Middleware

Where do I add text? Building a Portal client repository from Oracle Applications offers big picture
Thomas McGrath, IT Convergence

Introduction
Oracle Applications is often not flexible enough to handle unstructured client data. Unstructured content may include Word documents, Excel documents, PDFs, images, text and video, for example. Clean display of free-form text describing a client, categorizing client project documents, and viewing these items across the TeleSales and Projects modules requires too much time of an end-user to navigate. If anything, the structure of Applications renders it unable to both handle these tasks and display them in a user-friendly way. Fortunately, it is possible to take advantage of Oracle Portal’s functionalities to provide an alternative for gaining quick and easy access to organized client-related unstructured data. This paper details a solution wherein client organizations are linked to a Portal Client Repository, delivering a full 360 degree insight into a client’s details, information on potential sales opportunities and detailed project documentation. Moreover, all of this is accessible from multiple Applications modules. This white paper highlights how to integrate Oracle Applications with an existing Oracle Portal Intranet site by cutting through divisive client information barriers across business areas within the Applications and offers a solution to the issue of storing unstructured content. The architecture of the Repository created by this solution will also provide direct link functionality between Oracle Applications and Portal for easy navigation.
Applications: TeleSales not for the unstructured
Organization Level

Storing information on an Organization level within Oracle TeleSales (OTS) does not lend itself to a structured repository for unstructured content. Typically, each client has many files including logos, text descriptions, detail surveys and sales outlooks created by sales team members or provided by clients. Of which, these files are commonly stored in shared company folders and are un-linkable from TeleSales. It is almost certain that there is no simple way to link from a shared company folder back to OTS to display all of the Organization information, including related Leads and Opportunities.
These challenges result in a loss of insight into situations clients face and undiscovered opportunities for additional sales within a client’s organization. This solution immeasurably enhanced the value of these documents and items by providing easy access to them and thereby eliminating organizational hurdles to analysis. Of course, it is possible to upload these items as Attachments (see figure below) but accessibility remains an issue even though the documents are linked to the Organization. Nevertheless, navigating to this information across clients is not easy if these items are uploaded using attachments. Users must type out the name of the Organization and hope that the search term issued is close enough to the Organization Name so that the client Organization is displayed in the returned search results.
[image: image1.jpg]
(Oracle Applications Attachments window)
Most often, corporations do not only offer one service. They offer many! Take a moment to think about a fictional Oil Services Firm called Gasoline Service, Inc. Gasoline Service may offer services to clients including exploration, development, rig construction and many others. What do these business areas have in common? Aside from existing within the same company and direct engagements with clients, nothing. If this company utilizes OTS for storing Gasoline Services’ documents, the Attachments would quickly become an un-navigable mess littered with a mixture of content across business areas and eventually, end-users will become unhappy and come up with a non-enterprise solution to store documents. This is avoidable.
Opportunities

With an Opportunity open in Oracle TeleSales, it is possible to attach documents to that Opportunity within Attachments. But what challenges does this pose? First off, the navigability of finding those documents is poor. This leads to low transparency within an organization. To access the document, a user needs to log into OTS, search for the Organization, click on an Opportunities Tab, select the Opportunity and then the Attachments tab. Needless to say, this is a cumbersome process to undergo to simply display a document. The solution detailed in this paper resolves this navigation issue.
Projects

With any luck for the organization, Opportunities become Projects as the sales team closes deals and contracts are signed by clients. Unfortunately, files uploaded to the Opportunity’s Attachments are not easily referenced from Projects unless the documents are re-uploaded or cataloged. These documents most likely include statements of work, contracts and detailed plans of services to provide, for example. Relocating these files over to the newly created Project within Oracle Projects would be difficult and time consuming. The worst case scenario is for an administrative assistant to manually download the documents and re-upload them as Attachments of the Project. In addition to the time and effort involved, this also has the potential for creating multiple sources of truth. Duplication of information is never a good idea and there is also the possibility that data could be lost during this manual operation. Suppose that the Project Management team within the organization has specific stages to each project; there will be no way to effectively organize that data from within the Oracle Applications Projects Module, either.

