Database

Top Sql and Pl/sql Performance Mistakes
 Kenneth Naim

DBA’s and developers are frequently called upon to tune some piece of code that is logically correct yet performs very poorly. Even though they have already gone through the exercise of tuning the operating system, database, tablespace, and table parameters, and possibly bought new hardware the code still runs much slower than expected and desired. The reason for this is that too much work is being done to produce the results that could be produced with less. The solution to problems like these is to rewrite part or all of the code. Many times this task is not as daunting as it may sound and takes little time and produces far superior results. I have seen simple code changes that produced a 1-3 orders of magnitude reduction in elapsed time and up to 5 orders of magnitude in resource utilization such as logical I/O. This whitepaper will describe the most common issues I have come across over the past 10 years and solutions to address them.

Issue List
1. Selecting from dual
1.1. Using decode within select from dual statements.

1.2. Execution of PL/SQL functions or calculations from dual.

2. Performing logic inside a loop instead of within cursor.

3. Using custom functions instead of joins.

3.1. OLTP Environment

3.2. Batch Environment

4. Using self joins.

4.1. Current/Most recent record.

4.2. Comparing each record to following record.

4.3. Details and Summary

5. Coding without using bulk processing as 10g optimizes the code for you on the back end.

6. Checking to see if a row exists prior to doing an insert, update or delete.

7. Code repetition.
8. Using Autonomous Transactions for logging.

9. Missing Indexes

9.1. Web Actions

9.2. Party Merges

Issue 1 - Selecting from dual
Dual is a wonderful little one row, one column table that Oracle provides so one can retrieve data that is not stored in table such as pseudo columns (user, sysdate etc.), pl/sql function return values, calculations of data passed in with the query (7*12). Prior to Oracle 10g selecting from dual costs 5 logical I/Os and in 10g fast dual was introduced which costs 3 logical I/O’s and while the cost is small and runs fast when it runs once, it can consume a tremendous amount of resources when used improperly.
Example 1.1 - Using decode within select from dual statements
select decode(greatest(greatest(v_month_1_usage, v_month_2_usage),

 v_month_3_usage),0, decode(v_customer_type, 'W',

 v_min_usage_amount),0)
into v_usage_amount

from dual;
A query similar to this was executed 600,000 times per thread across 12 sessions. The 7.2 million executions of this query consumed 38 million logical I/O’s and took up 80 minutes of a 90 minute process. Since decodes are not supported directly in PL/SQL, developers frequently use a dual as a work around.

Solution 1.1
case when greatest(v_month_1_usage, v_month_2_usage, v_month_3_usage) = 0 and

 v_customer_type = 'W'
 then v_usage_amount := v_min_usage_amount;
else v_usage_amount:= 0;
end case;
The solution to this issue is to use a PL/SQL variable assignment instead of selecting from dual. I used a case statement here as this was a 10g database but could have used If/Then/Else statements for earlier releases.

Example 1.2 - Execution of PL/SQL functions or calculations from dual.

select safe_divide_by_zero(v_sales,v_quantity_sold)
into v_price_per_unit

from dual;
Solution 1.2
v_price_per_unit:= safe_divide_by_zero(v_sales,v_quantity_sold);
Here we run across the same situation except instead of calling a sql function, decode, we call a custom written function. The solution is the same, convert it a PL/SQL variable assignment.

Issue 1 Summary
While dual is convenient and useful table when testing it should be used rarely in production PL/SQL code and never inside a loop. The exception to this rule is retrieving the next value of sequence on 10g or prior version database. In Oracle 11i a sequences next value can be assigned directly to a variable in PL/SQL.
Issue 2 - Performing logic inside a loop instead of within a cursor.
I see many pieces of code written by developers familiar with the bulk processing features of PL/SQL originally introduced in 8i however they claim to not be able to use it because of the logic processed within the loop. In 90% of these cases the logic was simple enough that it was easily integrated into the main cursor which allowed us to process the data with the increased speed of bulk processing and in some cases to use single statement dml.
Example 2
The following example is a simplified version of a very lengthy piece of code I had the opportunity to tune. There were several loops similar to this in the code and each one executed 720k times and by integrating the pl/sql logic into the dml statements, in this case select and merge, we were able to run the code in 2 hours from being killed after 18+ hours.
for i in (select a.*, b.*

 from items a,
 stores b

 where a.store_id=b.store_id)
loop
 if i.item_type ='Furniture' then v_markup_factor=1.2;
 elsif i.item_type ='Housewares' then v_markup_factor=1.35;
 ...
 else v_markup_factor=1;
 end if;
 if i.store_type='Premium' then v_markup_factor:=v_markup_factor * 1.2;
 elsif i.store_type='Discount' then v_markup_factor:=v_markup_factor * .88;
 end if;

