Toyota'

 AND model = 'Celica'

 AND modelyear >= 1975;

Finally, consider what might happen if we encounter an OR conjunction such as the one in the following example.

SELECT *

 FROM carsales

 WHERE manufacturer = 'Toyota'

 OR model = 'Celica';

Let X, Y, and Z be any three filters. The following results can be found in mathematical textbooks.

Probability(X and Y) =

 Probability(X) x Probability(Y given X)

Probability(X and Y and Z) =

 Probability(X)

 x Probability(Y given X)

 x Probability(Z given X and Y)

Probability(X or Y) =

 Probability(X) + Probability(Y)

 - Probability(X and Y)

Probability(X or Y or Z) =

 Probability(X)

 + Probability(Y)

 + Probability(Z)

 - Probability(X and Y)

 - Probability(X and Z)

 - Probability(Y and Z)

 + Probability(X and Y and Z)

Since the optimizer has no knowledge of “conditional probabilities” such Probability(Y given X), it uses the following alternatives (which are accurate if and only if X and Y are so-called “independent events”) and consequently exposes itself to the dangers of underestimation and overestimation.

Probability(X and Y) =

 Probability(X) x Probability(Y)

Probability(X and Y and Z) =

 Probability(X) x Probability(Y) x Probability(Z)

Probability(X or Y) =

 Probability(X) + Probability(Y)

 - Probability(X) x Probability(Y)

Probability(X or Y or Z) =

 Probability(X)

 + Probability(Y)

 + Probability(Z)

 - Probability(X) x Probability(Y)

 - Probability(X) x Probability(Z)

 - Probability(Y) x Probability(Z)

 + Probability(X) x Probability(Y) x Probability(Z)

Next, consider the problem of joining tables using record matching criteria to associate records from one table with those of another. Let A and B be two tables and let NR_A and NR_B represent the number of rows in A and B respectively. Further, let NDV_A represent the number of distinct values in the joining column of A and let NDV_B represent the number of distinct values in the joining column of B. In the absence of better information, we could assume that each distinct value of the joining column in B is equally represented i.e. it occurs exactly (NR_B / NDV_B) times. If we could further assume that every value in the joining column of A is represented in the joining column of B, then the number of records resulting from the joining operation would be NR_A * (NR_B / NDV_B). A symmetric argument could be used to estimate the answer to be NR_B * (NR_A / NDV_A). The optimizer chooses the minimum of these two answers, which can be expressed as (NR_A * NR_B) / maximum(NDV_A, NDV_B).

Once again, we see that the optimizer is using assumptions that may be far from the truth. As the number of filter criteria and the number of tables grow, the errors also grow and the optimizer’s strategy is undermined. Yannis Ioannidis and Stavros Christodoulakis have studied the problem in a paper titled On the Propagation of Errors in the Size of Join Results.

The Redundancy Problem

One of the challenges faced by the query optimizer is that the same query can be formulated in many different ways. Here are seven different formulations of the same query from a 1988 paper by Fabian Pascal.
 Try them in your own database and check if the same query plan is used in each case.

Listing 3. Seven ways of formulating the same query.

SELECT lname

 FROM personnel, payroll

 WHERE personnel.empid = payroll.empid

 AND salary = 199170;

SELECT lname

 FROM personnel

 WHERE empid IN (SELECT empid

 FROM payroll

 WHERE salary = 199170);

SELECT lname

 FROM personnel

 WHERE empid = ANY (SELECT empid

 FROM payroll

 WHERE salary = 199170);

SELECT lname

 FROM personnel

 WHERE 199170 IN (SELECT salary

 FROM payroll

 WHERE personnel.empid = payroll.empid);

SELECT lname

 FROM personnel

 WHERE 199170 = ANY (SELECT salary

 FROM payroll

 WHERE personnel.empid = payroll.empid);

SELECT lname

 FROM personnel

 WHERE EXISTS (SELECT *

 FROM payroll

 WHERE personnel.empid = payroll.empid

 AND salary = 199170);

SELECT lname

 FROM personnel

 WHERE 0 < (SELECT COUNT (*)

 FROM payroll

 WHERE personnel.empid = payroll.empid

 AND salary = 199170);

Bind Variables

Execution plans for SQL queries are not hardwired into the Oracle database—they are only generated when the query is first encountered. The query execution plan is then cached for as long as possible and reused when an identical query is submitted. This is certainly efficient since it is computationally expensive to generate a query execution plan. But there is an important catch: in order to promote reuse, queries that use “bind variables” are considered to be identical even if the actual values of the bind variables are different.

