ETL and Data Warehousing

Robust ETL Using Oracle Warehouse Builder
Aravind Panyam, VeriSign, Inc

Chethan Thippeswamy, VeriSign, Inc

Introduction
Oracle Warehouse Builder (OWB) is gaining wide acceptance as an effective ETL tool because of its low cost and tight integration with the Oracle database and BI tools. But, poorly designed ETL within OWB can lead to mediocre performance and prevent successful implementation.

This session presents proven techniques for developing a robust ETL solution that is highly scalable, and easy to maintain with emphasis on performance. Techniques for loading slowly changing dimensions (SCD), error handling, tuning mappings and recovering incomplete process flows will be discussed. Finally, the session will also present tips to deploy metadata across environments using reusable components.
OWB Overview
Oracle Warehouse Builder (OWB) is an ETL tool that leverages Oracle database to extract, transform and load data. Basically, OWB enables users to migrate, consolidate and integrate data spread across different data sources into centralized data marts or data warehouses. It consists of a set of graphical user interfaces that assist users and simplifies greatly the effort involved in building the robust ETL solutions. Some of the features of OWB are follows:
Ability to integrate data from several sources.
Pre-built transformations provided by OWB.
Ability to create and use custom transformations in PL/SQL.

Tight integration with Oracle database server and its ability to use and support the latest ETL functionality that Oracle provides like Partition Exchange loading (PEL), Table functions, External tables, Multi-table inserts, etc.
Seamless integration with other Oracle BI tools such as Discoverer, Oracle Work Flow, and OEM.
Uses a centralized repository in the database to store all the metadata.
Facilitate impact analysis when modifying or enhancing a data warehouse.

Life Cycle of Mappings Using OWB

OWB provides full life cycle support for design and deployment of ETL solutions. All the tools necessary for design, develop, deploy and to manage mappings can be done using a single user interface.
[image: image1.jpg]Define

Metadata \

/

Update
Metadata

I

Monitor
Process Flows|

|

Execute
Process Flows|

Design
Mappings

|

Generate
Code

.

Deploy
Mappings

T

Create
Process Flows|

—

LIFECYCLE OF MAPPINGS USING OWB

1.1 Lifecycle Of Mappings Using OWB

The following are the steps involved in the life cycle of developing and deploying mappings using OWB:

Define Metadata for Source, Stage and Target in the Warehouse Builder Repository. Create source modules in OWB store object definitions from the various source systems using the Create Module wizard. These source systems can be Oracle or Non-Oracle databases or even flat files. Next, import metadata from the databases by selecting the required objects.
[image: image2.jpg]Design Edt View Tools Window Help

I EEYYECE

& 59 User Detiea Types
5 oueues
B Nonorsce
{83 Transportable Modules
Gries
 Applications.
DataProties

Use this page to it the objects you wart to import.
Selectthe types of objects you wentto import:

Object Type

(] Materiaized View
[“] Dimension [l o
(V] ExtemalTable] view
[¥] gequence [V]pLSGL Transformation
[¥] Use & synonymto look up objects. [¥] user Defined Type.

Use the name fikd to make wid card selecions. Use (%) for 28ro or o atching or
(Ot fnd one atching character. Note that pater search is case senstive,
[Oy select objects that match the pattern

< 5 Acive Confrtion: DEF AULT_CONFIGLRATION

Bistert| | @ [(0] |] vesion Center: ser ... | (0] nbox - rosaft outiook |

1.2 Import Metadata
Design Mappings using the Design Center. Mappings in OWB are used to define the logic of ETL process. Mappings show us the operations used to extract data from the source systems, transform the data and load it into the target system. These mappings are created using the Mapping Editor tool and provide a visual representation of the entire process.

[image: image3.jpg]Bl%st aam-d¢ B s
BREDETES 9 LG

Mepping Edt View Debug Window Hel

bt 7 s
M -

2 Agaregator 1=

8, Anyatscast

C Constant

B Coneruct Obct

7 cube opertor

9 Dete Genereor

i Deduplicator

I Dimension Operator

198 Expora oniect

) xoression

7 Estema Tale Opertor

 Fiter

) it Fie Opertor

e soer

ey Lookp

X Mapring It Pararmster

XY Mapping Output Parameter
Metch Herge

Meterilzed View Opsrator

=T e ot Actress

[} Pluggable Mapping

e epping o St
S s
6" Post-Mapping Process
" Pre-Mapping Process
|55 S Cprtr L
(@D set Operation
B sorter
038 spitter
B, Table Function Operator L

1TEMs_sRe

— ¥

ITEMS_FILTER

[EE—

1TEMS_STAGE

[«

I»]

A

istart| | @ (@ (5] | 52 Desion Conters User DEs... || 2] Mapping Editor: MaP

oo (R

[beskiop » [97% bk [« IDIBE iz

1.3 Mapping Editor to design mappings.

Generate Code (PL/SQL Packages) for Mappings. In the mapping editor, use the generate option to generate PL/SQL code for a mapping. As part of the generation process the mapping is validated and code is generated.
Deploy Mappings into the Target Schema. This process validates the objects in the mapping, generates the PL/SQL code and creates the packages in the target location.