 v_price := i.wholesale_price * v_markup;
 update item_prices

 set retail_price = v_price

 where item_id = i.item_id

 and store_id = i.store_id;
end loop;
Solution 2

The first item to not is we converted each of the above If/Then blocks into case statements within the select statement labeled y. In the second case statement for store_type, we had to add an else clause which was not in the original code to preserve the logic. If/Then blocks do not require every case to be handled but case statements in SQL statements error on unhandled case. PL/SQL Case Statements allow unhandled exceptions in the same manor as If/Then blocks.
merge into prices x

using (select a.*, b.*,
 case when i.item_type ='Furniture' then 1.2

 when i.item_type ='Housewares' then 1.35
 else 1
 end *

 case when i.store_type='Premium' then 1.2
 when i.store_type='Discount' then .88
 else 1
 end *

 wholesale_price retail_price

 from items a inner join stores b using (store_id)) y
on (item_id = i.item_id and

 store_id = i.store_id)
when matched
then update
 set x.retail_price=y.retail_price

 where retail_price is null;
Summary 2
Moving the logic from PL/SQL into SQL allows the developer to use single dml statements which can perform the same logic on all the rows at once rather than one row at a time. DML statements can also be parallelized for increased throughput at the cost of additional resources; this is particularly useful for batch style processing.
Issue 3 – Using custom Functions Instead of Joins

I have scene numerous pieces of code that call custom written functions instead of doing a simple join. While this has the benefit of encapsulation, we are not encapsulating a significant amount of logic and data structures typically change less often than code. One has to way this limited benefit vs. the cost of Oracle executing the function at least once per row processed. In cases where Oracle needs to compare one row against another it will execute the function for every comparison, which can be multiple times per row. I have seen the number of executions get as high as 10 times the number of rows when using a function such as max as opposed to count.

Example 3.1 – OLTP Environment
create or replace function f_get_policy_id (policy_number_in in number)

return number
is

 v_policy_id number;
begin

 select policy_id
 into v_policy_id

 from policies
 where policy_number=policy_number_in;
 return v_policy_id;
end;

/

select *

from policy_periods
where policy_id = f_get_policy_id (:1);
The logic of the above query is very similar to a join where one value is retrieved from the function by execution the select statement imbedded in it and that value is then used in the where clause to filter the data in the policy_periods table. The additional overhead might not be noticed on a single execution of this query as it is runs very fast but the impact can be felt when multiple users execute it simultaneously.
I have seen this query written another way in which case the impact is much more noticeable even when executed by a single user. In this case the function is run against every row in the set and would run multiple times even for identical values as the query invalidates the possibility of using an index. The multiple executions per distinct value can be reduced by labeling the function as deterministic but even in the best case it would still run at least once per distinct value and will frequently run several times per value if not per row.

select *

from premium
where f_get_policy_id (policy_number) = :1;
Solution 3.1
select *

from policies a,
 policy_periods b

where a.policy_id=b.policy_id

and a.policy_id;
By performing the join instead of calling the function execution time can drop from seconds or minutes to milliseconds.
Example 3.2 – Batch Environment

create or replace function f_get_policy_id (policy_number_in in number)

return number
is

 v_policy_id number;
begin

 select policy_id

 into v_policy_id

 from policies
 where policy_number=policy_number_in;
 return v_policy_id;
end;

/

select f_get_policy_id (policy_number) policy_id,

 sum(written_premium) written_premium

from premium
where transaction_date between :1 and :2
group by get_policy_id (policy_number)
order by 2 desc;
The above function is identical to the on illustrated in example 3.1. The query has a slightly different twist; it is intended to process multiple policy_id’s instead of one.
Solution 3.2

select policy_id, sum(written_premium) written_premium

from premium a, policies b

where a.policy_number=b.policy_number

and transaction_date between :1 and :2

order by 2 desc
The solution is again to use to a join instead of the function saving the overhead of multiple executions and sql to pl/sql and back context switches.

Summary 3
Using joins instead of custom functions eliminates context switches and reduces overhead and processing time involved in running a query. Use custom functions only when a significant amount of logic is embedded in it and has a reasonable possibility of changing. Ideally these functions should only contain logic and not DML (select, insert update, delete, merge) statements.
Issue 4 – Self Joins

Self joins are joins of a table against itself in various forms and are typically used to get the detail and summary data from a table or find a logical progression (i.e. current and previous record). This was the best method to retrieve this type of information prior to Oracle 8.1.6 (2000).
Example 4.1 – Current/ Most Recent Record
select claim_num, est_seq_num, a.est_amt_claim_exp, a.est_amt_employers_liability,

 a.est_amt_legal_expense, a.est_amt_medical

from wcis_dba.estimate a

where est_seq_num = (select max(b.est_seq_num)

 from wcis_dba.estimate b where a.claim_num=b.claim_num)
order by claim_num
Frequently history is stored within the same table as the current information and there isn’t a flag or a simple way to determine which record is the most recent (current) to use except to find the greatest date or sequence based number for a record. The Estimate table in this example stores data for multiple points in time for each claim, as time goes on the est_seq_num increases. This query retrieves the most recent record for each claim by first getting the highest est_seq_num for each claim, and then selects the data for it requiring two passes of the estimate table.
Solution 4.1
select claim_num, est_seq_num, a.est_amt_claim_exp,