Prior to Oracle 9i, the query optimizer did not consider the values of the bind variables, but instead applied various rules of thumb to the data statistics to produce cardinality estimates. For example, the query optimizer might assume that 5% of the data will satisfy each simple restriction and apply this rule of thumb to available statistical information, such as the number of rows in the table, in order to estimate the cardinality of the resulting data set.

Beginning with Oracle 9i, the query optimizer began considering the values of the bind variables when generating query execution plans; this strategy is called bind variable peeking. For example, consider a restriction such as AGE > :1. If a histogram is available, the query optimizer can use it to generate a cardinality estimate that is more accurate than that obtained using a rule of thumb.
The problem with both approaches is that a single query execution plan may not work well for all possible values of the bind variables.

My Kingdom for a Solution

This essay has been long on questions but short on answers. Various techniques are available for “optimizing the optimizer” including optimizer configuration, collection of statistical information for the use of the optimizer, “hints” and “outlines” to guide the optimizer, “profiles” to preserve good plans, and assorted “advisors.” The solution I prefer is hints such as LEADING, ORDERED, INDEX, and NO_MERGE to guide the optimizer in the right direction.

Summary

The promise of relational technology was that application programmers would be relieved of the responsibility for the efficiency of the SQL statements they write. The promise is hard to fulfill because query optimization is a very complex problem. Our takeaway message is that SQL performance requires conscious effort on the part of the application developer. Various techniques are available for “optimizing the optimizer” including optimizer configuration, collection of statistical information for the use the optimizer, “hints” and “outlines” to guide the optimizer, “profiles” to preserve good plans, and assorted “advisors.”

Further Reading

Tow, Dan. SQL Tuning. McGraw-Hill, 2005. In this book, Dan Tow develops the theory of the “robust” execution plan. Such plans have only moderate sensitivity to the values of the bind variables (which implies that they continue to perform well as your tables grow) and their cost is proportional to the number of rows retrieved. They may not be the most efficient plans in all cases but they are not very likely to be far off the mark. Such plans are conducive to stability and predictability and are obviously very desirable. Various techniques including hints can be used to guide the optimizer towards such plans.

About the Author

Iggy Fernandez is a senior staff consultant at Database Specialists and edits the technical journal of the Northern California Oracle Users Group (NoCOUG). His e-mail address is iggy_fernandez@hotmail.com.
� Consider, for example, the following statement found in an article published in a recent issue of the journal of the IOUG: One of the greatest problems with the Oracle cost-based optimizer was the failure of the Oracle DBA to gather accurate schema statistics. …The issue of stale statistics and the requirement for manual analysis resulted in a “bum rap” for Oracle’s cost-based optimizer, and beginner DBAs often falsely accused the CBO of failing to generate optimal execution plans when the real cause of the sub-optimal execution plan was the DBA’s failure to collect complete schema statistics.—www.ingentaconnect.com/content/ioug/sj/2006/00000013/00000001/art00003

� The following statement by Don Burleson articulates the dangers of collecting fresh statistical information for the use of the query optimizer: It astonishes me how many shops prohibit any un-approved production changes and yet re-analyze schema stats weekly. Evidently, they do not understand that the purpose of schema re-analysis is to change their production SQL execution plans, and they act surprised when performance changes!—www.dba-oracle.com/art_orafaq_cbo_stats.htm.

� It is possible to create new operations by combining the listed operations. For example, “Natural Join” is the result produced by a Join operation on two tables followed by a Selection operation on the resulting intermediate table.

� Oracle 11g addresses the problem of complex filters on individual tables with statistics on column groups, expressions, and virtual columns.

� www.dbdebunk.com/page/page/1317920.htm

1
Paper #438