Create Process Flows to control flow of the mappings. A process flow is used to build and control dependencies between OWB mappings and external commands such as OS commands & email. Once the process flow design is complete, configure the process flows and generate and deploy the process flows into the target location.
[image: image4.png]Process Flow Edt

View Window Help

=lolx|

BEDETYS 9 2O i [% b1

~ Explorer

Mappings
Transformatians

2 Gustom
e vefinea

Deta Aucitors
activty Templates

Publc Transformations

=~ Prosess Flaw.

@ o mEege B =B

ez

Selected Objects.

~ Palte
a1

[e e
ENEA

B i s

S rortoon
= Fork

Nacsion
o

7 Route

59 et s
D sophs

15 sunprocess
¥ rranstormatin
A8 UserDsted

[wait

» Bids Eye View

A

_

13 < se_aro B rews =
_— —

START1 MA?,SR:,SYG,WEMS\E

e _sutcess

= 5]

END_ERROR

oo €

1.4 Process Editor to design Process Flows

Execute process flows to load data into the tables included in the mappings.
Monitor mappings execution in the repository browser. This browser shows detailed information about execution of the process flows and all the mappings that belong to it. It stores valuable information such as start and end times, status of the execution whether successful or not and any errors encountered. Since all the information is stored in the repository in the database, this tool maintains the execution history and can be used for auditing purposes as well.
Update Metadata when there are changes in source or target and repeat above steps. This cycle can continue all over again.
ETL Techniques
The data that is being stored in OLTP systems and data warehouses are growing exponentially and changing rapidly. As data warehouses and the source systems evolve, the ETL process also needs to evolve.
Design of ETL processes becomes very challenging due to huge data volumes and tight Service Level Agreements (SLAs). ETL processes should be designed such that they are fast, efficient, and flexible and adapt to changing requirements. Each environment is different, which requires proper understanding of the overall requirements and selecting proven techniques to come up with a robust ETL solution.
Based on our experience using OWB, techniques that can be used in developing an ETL solution are as follows:
· Extraction techniques

· Transformation techniques

· Load techniques

Extraction techniques

Understanding the grain in which the data will be stored in the data warehouse is critical for choosing data extraction strategy. In an efficient ETL solution, one or more extraction techniques can be used to handle different load periods, for example historical loads versus daily loads. But the key point is that regardless of the extraction techniques used to load data from source to stage area, rest of the steps in an ETL solution (transformation and loading) must be the same. By using this technique, you can avoid overhead of maintaining additional ETL code.

· Typically, data from source systems is extracted and loaded into staging tables. Data from source to stage is brought as is and no transformation is done.
· When not all data from a source table is required, Views on source table should be used during extraction process to filter data and also to join data elements from multiple tables.
· Identifying the unique identifier which can be relied for data extraction is critical to ensure the data integrity and also to ensure that there is no loss of data or duplicates. Using a pre-mapping transformation as shown below, the last stored unique id in the Data Warehouse can be used to extract data from the source starting from the next sequential value of the unique id.
The WHERE clause for the join condition in the joiner ITEMS_PARM_JOIN is set to:
INGRP2.V_LOAD_COMPLETION_FLAG = 'N'

AND INGRP1.TRANSACTION_ID > INGRP2.V_SCN

 AND INGRP1.TRANSACTION_DATE < INGRP2.V_END_DATE_ID

[image: image5.jpg]&

VLITEMS_STAGE

5 GET_PARM_PREMAPPING

2 INGRP1 V_LOAD_COMPLETION_FLAG
P_SOURCE_NAME V_BEGIN_DATE_ID
P_TABLE_NAME V_END_DATE_ID

5 Vson
V_SO0URCE_ID
VIBEGIN_ATE_D
\END_GATE_ID
Vson
c VLOAD_COMPLETION_FLAG

(9

ITEMs_ExPR

consTANTS

°

UPD_PARM_POSTMAPFING

2.1 Extraction Technique using Pre-Mapping to load Source to Stage

There are different techniques to extract data from source databases into staging tables. Each technique has some advantages and is best suited for some specific conditions. Some of the common techniques are listed below:

DB Links: Suitable for small to medium data extracts up t a few million rows. No additional scripting is required. DB Links can be used for daily incremental loads. In OWB, db links are defined using the Connection Explorer tool and by defining a Location. For example, to define a db link to database SRC1, create a location called SRC1_LOC as shown below:

[image: image6.jpg]B v ITEMS STAGE

3 TRANSACTION_DA.
3 TRANSACTION_ID
> ITEM_ID

3 ITEM_NANE

3 ITEM_DESC

> UNITS_SOLD

> AMOUNT

»
Ty
Ty
i »
i
Ty W
Tty

S SRR TR

UPD_PARM_POSTMAPFING

TRANSACTION_DATE_DD
TRANSACTION_ID
ITEM_D
ITEM_NANE
ITEM_DESC
UNITS_SOLD
AMOUNT

#INGRP2

=

TRANSACTION_DATE_DD
V_LOAD_COMPLETION_FLAG
V_BEGIN_DATE_DD
V_END_DATE_ID

e

TRANSACTION_ID

TTEM_DD

ITEM_NAME

ITEM_DESC
UNITS_SOLD
AMOUNT

TRANSACTION_DATE_DD
TRANSACTION_ID
ITEM_D

ITEM_NAME

ITEM_DESC
UNITS_SOLD

AMOUNT

2.2 Loading Source to Stage Using views and DB Links

External Tables: Ability to load data stored in text files. Very flexible and used in environments where data changes frequently.
Flat text files: These can be loaded using SQL loader into the database. Generally suitable for large amounts of data.

Transformation techniques

One of the most important functions of an ETL tool is to transform data. The flexibility to use pre-built or custom transformations makes it very convenient to develop mappings in OWB and integrate data coming from multiple sources.

· Key operators used in mappings to transform data are as follows:

· DW Key lookup using Lookup operator, default value setting. This is used to perform lookups from tables or views. Basically, this results in a inner or outer join in the WHERE clause.
· Joins using joiner operator or lookup operator. This is used to join rows from more than 1 source and produce a single output row.
· Conditional logic (case statements) using splitter operator or combination of filters. A splitter is used to split a single row to multiple targets based on conditions. There is one input group and multiple output groups based on conditions. For example, we can set up such that all the rows that satisfy a condition are loaded into target table and remaining rows and be diverted to an ERROR table.
· Expressions using expression operator. Use this to derive values for output parameters based on common SQL expressions involving functions and input parameters names.
· Pivot operator to convert columns into rows for building concatenated string, etc. This operator is very useful where a single row needs to be converted to multiple rows.
· Pre mapping and Post mapping operators. As the names suggest these operators can call functions or procedures which have additional logic that needs to be executed before or after the mapping. For example, in Pre-Mapping we can fetch records from ETL control tables and perform any cleanup necessary for loads and in Post-Mapping the records in ETL control tables can be updated upon successful loads.
· Pluggable Mappings. A set of operators can be combined and saved as a pluggable mapping. This can be reused as an operator in subsequent mappings. This speeds up development as well as reuses the code.
· OWB uses PL/SQL mapping packages to load data from Source database into Data Warehouse database.

· The ETL Process involves a staging area where all the source data is staged before begin translated and loaded into the Data Warehouse.

· Mappings should be designed to load tables such that all the data from the source table is first fetched into a staging table in the staging area. Before loading any target tables, data is massaged and transformed.

· Source to target attribute translations are performed at this stage by looking up against other dimension tables or lookup tables in the staging area. This ensures that if errors are raised during transformation, the staging tables can be truncated and reloaded again without affecting the target tables.

· Additional exception handling can also be built into the mappings

Transforming Data for Dimensions and Facts

In a Data Warehouse dimensions are always loaded first and have a surrogate key assigned using a sequence generator. Then the fact tables are loaded by doing surrogate key lookups for dimensions. Most of the Target tables are loaded using a 3 step loading process.

In step 1, data is extracted from the source systems into the staging area for the load period.

[image: image7.jpg]&

V_SRC_ITEMS

oy
030

B — —

sDuR:E,NAME\ ~
)

GET_PARAM_PREMAPFING

™

UPD_PARAM_POSTMAPFING

2.3 Mapping to load Source to Stage1

In step 2, data from the staging area is translated and loaded into stage-2 tables in the staging area. Additional calculated columns are also included at this stage. These stage-2 target tables have foreign key constraints referencing Data Warehouse tables. These constraints can be disabled and enabled before and after the load process since they affect only the incremental data being loaded.