 a.est_amt_employers_liability,

 a.est_amt_legal_expense, a.est_amt_medical

from (select claim_num, est_seq_num, a.est_amt_claim_exp,
 a.est_amt_employers_liability,

 a.est_amt_legal_expense, a.est_amt_medical,
 row_number () over (partition by claim_num

 order by est_seq_num desc) rn

 from wcis_dba.estimate a)
where rn=1

order by claim_num
The inner query uses an analytical function, row_number, to label each record with a value starting with 1 for each claim (partition by claim_num) staring with highest est_seq_num (order by est_seq_num desc) and incrementing by one for each record. The outer query keeps the most current record (where rn=1) and discards the rest.
[image: image1.png]
The Explain plans above illustrate the original query utilizing the self join on the left and the analytical function on the right. The original query performs 2 full scans and a hash join on the entire set, while the analytical function query performs a single full scan saving time, cpu and memory. The analytical function is smart enough to realize that we only want the most recent record and uses a Window Pushed Sort Rank so when the analytical function is running it is already discarding the extra records and does not waste time processing them, unlike the original query.
Example 4.2 – Comparing each Record to a following record.
select a.customer_id, round(avg(b.sale_date - a.sale_date)) avge_days_btwn_sales

from sales a, sales b

where a.customer_id=b.customer_id

and a.customer_sale_number+1=b.customer_sale_number

group by a.customer_id;
This example calculates the number of days between sales for repeat customers. Each record has customer_sale_number that stores whether the order was the customers’ first, second, third etc. order. As in the last query, 2 full scans and a hash join are required to process this query.

Solution 4.2
select customer_id, round(avg(days_between_sales)) avg_days_btwn_sales
from (select a.customer_id,

 lead(sales_date,1,null) over (partition by customer_id

 order by customer_sale_num) –

 sales_date days_between_sales

 from sales a)
where days_between_sales is not null
group by customer_id;
By using the analytical function Lead to get the record following the current record for each. As in Example 4.1 this allows us to perform one Full Scan instead of two and eliminate the need for the Hash Join. The lead function has the additional benefit that is does not require the customer_sale_number column; we could have replaced it with sales_date field instead.

The lead function takes 3 parameters, to column we want to look ahead on (sales_date), the number of records to look ahead (1), and what the value should be for the last record in the partition that by definition does not have a following record (null). We use the third parameter in the outer query to eliminate the rows for customers with only 1 transaction and for the transaction that does not have one following it, which serves the same purpose as the inner join in the original query.
Example 4.3 – Details and Summary records
Queries that display both the summary and details records are frequently written with a Union All set operator as in this example.
select decode(customer_id,null,'Grand Total', customer_id) customer_id,
 amount Total

from (select customer_id,
 sum(amount) amount,--customer_total
 1 sort_order

 from sales

 group by customer_id

 union all
 select null,
 sum(amount) amount,--grand_total
 2 sort_order

 from sales)

order by sort_order,1;
Solution 4.3
To avoid the second pass and the join of the data as we did in the previous sections of this topic we are going to use the rollup aggregation function. Rollup is a very powerful function and this is a very simple example. If you run into a situation similar to this one, make sure to research the Rollup and Cube functions as can provide multiple levels of aggregates in a single query.
select decode(customer_id,null,'Grand Total', customer_id) customer_id,
 sum(amount) customer_total

from sales

where customer_id<100
group by rollup(customer_id);
Summary 4
Using analytical functions one can avoid the overhead associated with joining a table to itself, resulting in significantly less system resource utilization, faster query execution and a more scalable application.
Issue 5 – Coding without using bulk processing as 10g optimizes the code for you on the back end.

This argument is popular because it is based on a grain of truth. When fetching a row from an explicit or implicit cursor Oracle 10g fetches 100 rows not one decreasing the overhead associated with fetching. It does not improve the dml code within the loop.

Example 5

begin
 for i in (select policy_id from policies)
 loop
 insert into policy_test values(i.policy_id);
 end loop;
end;
/

In this example the code fetches and inserts 1.6 million rows. The 10046 trace of the file breaks the timing up into 3 sections, the pl/sql block, the cursor and the insert. From the cursor section we can see that 1,648,008 records were retrieved in 16,481 fetches. Dividing these tells us that 100 rows were retrieved per fetch with the last one pulling 8 records. However when we look at the Insert statement the number of executions (1,648,008) matches the number of rows processed indicating that there was no bulk processing being done.

The total elapsed time for the process was 439 seconds.