Requirements

Per Client
Evaluating the situation presented above, a Client-centric model of unstructured data storage is required. Considering that the desired end result for the business is a full 360 degree view of each client, a container will be created for each client organization to offer all of the unstructured data in a single place. Client data cutting across business lines within a firm requires storing the information within a container for each business area as Sub-Pages beneath the container for each client. This way, each department may store information that is most relevant to providing effective client service. Within these business areas, additional sub-folders can be created on-the-fly to support additional requirements in the future. This arrangement will be especially beneficial to employees directly involved with a project because structures will be created for each project that coincide with the typical phases of each project. Areas will also be included to store project management documentation for project managers. More importantly, navigability across clients must be taken into account. A search method that is easier than typing out a full or partially matching search within a box is required. This is not a technical challenge by any means, but it is an item that is not to be forgotten as it is an issue that this solution aims to resolve.
Easy to use

This solution must deploy in a manner that is fully organized and structured if it is to tie together a myriad of unstructured data related to clients. Otherwise, users will not fully realize the benefits that are possible. If users haphazardly create pages within Portal, it is guaranteed that the resulting structure will not stay consistent and organized; quickly bringing a promising idea straight to its own failure. This dire situation is avoidable through fully utilizing the API (Application Programming Interface) tools available from within Oracle Portal and implementation of custom developed code on the Oracle Applications.
By programmatically defining repository creation and exposing this tool for on demand calling when required by end-users from within any Oracle Applications module, a situation is setup where end-users are no longer responsible for the upkeep of a folder structure. End-users only need to insert documents into the correct containers within the defined sitemap construct. Proactive training is the best way to ensure that documents are uploaded with care. Furthermore, keeping track of the relationship between Portal Page ID and Party ID or Object ID will support links from Portal back to the organization, Opportunities or Projects within the Oracle Applications Modules. Automatically creating the repositories for each client when called upon by a user, however, is more complicated and discussed in more detail within this paper under Portal Page Creation on Demand. The Site Map definition diagram below will serve as the basis for folder or Page creation for each client.
[image: image2.jpg]
 (Clients Repository Sitemap Definition)
Design

Getting the design of the Repository correct is paramount to the success of the project. This often-forgotten and understated variable is a key component to enlisting support within an organization for a process shift in how business is conducted. Design of the new area within an existing Portal should keep the same design as the existing Portal site only if warranted by the need for integration. Should the Repository sit on its own or visually and physically integrate with the existing design construct? Not a question to answer within the bounds of this paper as it ultimately depends on what makes the most sense for each organization that wishes to implement a Client Repository. Some items to think about to guide this decision include navigability and existing Intranet site design. In terms of navigability, if an organization already runs an intranet site, pointing users to a top-level link offers easy access from anywhere within that site. However, the design of the existing intranet site may not lend itself for use as a Client Repository with levels of pages containing files. In that case, design of a new layout and separation of the sites would better support the objectives outlined. No right or wrong answer exists for this decision as it is organization-centric. Taking a step back and considering these details beforehand, however, will help yield a decision supporting a successful implementation by providing a Repository Page structure that meets requirements. For the purposes of this paper, the Repository will be created as part of an existing corporate Intranet site.
Development of an Automated Solution