[image: image8.jpg]&

VLITEMS_STAGE

B i
o3
- BB
TEMS1_PARM_ION e sTAcE2
sovmcE e
(k)

"o

GET_PARAM_PREMAPFING

STo1_EXPRESSION

UPD_PARAM_POSTMAPFING

2.4 Mapping to load Stage1 to Stage2
In step-3, data is loaded from the stage-2 tables to the Data Warehouse tables by doing some additional transformations during the load.

[image: image9.jpg]&

VLITEMS_STAGE 2

s
i .
(o] s, O > B
s Pl mems

~

- (9

GET_PARM_PREMAPFING
'+

/ 1TEMS_EXPR
-]

UPD_PARM_POSTMAPFING

2.5 Mapping to load Stage2 to Target

Load techniques

The design of the loading element should focus on efficiency and performance. Once transformed data is available in a staging table, load the target table using one of the 2 following methods. At this stage, it is assumed that all data transformation is complete and data is available in staging tables.
· Loading targets using Partition Exchange loading (PEL): In PEL, data from a table is exchanged with the empty partition of a partitioned table. So this method is suitable if you are loading an entire partition of a partitioned table. Create indexes on the second staging table and enable the constraints. Using PEL, exchange the staging table with the empty partition of the target table. Data is available in target instantly, since there is no data movement here. This exchange process is a DDL operation.
[image: image10.jpg]Transformed
Data

Swap
Partition

2.6 Loading Table using PEL

· Loading targets using inserts: This method is suitable for tables that are not partitioned or for tables where only a portion of the target table partition is being loaded. It is also important that the target table do not have a lot of indexes. Transformed data from the staging table is loaded into the target table using the PARALLEL APPEND hint to speed up inserts. Since the constraint checks are done on the staging table, disable the constraints on the target table for the duration of the load. The constraints are then enabled in no-validate mode on the target table.
[image: image11.jpg]Transformed

Data Insert Data

[Stage |— e |

2.7 Loading Table using INSERTS
Slowly Changing Dimensions (SCDs)
The concept of storing and managing current and historical data in Data Warehouses is called Slowly Changing Dimension (SCD). There are three different types of commonly used SCD strategies. Choosing a strategy purely depends on the business requirements.

	SCD TYPE
	Use
	History

	Type 1
	Use this type to maintain only one version of the dimension record. This record is overwritten when ever there is a change.
	Historic data for the dimension record is not stored.

	Type 2
	Use this type to create another dimension record. Both new and old versions of dimension records exist simultaneously. The old record is modified to reflect that it is not the current record.
	Historic data for the dimension record is stored.

	Type 3
	Use this type to store both current value and previous value in the same dimension record.
	Typically, key attributes for the previous version of the dimension record are preserved.

Loading different types of SCDs

Careful consideration should be given prior to choosing strategy for loading slowly changing dimensions. The data requirements for each dimension in most cases, dictates the relevant strategy. In our data warehouse we use Type 1 and Type 2 slowly changing dimensions.
Type 1 SCD
· Loading Type 1 dimension is straight forward. The table loaded using SCD Type 1 always represents the latest image of the source table. In OWB, loading type option of Update/Insert is used for these mappings.

· Identify the latest record for each primary key in the source table, for example: identify the last record for each customer in the source table. This represents the final picture for the source for that load cycle.

· Perform a lookup against the source key of the target table. Insert a new record if no matching record exists in the target table. If a matching record is found, update the existing record. In the generated code, the MERGE statement handles the update else insert logic.
[image: image12.jpg]e

UPD_PARM_POSTWAPPING.

C/ N\,

TaBLE NAvE GET_PARM_PREWAPPING.

=

o7

CuSTOMERS _LooKUP

Jom_cusToveRs sTAGE

CUSTOMERS _STAGE

i
123

CusTOMERS 10_s€0

hat

(9

CUSTOMER_ATTRIBUTES

7 cusTouERs

3.1 Mapping to load SCD Type 1

Type 2 SCD
Loading Type 2 dimensions involves additional steps.
· It is important to compare every record with the previous record for the primary key within the source table to determine if any of the attributes have changed. This is done using analytic functions LEAD and LAG as follows. Refer to table 3.2 for an illustration.
· Identify all updatable attributes in the target table that result in a Type 2 change.

· Using the LAG function, identify the previous record for every record based on the primary key. Then compare the two. Select only those records that result in a change. For example, if there is no difference between the previous record and the current record for a particular customer in the source table, the previous record can be ignored.