PL/SQL Block
begin

 for i in (select policy_id from policies)

 loop

 insert into policy_test values(i.policy_id);

 end loop;

end;

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 80.53 83.77 0 0 0 1

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 2 80.53 83.77 0 0 0 1

Cursor
SELECT POLICY_ID

FROM POLICIES

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.01 0.00 0 0 0 0

Fetch 16481 3.50 3.57 0 21495 0 1648008

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 16483 3.51 3.57 0 21495 0 1648008

Insert Statement
INSERT INTO POLICY_TEST

VALUES (:B1)

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1648008 345.62 352.41 5 1362 1668706 1648008
Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 1648009 345.62 352.41 5 1362 1668706 1648008
Solution 5
declare
 type array_policy_id is table of policy_test.policy_id%type;
 ar_policy_id array_policy_id;

 cursor cur_policies is
 select policy_id from policies;

begin
 open cur_policies;

 loop
 fetch cur_policies bulk collect into ar_policy_id limit 1000;
 forall i in 1..ar_policy_id.count
 insert into policy_test values(ar_policy_id(i));

 exit when cur_policies%notfound;

 end loop;

end;

/
In order to use Bulk Processing within the loop, a forall statement must be on each dml statement. Forall statement process all records within an array which we populate using a bulk collect statement. The 10046 trace also broke out the timing into the same 3 components, the pl/sql block, the cursor and the insert. The Cursor processed the same number (1,648,008) of rows but it did it 1,649 fetches instead of 16,481 and processed the Insert statement in 1,649 executions instead of 1,648,008. The total elapsed time was 8 seconds.
PL/SQL Block
declare

 type array_policy_id is table of policy_test.policy_id%type;

 ar_policy_id array_policy_id;

 cursor cur_policies is

 select policy_id from policies;

begin

 open cur_policies;

 loop

 fetch cur_policies bulk collect into ar_policy_id limit 1000;

 forall i in 1..ar_policy_id.count

 insert into policy_test values(ar_policy_id(i));

 exit when cur_policies%notfound;

 end loop;

end;

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.06 0.05 0 28 0 0

Execute 1 0.26 0.35 0 9213 0 1

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 2 0.32 0.41 0 9241 0 1

Cursor
SELECT POLICY_ID

FROM POLICIES

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1649 4.65 4.73 0 6703 0 1648008

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 1651 4.65 4.73 0 6703 0 1648008

Insert Statement
INSERT INTO POLICY_TEST

VALUES (:B1)

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1649 3.17 2.99 0 2400 17832 1648008

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 1650 3.17 2.99 0 2400 17832 1648008

Summary 5

The elapsed time table below shows the overall time decreasing by 98% from 7+ minutes to 8 seconds with 99% decreases in the elapsed time of the PL/SQL Block and Insert Statement. The elapsed time on the cursor increased by 30% but this only added 1 second to the process.
	Section
	For Loop Elapsed Time (seconds)
	Bulk Processing Elapsed Time (seconds)
	Percent Difference

	PL/SQL Block
	83.8
	0.4
	99.5%

	Cursor
	3.6
	4.7
	-30.6%

	Insert Statement
	352.4
	3.0
	99.1%

	Total
	439.8
	8.1
	98.2%

Bulk processing should be used instead of standard loops for production code whenever possible. Single sql statements are generally preferred over bulk processing especially in simple cases such as this example. As always proper testing and tracing is the key identifying which code will work best in a particular situation.

Issue 6– Checking to see if a row exists prior to doing an insert, update or delete.

Checking to see if a row exists prior to performing a DML operation, to avoid hitting a unique constraint violating or similar constraint forces the instance to do twice as much work as one of the steps of processing the dml statement is to find if that row exists anyway. The ideal method is to remove the rows before processing them, however that is not always feasible.
Example 6
I had the opportunity to tune a piece of code that had to insert records from a 20 million row from one table into a 1.5 billion row table every week however the record could already exist in which case the no action should be taken. Prior to inserting each record a query was run to check if the record already existed.
…
for i in (select sd.item_id, sd.location_id

 from mdp_matrix mdp, t_ep_dc_stock_date dc

 where mdp.t_ep_dc_stock_date_ep_id = dc.t_ep_dc_stock_date_ep_id)
 loop
 select count(1) into v_exists

 from sales_data

 where item_id =i.item_id

 and location_id =i.location_id

 and sales_date = v_insert_date

 and rownum < 2;
 if v_exists < 1 then
 insert into sales_data(item_id,location_id, sales_date, last_update_date,

 actual_quantity, gpi_sales_wkly)
 values (i.item_id, i.location_id,v_insert_date,sysdate,0,0);
 end if;
 end loop
…
Solution 6.1 – Bulk collect
Using Bulk collect we are able to send 1000 insert statements at a time to the sql engine eliminating 999 context switches and since Oracle needs to ensure the integrity of the unique constraint it is going to check for us if the record exists already, so we can skip that step. Using the exception handler to trap and ignore the Primary Key violations allows us to continue processing without the whole process failing.