Template Development

Anytime an expectation exists that Pages created within Portal are to share a consistent look and feel to the user, Templates are required to define boxes, or Regions, of content within each page. By defining Region properties and attaching Portal Styles to them, it is possible to ensure a uniform look for all content with the same fonts and displayed attributes. A looming consideration discoverable when programmatically creating the page structure is that Portal automatically creates a new Sub-Page with the same Template as is in use on the existing Parent Page. This is also true when creating a new Sub-Page within the Portal User Interface. Unfortunately, the Portal API does not provide a variable definition to allow specifying the Template that a new page should utilize. This being the case, the Template must be one for all pages in the Client Repository and support the requirements of each business area. With any luck, the needs within the business areas are not complex but are most often resolvable with Custom Portlets that can provide functionality on specific pages.
 It is possible to programmatically determine which page the user is currently on and then output a listing of Sub-Pages when such functionality is required. The aforementioned project pages for each phase are a perfect example in which a Custom Portlet is required. Although this functionality is available out of the box by setting a region as a Sub-Pages Region Type, the requirement to display the Sub-Pages on specific pages is not available out of the box. Once the Template is defined with Regions and required Custom Portlets that satisfy content requirements, security must be taken into consideration.
[image: image3.jpg]
(Sub-Pages Portlet Display)
Security Definition
Options exist within Oracle Portal to provide granular security to users within groups as well as individual users. However, granting access to individual users does not result in a reusable security structure. Most security structures often include three of four levels of access on a Page including Manage, Manage Content, Manage Content with Approval (requires enabling Approvals and Notifications for the Page Group) and View. Although it is possible to apply security permissions to a Template, this strategy often fails to satisfy the security requirements. Take the requirements of the Clients Repository, for example. Stated above, the same Template must be used for each Sub-Page. If each business area within the organization would like to permission access differently across Pages, defining access on the Template shared across these Pages will not properly meet requirements because global access to all groups on all pages will be granted. The best practice on any Portal Site is to provision Access Control Lists (ACLs) on the Page Level instead of the Template Level because Access changes will require additional Templates with the same layout but different security. If a layout change is required, it must be applied on many Templates instead of one. For these reasons, it is preferable to use Templates for design and layout while defining Access on the Page level.
In terms of defining the security permissions mentioned, Groups will need to be created through Portal Builder. A useful best practice is to name them in the form: <Site Name>_<Sub-Level(s)>_<Permission-Level>. For example, the name of the aforementioned Oil Services Company is Gasoline Service, Inc and the Client Repository will become part of the Intranet Site. Since the company name is relatively long, it would be better to abbreviate the Site Name as GASINT or similar. The first SUB-LEVEL may be called CLIENTS since this is the Clients Repository within the organization’s Intranet Site. Permission Levels are expressible as and correspond with the following Page permissions ADM (Manage), CM (Manage Content), CC (Manage Content with Approval) and VIEW. So, the top-level groups with permissions on each of the Client Repository Pages would be named GASINT_CLIENTS_ADM, GASINT_CLIENTS_CM, GASINT_CLIENTS_CC and GASINT_CLIENTS_VIEW respectively. However, what if a group of users or all of them require access to edit a client’s main page? For a group of users that require Content Contributor privileges, this is definable as a group named GASINT_CLIENTS_PAGE_CC where the PAGE in the naming convention specifies that these permissions do not cascade below the current page. This best practice will never leave an administrator unsure of what permissions an existing Group has and on what page(s).
[image: image4.jpg]
(Portal Page Access Settings Tab)
Definition of Security Groups to privilege access within the business-area specific Sub-Pages will follow the naming convention as discussed. Since the Project Management Team will have a Sub-Page under the Client Repository Main Page, Groups should be created in the form GASINT_CLIENTS_PROJECT_<Permission-Level>. The Security Model outlined offers full flexibility for future management and is worth creating in the development phase of the Client Repository satisfying the lion’s share of requirements even though initially not requested by the business. Resetting ACLs across all pages requires a SQL script to permission across many Client Pages. However, if the security is set in the beginning, accomplishing the change in access is as simple as moving a user to a different group. With the security group structure clearly defined, it is possible to automatically set permissions as Repositories are created for Clients. Of course, pages must be created before setting page privileges.
Portal Page Creation On Demand
To create Client Repository pages for each Client, consider the variables required to effectively name and keep track of the link between Oracle Applications and Portal including Organizations Party IDs, Opportunity IDs and Project IDs while keeping in mind that the creation of the Client Organization objects will have different constructs of Sub-Pages. If a Repository is submitted for creation on the organization level, this will create the Client Repository Page along with the first level of Sub-Pages for each business area and any additional Sub-Pages within whereas creation of a Repository from Oracle Projects should result the earlier discussed project folder structure.
Additional logic is required to determine if a Client Repository already exist preventing name collision errors at the time of Page creation. This is handled with a keeping track of these Client Repository Pages and serving as the source of truth tying together the relationship between Page IDs and Party IDs. This is explained in more detail in the next section related to Applications however it will later serve an even greater purpose. The table is defined as:
CREATE TABLE ITCA_CLIENTS