· Perform any lookup or other transformations required on this staged data.

· Perform a lookup against the target table and mark each source as a candidate for update (deletions), insert (new records) or update/insert (mod records, update old and insert new).
· Using the LEAD analytical function identify the next record for every record based on the primary key to identify the end effective date for the record. This will minimize the updates to the SCDs.

· The transformed and flagged (U/I) data from the second staging area tables is then loaded using the UPDATE/INSERT option in OWB into the target SCD type 2 dimension tables. This strategy has worked very well in our data warehouse as we have some monster dimensions with nearly billion records.

3.2 Example to illustrate record comparison in source table
As shown in the above illustration if 2 identical records exist for the same customer, the earlier record is discarded. If multiple records exist for same customer and the record attributes are different among them, then all records for that customer are considered for update/insert.
Type 3 SCD
· Loading Type 3 dimension is similar to loading the Type 1 SCD. In this case however, the pre-update values of the changing dimensional attributes obtained during the lookup process are stored in the ‘previous value’ columns of the dimension.
Tuning Mappings

A highly tuned ETL process contributes greatly to a successful and robust ETL solution. Some techniques that can be used to design the mappings that can increase the overall performance of the load cycles are listed below:
· Design mappings for speed

· Set based v/s Row based

· Handling Constraints and Indexes

design mappings for speed
In OWB, use the following techniques while designing the mappings:

· After creating each operator in the mapping, generate the mapping code, check the query plan to make sure it is efficient.

· Use the following settings to speed up mappings

Configure the source tables by setting the extraction hints as PARALLEL.

· Configure the target tables by setting the loading hints such as APPEND and PARALLEL. This will increase the speed of the inserts.
· Set the Default Operating Mode to Set Based.
set based vs row based

There are five operating modes available for users to configure during the design of PL/SQL mappings.
· Row Based

· Row Based (Target Only)

· Set Based

· Set Based fail over to Row Based

· Set Based fail over to row based (Target Only)

The most common operating modes are Set Based and Row Based. The selection of the default operating mode has an impact on the overall performance.
· For example in Set Based mode, OWB generates a single SQL statement to process all data. This greatly improves the performance, but has limited audit information.
· Whereas in Row Based mode, OWB generates code to process data row by row. This gives better control on the load but has an impact on the performance in case of large data loads. Row based mode has additional audit information and in case of failure can easily identify the problematic row. [[Explain how row based mode can result in conflicting results depending on where the cursor is generated.
· Use Set Based operating mode to load large volumes of data.

Handling Constraints and indexes

Every Data Warehouse has many constraints and indexes. The performance of Data Warehouse can be improved greatly by properly managing constraints and indexes in the database. Based on our experience, here are some guidelines that can be used to greatly boost the performance of load cycles.
Constraints- Staging tables

Typically, transformed data is loaded into staging tables first.
· Create foreign keys in staging areas pointing to Data Warehouse reference tables (dimensions). Validation is fast since number of rows in the staging area is less.

· Foreign key constraints on such staging tables are disabled before the batch load and enabled after the batch loadb.
· The enabling and disabling of constraints can be handled using OWB table properties or using the following commands in a post mapping procedure.
· The enabling of such constraints is parallelized as follows:
alter table sales enable novalidate;
alter table sales parallel n;
alter table sales enable validate;
Constraints - target tables (data warehouse)

· Foreign key constraints are in Disabled state for the entire duration of the load cycle. This is implemented in the Pre-Mapping using custom built stored procedure.
· After the load into the DW tables is complete, set them to enable novalidate to ensure no manual updates violate data integrity. This is implemented in the Post-Mapping using custom built stored procedure.
· Also foreign key constraints are required (either in enabled or disabled state) for Star joins to work properly.
Disabling and Enabling Indexes during the load

· Typically, fact tables in a Data Warehouse have several bitmap and b-tree indexes. This can result in delayed inserts. By following steps listed below we were able to speed up inserts and increase performance of load cycle:
· In the Pre-Mapping , the indexes are made unusable for the sub-partition in question while loading data for a given sub-partition. This is done using custom stored procedures.
· Load data into Data Warehouse tables.
· In the Post-Mapping, rebuild the unusable partitions of local indexes after the load with indexes set to NOLOGGING. This is done using custom stored procedures.
· Boost performance of data load cycles by following above steps.
Error Handling in Mappings
Errors during ETL can occur either because some records in the data do not conform to business rules or because of inadequate transformation logic in the ETL process. Successful completion of loads depends on effectively identifying records that do not meet pre defined business rules and providing acceptable resolution techniques to load such records into the target schema.