declare
 ...
 dml_errors exception;
 pragma exception_init(dml_errors, -24381);
 type array_item_id is table of mdp_matrix.item_id%type;
 type array_location_id is table of mdp_matrix.location_id%type;
 ar_item_id array_item_id;
 ar_location_id array_location_id;
 cursor cur_leading_zeros is
 select sd.item_id, sd.location_id
 from mdp_matrix mdp, t_ep_dc_stock_date dc

 where mdp.t_ep_dc_stock_date_ep_id = dc.t_ep_dc_stock_date_ep_id;

begin
 open cur_leading_zeros;
 loop
 fetch cur_leading_zeros bulk collect into ar_item_id, ar_location_id
 limit 1000;
 v_count:=cur_leading_zeros%rowcount;
 begin

 forall i in 1..ar_item_id.count save exceptions
 insert into sales_data(item_id, location_id, sales_date, last_update_date,

 actual_quantity,gpi_sales_wkly)
 values (ar_item_id(i), ar_location_id(i), sales_date_in, sysdate, 0, 0);

 exception
 when dml_errors

 then v_errors:=sql%bulk_exceptions.count;
 v_total_errors:=v_total_errors+v_errors;

 end;
 exit when cur_leading_zeros%notfound;

 end loop;
end;

Solution 6.2 – DML with error logging
In 10gR2 Oracle allowed us to run a dml statement and rather than error out and rollback if 1 record out of the set (1 to billions) fails, the statement logs the error to a specially created table which store the error information along with the data from the dml statement. To prevent the insert into the error table from erroring all the data (non-error related) columns are created with a data type varchar2(4000). This feature supports the use of parallelization similar to any other dml statement.
There is overhead associated with the error logging which is dependent on how many rows errors out. If a significant amount of errors

exec dbms_errlog.CREATE_ERROR_LOG('SALES_DATA','SALES_DATA_ERRORS');

insert into sales_data (item_id,location_id, sales_date, last_update_date,

 actual_quantity, gpi_sales_wkly)
select mdp.item_id, mdp.location_id, greatest (v_min_sales_date, next_day
 (dc_stock_date - 1, 'MONDAY')) sales_date, sysdate, 0, 0
from mdp_matrix mdp, t_ep_dc_stock_date dc

where mdp.t_ep_dc_stock_date_ep_id = dc.t_ep_dc_stock_date_ep_id

log errors into sales_data_errors reject limit unlimited;
Solution 6.3 – Merge Statement

The Merge statement (aka upset) allows us to do up to two operations (insert/update/delete) based upon the existence or non-existence of data in a table. In this case we only use the insert when the record does not exist so we do not need to check it in advance. This statement also supports parallel dml operations.
 merge into sales_data a
 using (select mdp.item_id, mdp.location_id, greatest (v_min_sales_date,
 next_day (dc_stock_date - 1, 'MONDAY')) sales_date

 from mdp_matrix mdp,

 t_ep_dc_stock_date dc

 where mdp.t_ep_dc_stock_date_ep_id = dc.t_ep_dc_stock_date_ep_id)b

 on (a.item_id=b.item_id and
 a.location_id=b.location_id and

 a.sales_date=b.sales_date)
 when not matched

 then insert (item_id,location_id, sales_date, last_update_date, actual_quantity,

 gpi_sales_wkly)
 values (b.item_id, b.location_id, b.sales_date, sysdate, 0, 0);
Summary 6
In this case eliminating the records that already exited was not feasible due to the large relative size of the tables. The table being inserted into was 75 times larger than the source table and doing a full index scan on the larger table would take many hours. On small scale tests 1-2 million records all 3 solutions performed 3-4 times better than the original implementation. The bulk collect solution (6.1) and the merge solution (6.3) were very competitive by throughput, however due to the large number of Primary Key Violation errors the insert with dml logging took almost twice as long as it had to do almost twice the number of inserts. The merge statement did not scale as well as the bulk collect solution in larger volume tests, the final code was based upon the bollect as it scaled linearly.
Issue 7 – Code Repetition
Code Repetition is generally not desirable as it makes code more difficult to read, maintain and enhance. I am going to focus purely on the performance impact. I have seen many batch jobs and reports process the same set of data numerous times with very minor differences and by integrating these multiple versions into a single query the overhead associated with the repetition can be eliminated with little or no additional cost to the first query.
Example 7
In the following query we see a main query with 6 inline views. Queries 1-4 are very similar as they try to count the number of claim that meet a certain criteria by team. Query 2 has no additional filters beyond the joins, and Queries 1, 3 and 4 just count the number of records that match the additional filters. Queries 6 and 6 have identical joins and where clauses however Query 5 counts the number of records and Query 6 sums the amount allowed. This could not be combined in this version as inline views in a select clause can only return a single column.
 select busn_role_cd,
 (select count (distinct c.claim_num)
 from wcis_dba.claim c,
 la_agreement_rule_assignment lara,
 policy_period pp

 where c.accident_date >= add_months (sysdate, -6)
 and c.plcy_id = lara.agre_id

 and pp.plcy_id = lara.agre_id

 and pp.plcy_prd_eff_dt = lara.plcy_prd_eff_dt

 and c.accident_date >= pp.plcy_prd_eff_dt

 and c.accident_date < pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <> pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <= trunc(sysdate)
 and pp.plcy_prd_end_dt > trunc(add_months(sysdate,-6))
 and lara.busn_role_cd_team = br.busn_role_cd