Graceful Exception handling
It is important to identify all ‘Exceptions’ at the earliest possible moment during the ETL phase. It is also important to ensure loads stop gracefully i.e. exit with relevant error messages with all exception records available in an exception table for further examination. This requires that most mappings in OWB load a second exception target table in addition to the intended target table. During ‘Set-based’ mode, all records get processed and therefore all exceptions get routed to the error table. However, during ‘Row-based’ loads, it may not be possible to identify all error records at once. So a staging table should be loaded in ‘Set-based’ mode prior to loading the target table. There are 2 methods to route error records into exception tables depending on the structure of the exception table itself.

In the first method, the error table is a replica of the source table with an additional column to store the error message. All records are checked to see if they violate business rules during ETL. While valid records are loaded into the target table, invalid records are routed to the exception table using a splitter condition as shown in figure 5.1
[image: image13.png]Expression Builder: 5

Con

ts | Transforaions |

Enorp1

jon [TRANSLATION_FAILURE]

TNGRPL.RS_ITEN_ID IS NULL

1
2 or
3 or
o or
H or
6 or
7 or
s or
s

THGRPL
THGRPL
THGRPL
THGRPL
THGRPL
THGRPL
THGRPL

LLEUP_ITEN_ID IS NULL
- LEUP_CUSTOMER_ID IS NULL
+ LKUP_QUANTITY_ID TS HULL
- LEUP_REGION_ID IS NULL

- LEUP_STORE_ID IS NULL

- LEUP_CALC_ANOUNT < 0

- LEUP_REFUND_ID IS NULL

5.1 Exception condition in a Splitter Operator

A post mapping procedure detects these rows in the exception table, raises an exception and that stops the ETL process gracefully. This method is suitable for ETL involving huge amounts of data being loaded into the target table with only a small percentage of it falling into the exception category as shown in figure 5.2.

[image: image14.png]& (&)

CUSTOMER_LKUP,

MPUTE_ADDITIONAL_ATTR

] . eig i
SOURCELRAYE ~ () B
~ i ccemmonsesson

saes sTase exceemions
Exception table sindlar fo
Source fable + error message +
GET_LOAD_PARMS PREWAPPING.PROC processed flag

Ny UTOAORTIGTISIG

 5.2 Exception Handling in OWB Mappings with Source Specific Exception Table

In the second method, the error table is a generic exception table with attributes such as source table name, primary key values for source table, error message, etc. If an exception occurs, only the relevant attributes are loaded into the generic exception table as shown in figure 5.3. A post mapping procedure detects these rows in the exception table and stops the ETL process gracefully. This method is suitable for loads with smaller chunks of data where reloading all the source data for that cycle is not an issue.

[image: image15.png]B (9

o 28
oo » 530 >
(9

o UPD_LOAD_PARM_POSTMAPPING.

Generic Exception Table

GET_LOAD_PARMS_PREMAPPING_PROC

5.3 Exception handling in OWB Mappings with Generic Exception Table

Load recovery from exceptions:
· Once erroneous data has been identified it can be processed in 2 ways.
In case of replica exception tables, erroneous data is fixed and a separate mapping is used to load data from the exception table into the target table. This mapping is exactly similar to the mapping that loads the target table from the source table, except for the fact that the exception table is now the ‘source’ as shown in figure 5.3

[image: image16.png]=l (k)

Source specific exception CUSTOMER_LKUP, EXPR_COMPUTE_ADDITIONAL_ATTR

table /' \ Pl \
~

] » B3 =Gz g i

E5_STASE_BXCEPTIONS S “om T m{ SALES FACT

c
[N (k#0)

S e BXCEPTION_REASON
A UPOLORD PR FOSTIPPING
> Tpdate processed flag

GET_LOAD_PARMS_PREVAPPING_PROC

RESION_LoOKUP

SALES_STAGE_ EXCEPTIONS

5.4 Reloading using OWB Mappings from Source Specific Exception Table

In case of a generic exception table, offending rows in the source table are identified by joining with the exception table. A fix is applied either to the data or the mapping logic. Any valid target data that is loaded in the prior cycle is deleted and reloaded all over again from the source tables using the same mapping. For this deletion to occur quickly, it is important to use staging tables as targets that can be truncated prior to all load cycles.

Implementing Process flows
Process flows automate the running of most ETL processes eliminating dependency management amongst different ETL phases. They can easily be created in OWB using the Design Center. Mappings, stored procedures, functions, external executables, ftp, email, etc can be inserted into a process flow to run in a specific order. Process flows can be created to accept parameters as well. Like mappings process flows can also be invoked using SQLPlus scripts. Use process flows to implement the following features.
· Automate ETL: The automation of ETL using process flows has a number of benefits. Create process flows to run ETL mappings in parallel to ensure maximum resource utilization. Use process flows to exit the ETL job upon failure without running any dependent mappings from running. While creating ETL jobs, break down tasks into smaller chunks for easier manageability. Also use process flows to control the execution path as shown in figure 6.1. Using process flows extensively eliminates the need for code based work flow management for ETL tasks.

[image: image17.png]SN

=

MAP_1 2o
/ - A = 4
" ACTMVITY _SER_DEFINED EMAIL_SUCCESS END_SUCCESS
l!*
* st
smm saLpLUS FORK Q

Ww 4

EMALmuw END_ERROR

6.1 Automate ETL with Process Flows

· Recover failed process flows: Process flows facilitate recovery and re-runnability to a great extent. Recovery of failed jobs can be implemented in 2 ways.

To recover a failed job after the errors have been fixed, a separate process flow can invoke only the required set of mappings/tasks that handle exception rows. This method is suitable when all exceptions cannot be fixed in one iteration and corrected data has to be loaded selectively as shown in figure 6.2

[image: image18.png]—
=5 eno_sutcess

.

_E
——— D AT oo anbLen e
E} sai+ e

STARTH

snL?Lus\n S

END_ERROR

6.2 Source Specific Process flow to run Exception handler mapping

On the other hand, exception handling can be built into the main process flow based on conditional logic. On detecting exception rows, the process flow exits gracefully with the required notifications. After the errors are fixed, the parent process flow is kicked off again. Conditional logic ensures that exception rows are processed by appropriate mappings and loaded into the target schema. The process flow continues executing the next task after handling all the exceptions as shown in figure 6.3

[image: image19.png]TRANSFORMAEION
MAP1_EXGEPTION

E>‘>I) /u—vf' f";» »

sal+ ¥
sTaRT1 sapLus Pt \n / e eno_sitcess

2|

END_ERROR

6.3 Main Process Flow calling Exception mapping

ETL Life Cycle Management
ETL tasks typically load many dimension and fact tables during each cycle. There are several components that can be re-used across many mappings to facilitate maintenance.

· Reusable components for development: Create custom stored procedures, functions and/or pluggable mappings to handle pre-mapping and post-mapping operations and repetitive calculations. The components can perform tasks such as dependency checks, reading and updating load status tables and ensuring duplicate loads do not run.

· Reusable components for deployment: Once development is complete, deployment across environments should be done in an automated way to preserve the integrity of changes. This is done using scripts that import OWB metadata, generate and deploy mappings, process flows and procedures into the target environment. The script based interface OMBPlus is used with tcl scripts extensively to automate all such operations.

Create a set of re-usable scripts that can be used to perform deployment across environments.

Make extensive use of parameter files and variables that can be updated to meet the requirements of different environments and releases.

These deployment scripts should also check for successful deployment of the release by querying the database and/or sifting through the log files.

Avoid using OWB GUI tools for deployment in non-development environments. Following sample script is used to import OWB metadata.

Include file with function parseConfig

set WORK_DIR [file dirname $argv0]

source ${WORK_DIR}/functions.tcl

Read runtime variables from configuration file.

parseConfig ${WORK_DIR}/omb_deploy_env.cfg

puts "Connecting to design repository"

OMBCONN $DESIGN_REP

puts "Importing objects into the project"

puts [OMBIMPORT FROM MDL_FILE '${WORK_DIR}/DW-3.0.mdl' USE CREATE_MODE \

CONTROL_FILE '${WORK_DIR}/omb_import.ctl' OUTPUT LOG TO '${WORK_DIR}/log/DW.log']

List mappings to make sure import succeeded

puts "Mappings in Staging_DB"

OMBCC '/STAGING_DB'

puts [OMBLIST MAPPINGS]

puts "Mappings in DW_DB are"

OMBCC '/DW_DB'

puts [OMBLIST MAPPINGS]

exit

· Automate deployment and rollback: In any environment it is important to have the ability to rollback to the previous release if the deployment is unsuccessful. OWB has a feature that enables us to take a snapshot of the existing metadata in the OWB repository just before deployment. Utilize this feature to make a snapshot backup of pre-existing metadata either at the object level or at the project level within the repository using OMBPlus scripting. Even in releases involving minor changes, take snapshots at the Project level as well as the object level as a pre-cautionary measure. If a need arises to rollback deployment changes, restore the snapshot and recreate and redeploy objects accordingly. The whole process can be automated using OMBPlus scripts.