 and c.drug_testing_code in ('A', 'N', 'P')) as no_drug_tst,
 (select count (distinct c.claim_num)
 from wcis_dba.claim c,
 la_agreement_rule_assignment lara,
 policy_period pp

 where c.accident_date >= add_months (sysdate, -6)
 and c.plcy_id = lara.agre_id

 and pp.plcy_id = lara.agre_id

 and pp.plcy_prd_eff_dt = lara.plcy_prd_eff_dt

 and c.accident_date >= pp.plcy_prd_eff_dt

 and c.accident_date < pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <> pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <= trunc(sysdate)
 and pp.plcy_prd_end_dt > trunc(add_months(sysdate,-6))
 and lara.busn_role_cd_team = br.busn_role_cd
 --no additional filters) as total_claims,
 (select count (distinct c.claim_num)
 from wcis_dba.claim c,
 la_agreement_rule_assignment lara,
 claim_contacts cc,
 policy_period pp

 where c.accident_date >= add_months (sysdate, -6)
 and c.plcy_id = lara.agre_id

 and pp.plcy_id = lara.agre_id

 and pp.plcy_prd_eff_dt = lara.plcy_prd_eff_dt

 and c.accident_date >= pp.plcy_prd_eff_dt

 and c.accident_date < pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <> pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <= trunc(sysdate)
 and pp.plcy_prd_end_dt > trunc(add_months(sysdate,-6))
 and lara.busn_role_cd_team = br.busn_role_cd

 and cc.sif_on_file_ind = 'Y'
 and cc.contact_code = 'ICI'
 and cc.claim_num = c.claim_num) as no_sif,
 (select count (distinct c.claim_num)
 from wcis_dba.claim c,
 la_agreement_rule_assignment lara,
 policy_period pp

 where c.accident_date >= add_months (sysdate, -6)
 and c.plcy_id = lara.agre_id

 and pp.plcy_id = lara.agre_id

 and pp.plcy_prd_eff_dt = lara.plcy_prd_eff_dt

 and c.accident_date >= pp.plcy_prd_eff_dt

 and c.accident_date < pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <> pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <= trunc(sysdate)
 and pp.plcy_prd_end_dt > trunc(add_months(sysdate,-6))
 and lara.busn_role_cd_team = br.busn_role_cd

 and (nvl (c.c1_recv_date, sysdate) - c.accident_date) > 7)
 as no_late_rpt,
 (select sum (decode (mbs.network_code,
 null, null,
 nvl (mbd.service_allow_amt, 0)))
 from medical_bill_summary mbs,
 medical_bill_detail mbd,

 ts.policy p,
 policy_period pp,
 la_agreement_rule_assignment lara

 where mbs.accident_date >= add_months (sysdate, -6)
 and mbd.bill_control_num = mbs.bill_control_num

 and mbd.detail_status_code = '110'
 and nvl (mbs.network_code, '******') not in
 ('OINV', 'HNC', 'PNET')
 and mbd.service_code not in ('013', '014', '016', '030', '040')
 and substr (mbd.cpt_code, 1, 5) <> '91'
 and mbd.service_allow_amt <> 0
 and mbs.policy_num = p.plcy_no
 and pp.plcy_id = lara.agre_id

 and pp.plcy_prd_eff_dt = lara.plcy_prd_eff_dt

 and mbs.accident_date >= pp.plcy_prd_eff_dt

 and mbs.accident_date < pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <> pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <= trunc(sysdate)
 and pp.plcy_prd_end_dt > trunc(add_months(sysdate,-6))

 and p.plcy_id = lara.agre_id

 and lara.busn_role_cd_team = br.busn_role_cd) as no_omnet,
 (select sum (nvl (mbd.service_allow_amt, 0))
 from medical_bill_summary mbs,
 medical_bill_detail mbd,
 ts.policy p,
 policy_period pp,
 la_agreement_rule_assignment lara

 where mbs.accident_date >= add_months (sysdate, -6)
 and mbd.bill_control_num = mbs.bill_control_num

 and mbd.detail_status_code = '110'
 and nvl (mbs.network_code, '******') not in
 ('OINV', 'HNC', 'PNET')
 and mbd.service_code not in ('013', '014', '016', '030', '040')
 and substr (mbd.cpt_code, 1, 5) <> '91'
 and mbd.service_allow_amt <> 0
 and mbs.policy_num = p.plcy_no

 and p.plcy_id = lara.agre_id

 and pp.plcy_id = lara.agre_id

 and pp.plcy_prd_eff_dt = lara.plcy_prd_eff_dt

 and mbs.accident_date >= pp.plcy_prd_eff_dt

 and mbs.accident_date < pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <> pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <= trunc(sysdate)
 and pp.plcy_prd_end_dt > trunc(add_months(sysdate,-6))

 and lara.busn_role_cd_team = br.busn_role_cd) as serv_allow_amt

 from ts.business_role_team br;
Solution 7
I moved the base version of queries 1-4 from the select clause to the From creating a single inline view. The additional filter from queries 1,3,4 were moved into the select clause using case statements to filter out the values.
The inline views for queries 5 and 6, were collapsed into a single inline view in the from clause with the count and sum in the select clause.