· Deployment

ksh omb_exec_wrapper.ksh /app/oracle/3.2.0.1/dw_snapshot.tcl –- Backup Metadata

ksh omb_exec_wrapper.ksh /app/oracle/3.2.0.1/dw_import.tcl –- Import metadata

 ksh omb_exec_wrapper.ksh /app/oracle/3.2.0.1/dw_deploy.tcl –- deploy OWB objects

Rollback

 ksh omb_exec_wrapper.ksh /app/oracle/3.2.0.1/dw_restore.tcl –- restore Snapshot

 ksh omb_exec_wrapper.ksh /app/oracle/3.2.0.1/dw_rollback_deploy.tcl –- deploy old objects

· Command line Process flow and mapping execution: Typically, production environments use crontab or custom schedulers to run ETL jobs. So create wrapper scripts using Shell scripting or Perl that enable execution of ETL jobs from the command line. OWB provides a sample SQL script that should be used in the wrapper script to invoke mappings and process flows. Also include code to check for successful completion or failure during execution. Optionally, email alerts can be sent out upon completion or failure of each ETL job with relevant load times either from the Process flow or from the wrapper script.

Sample script for invoking mappings and process flows

${ORACLE_HOME}/bin/sqlplus -S ${RUNTIME_USER}/${PASSWORD}@${DW_SID} << EOF

spool ${LOGFILE}

@${WORK_DIR}/oem_exec_template.sql ${RT_OWNER} ${LOCATION} ${PRCSFL} "," ${CUSTOM_PARMS}
EOF

ret_status=$?
Executing process flows using a wrapper script.

ksh owb_execpf_wrapper.ksh PF_LOC PF_LOAD_ALL

where PF_LOC is the OWB location and PF_LOAD_ALL is the process flow being called.

Tips for Successful Deployment and Maintenance

OWB is a versatile and cost effective tool. Careful planning is required to ease the burden of deployment and on going maintenance. Use the following tips to alleviate maintenance issues.

· Independent OWB Design repositories for different environments: Although it is possible to share the Design repository with several environments, create independent repositories for development, QA and Production as shown in figure 8.1. This will ensure changes in one environment do not impact the other, thereby allowing development and testing to run in parallel. This will also facilitate testing of migration and deployment scripts during release cycles.
[image: image20.png]Developrment

Testing

Production

Design Environment

OMB.

Runtime Environment

Scriplt.

Design Environment

OM

Runtime Environment

Scrip

Design Environment

'Runtime Environment

8.1 Maintain separate repositories for different environments

· Test mappings in load intensive environments: Since query execution plans might change across environments, perform stress testing of loads in a different environment using near production volume data. If testing using production volume data is not possible, import database statistics from the production environment and ensure query plans do not change drastically. While creating mappings generate queries at various intermediate points in the mapping, and test the performance of generated SQL.
· End User Training: It is important to have well-trained production support personnel to successfully manage OWB deployments. So train support personnel in basic tasks such as load monitoring using Repository browser, running recovery jobs in case of load failures and in identifying database errors that can be fixed by Production DBAs without your intervention.

· Prevent Erroneous data Loads: There is a high probability of ETL jobs being executed out of sequence during recovery since not all production support personnel are aware of Data Warehouse internals.

· Ensure that all ETL jobs and process flows have necessary dependency checks built-in that prevent erroneous loading of data. This can be implemented using stored procedure calls in process flows and/or mappings.
· If a job is run out of sequence or the wrong recovery process flow is executed, it should exit gracefully without loading any data.

· In essence, all jobs should be rerunnable and/or fully recoverable without creating any data inconsistency in the data warehouse. This can be achieved using a combination of pre-mapping stored procedures and load tracking tables in the database.

Conclusion

Oracle Warehouse Builder is a versatile ETL tool. The techniques mentioned above can go a long way in developing efficient ETL that can complete successfully within the designated time window and scale to handle growing load volumes. Following the above mentioned processes will also ensure that very little intervention is required for on-going maintenance in the production environment. Failures if they do occur can be quickly resolved and the ETL can be re-started.
Customer ID

Customer Name

City

State

1

Charles

Seattle

WA

1

Charles

Seattle

WA

2

Tom

Fairfax

VA

3

Bob

Boston

MA

2

Tom

Reston

VA

3

Bob

Boston

MA

3

Bobby

Denver

CO

20

 Paper # 218