The execution time was reduced from 2+ hours to under 10 minutes. The streamlined version of code allowed the optimizer to come up with a much better execution plan. I have found when the same table(s) are specified multiple times in a query the optimizer will try to speed up the query by choosing different joins methods to reduce IO and sometimes execution time suffers greatly. This happens more often when the same aliases are used for the same tables, even though they should be out of scope of other sections of the query.
select a.busn_role_cd team_cd,
 no_drug_tst,
 total_claims,
 no_sif,
 no_late_rpt,
 no_omnet,
 serv_allow_amt

 from (select count (distinct c.claim_num) total_claims,
 count (distinct case when drug_testing_code in ('A', 'N', 'P')
 then c.claim_num else null end) no_drug_tst,
 count (distinct case when nvl (c.c1_recv_date, sysdate) –
 c.accident_date > 7
 then c.claim_num else null end) no_late_rpt,
 count (distinct case when cc.sif_on_file_ind = 'Y' and
 cc.contact_code = 'ICI'
 then c.claim_num else null end) no_sif,
 busn_role_cd

 from wcis_dba.claim c,
 la_agreement_rule_assignment lara,
 policy_period pp,
 business_role_team br,
 claim_contacts cc

 where c.accident_date >= add_months (sysdate, -6)
 and c.plcy_id = lara.agre_id

 and pp.plcy_id = lara.agre_id

 and pp.plcy_prd_eff_dt = lara.plcy_prd_eff_dt

 and c.accident_date >= pp.plcy_prd_eff_dt

 and c.accident_date < pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <> pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <= trunc(sysdate)
 and c.claim_num = cc.claim_num(+)
 and pp.plcy_prd_end_dt > trunc(add_months(sysdate,-6))
 and lara.busn_role_cd_team = br.busn_role_cd

 group by busn_role_cd) a,
 (select sum (case when mbs.network_code is null
 then 0 else nvl (mbd.service_allow_amt, 0) end) no_omnet,
 sum (nvl (mbd.service_allow_amt, 0)) serv_allow_amt, busn_role_cd

 from medical_bill_summary mbs,
 policy p,
 policy_period pp,
 medical_bill_detail mbd,
 la_agreement_rule_assignment lara,
 business_role_team br

 where mbs.policy_num = p.plcy_no

 and p.plcy_id=pp.plcy_id

 and mbs.bill_control_num = mbd.bill_control_num

 and pp.plcy_prd_eff_dt = lara.plcy_prd_eff_dt

 and pp.plcy_id = lara.agre_id

 and lara.busn_role_cd_team = br.busn_role_cd

 and mbs.accident_date >= add_months (sysdate, -6)
 and mbd.detail_status_code = '110'
 and nvl (mbs.network_code, '******') not in ('OINV', 'HNC', 'PNET')
 and mbd.service_code not in ('013', '014', '016', '030', '040')
 and substr (mbd.cpt_code, 1, 5) <> '91'
 and mbd.service_allow_amt <> 0
 and mbs.accident_date >= pp.plcy_prd_eff_dt

 and mbs.accident_date < pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <> pp.plcy_prd_end_dt

 and pp.plcy_prd_eff_dt <= trunc (sysdate)
 and pp.plcy_prd_end_dt > trunc (add_months (sysdate, -6))
group by busn_role_cd) b

where a.busn_role_cd = b.busn_role_cd
Summary 7
By reducing the repetition of code, the code runs faster, uses fewer resources, is easier to read and understand, and is easier to maintain and upgrade.
Example 8 – Using Autonomous Transactions For Logging

Autonomous Transactions is a great tool that allows a process to run code in another session and commit the data without committing the data in the current session. When used improperly however it can impose a significant performance hit.
Example 8
procedure p_log (debug_level_in in number,

 debug_log_level_in in number,

 start_or_end_in in varchar2,
 error_message_in in varchar2,
 process_type_in in varchar2,
 process_log_id_in_out in out number)
is
 pragma autonomous_transaction;

begin

 if debug_level_in >= debug_log_level_in and start_or_end_in='start'

 then insert into process_logs (process_log_id, process_type, start_date)

 values (seq_process_log_id.nextval, process_type_in, sysdate)

 returning process_log_id into process_log_id_in_out;

 elsif debug_level_in >= debug_log_level_in and start_or_end_in='end'

 then update process_logs

 set error_message = error_message_in,

 end_date = sysdate

 where process_log_id = process_log_id_in_out;

 end if;

 commit;
end;
Code similar to the above procedure was called routinely throughout an application. The reasoning was so that the caller could specify different levels of debugging and receive a corresponding amount of logging. The value for debug_log_level_in was fixed for each statement throughout the code of application and the value for debug_level_in could be specified by the user at run time. With a debug_level_in of 0, no records were written to the process_logs table. Even without records being written to the log table the commits were happening to the tune of 6108 commits per record processed. There were 6,108 statements throughout dozens of packages and procedures, each surrounded by a call to this logging process. This caused the redo log buffer to be constantly flushed and it consumed 1 second, 37% of the elapsed time per record and over the course of processing 1 million records would have taken an additional 12 days of processing time.
Solution 8
Since this procedure part of a logging package and was called from hundreds of other packages it was not feasible to change anything except the body of the logging package, so none of the other code would have to be changed or recompiled. The logic was separated into 2 procedures, the original public p_log procedure that checks the debug level and second private procedure that inserts and updates the process_log table. This allowed standard processing to be processed without the additional overhead of the commits.

Public
procedure p_log (debug_level_in in number,

 debug_log_level_in in number,

 start_or_end_in in varchar2,
 error_message_in in varchar2,
 process_type_in in varchar2,
 process_id_in_out in out number)
is
begin

 if debug_level_in >= debug_log_level_in

 then p_log_process (start_or_end_in, error_message_in,

 process_type_in, process_id_in_out)
 end if;
end;
Private
procedure p_log_process (start_or_end_in in varchar2,
 error_message_in in varchar2,
 process_type_in in varchar2,
 process_id_in_out in out number)
is
 pragma autonomous_transaction;

begin

 if start_or_end_in='start'

 then insert into process_logs (process_log_id, process_id, start_date)

 values (seq_process_log_id.nextval, process_type_in, sysdate)

 returning process_id into process_id_out;
 elsif start_or_end_in='end'

 then update process_logs

 set error_message = error_message_in,

 end_date = sysdate

 where process_id=process_id_in_out;

 end if;

 commit;
end;
Summary 8
One needs to be cautious with the use of autonomous transactions; over or improper use can have a significant negative performance impact however used properly they can be very beneficial with little overhead.
Issue 9 – Missing Indexes

Missing indexes are very common problem especially with bought one size fits most products (Oracle Applications, Siebel etc.) as the application developers don’t know how you are going to be using it so they can’t know which indexes you will need. While this issue is relatively simple, I would be remiss in not mentioning it.

Missing indexes put a heavy burden on the database in general as they can flood the buffer cache with millions of block of data of essentially useless data. This will not only impact the specific process but every other process calling it.
In one case, a table was built to capture the session id and page number for every submission of a purchase on a retail web site. This table was checked on each submission to see if that particular unique combination already existed incase the user hit the submit button twice thus preventing duplicate actions such as credit card being charged multiple times. This was a great concept however the table did not have any indexes, nor did it have a purge process as the data was irrelevant once the user’s session was over. So as time went on this table kept growing larger, yet the submission process was still relatively fast and went unnoticed. Even though the table had millions of rows it was only about 100mb in size and it stayed in cache as it was always being used. Users complained of other performance problems so I pulled an AWR for their peak period 10 hour period and noticed this query in Top Queries by Logical IO section and saw that one query processed 35tb’s of data on a database that was less than 200 gb in size at the time. Once we added the index we saw performance improvements across the board. We estimated the logical reduction on this query to be 99.9976% from 100mb to 24k (3 8k blocks – 1 index branch, 1 index leaf, 1 table blocks) per execution across 360k executions making the amount of data that would have been processed over the same period to only 8gb. The purge process was implemented purely to save space. It ran once a day, and deleted all data over 2 days old.
In another case, the process to consolidate two customer accounts, took 14 minutes. The problem was so bad that more requests would come in daily than could be processed in day. When I got the task to speed up the process the backlog was at over 100,000 merges. Unfortunately a 10046 trace did not show the offending sql as it was buried deep in nested pl/sql packaged procedure and function calls and probably considered recursive sql by tkprof. So I ran the pl/sql profiler (Metalink Note: 243755.1) against the process which identified 12 queries as being slow (out of hundreds of queries in the process), each taking 15 seconds to 2 minutes. 11 of them had missing indexes, and 1 (10th worst) was a known issue that was fixed by using a patch supplied by the vendor which had the query written in different manor. Once the indexes were added and the patch applied the whole process took 8 seconds.

Summary

It doesn’t take many missing indexes to slow down a particular process or a whole system, the 10046 trace, AWR’s and the PL/SQL profiler are the tools to find the offending queries, and an explain plan will help you see which tables are doing a full scan and help you determine if the full scan is appropriate or not.
Conclusion

The next time a piece of code that is running slow, check if one of these common issues could be causing the problem, if so test out the outlined strategies to see how much of an improvement they can provide and as always test to make sure that by enhancing performance, you haven’t affected the logic of the code.

About The Author

Kenneth Naim is a Senior Oracle DBA and Developer with over 10 years experience with the Oracle database. He has developed, administered, and tuned several OLTP, batch and data warehousing systems for insurance, defense, point processing, utility, web, and retail companies.
[image: image2.png]
1

2

3

4

5

6

1-4

5-6

21 of 21

Paper # 429