(

 PARTYID NUMBER,

 PARTYPAGE NUMBER DEFAULT NULL,

 SUB_DATE DATE,

 IS_COMPLETE NUMBER DEFAULT NULL,

 COMP_DATE DATE DEFAULT NULL

)
To keep track of the link between Opportunity IDs and Project IDs, another table is needed. Similar to the logic on the creation of the Client Repository Pages, conditions will ensure pages for these objects do not exist before they are created. In this case, the table will be reusable for any future types of objects that will be added to the Repository from any Oracle Applications Module.
CREATE TABLE ITCA_CLIENTS_THINGS

(

 THING_ID NUMBER,

 THING_TYPE VARCHAR2(15),

 PAGEID NUMBER,

 SUB_DATE DATE,

 IS_COMPLETE NUMBER,

 COMP_DATE DATE

)
The CLIENTS_THINGS table above offers insight into a common development pitfall to avoid. Creating objects that are specific to the current request versus how this solution may expand in the future is a recipe for trouble because requirements can always change. And they usually do! When this solution was first implemented, it was constructed so that Opportunity Repositories could be created. The objects table utilized was named ITCA_CLIENTS_OPP and was setup to store values for opportunities as the THING_TYPE column was not included. So, to include Projects and information from other Oracle Application Modules into the Repository, it was necessary to run a script to insert all of the Opportunities into the new CLIENTS _THINGS table. Needless to say, this could have been avoided by writing code and storage mechanisms that support future requirements.

Aware of the details that are required to create a Client Repository, it is possible to define values that should be passed to the procedure creating Pages. A few items of logic related to page creation to consider:
· A Client Repository for a given Client Organization may or may not exist. If it does not exist, create it.

· The Project, Opportunity or other object type may or may not already exist.

Oracle Applications will not know whether a Client Repository already exists nor will it know that any of the object pages discussed exist, either. This situation requires that the following be passed along to the Portal procedure that will create the Client Repositories:

· Party Name (Organization)

· Party ID

· Object Type (Opportunity, Project, etc)

· Object Name

· Object ID

It is possible to utilize the table structures discussed earlier coupled with this information to determine whether the pages requested already exist and to create them if they do not. Creating pages programmatically requires more than calling up the Portal API that handles page creation. To begin, it will be necessary to create the main Clients Page under which all other pages will exist. Any script calling the Page Creation API must first call wwctx_api.set_context to identify the Portal user whom will create the pages by Portal UI username and password. The user that the context is set as must have Manage Permission the Parent Page beneath which the new page will exist. Of course, this is possible with Portal Groups by making sure that this user is part of the earlier discussed GASINT_CLIENTS_ADM User Group. This way, anytime a user creates an additional Clients Repository from an Oracle Applications module, the user that the context is set as will always have permission to create additional sub-pages. In this case, the user gasolineservice with password 123456 will be used for this purpose; the call to wwctx_api.set_context is included below. When finished creating pages as this user, a call to wwctx_api.clear_context will be made to quit completing actions as this user. Take note that this user is subject to the default Realm Password Policy specifying a password after an amount of time within OID in version 10.1.2 unless another Realm is created. In OID 10.1.4, it is possible to add an additional Password Policy and apply it directly to a user specifying that the password will never expire.
wwctx_api.set_context('gasolineservice', '123456', NULL);
Instead of programming against the wwsbr_api.add_folder API directly to create the pages, it is far more useful to program against a utilities package that will in turn call the API. Why is this? Go into the Portal UI and attempt to create a new Page providing a Name of “*.” Portal will return an error and provide a whole list of invalid characters that are not allowed as valid input for this field.
[image: image5.jpg]
(Restricted Characters not allowed for Portal Page Names)
Portal also has a character length limitation on the internal Page Name of 60 characters; it far easier to reuse code that reduces the length of the internal name. Finally, according to the Oracle API Reference and as a best practice to get the page displayed immediately on the Portal, the cache invalidation messages must be processed. For the purpose of reusability and ease of development, creating a PORTAL_ACTION_TOOLS package callable from other locations is incredible useful in filtering out illegal characters with REPLACE. Additionally, the wwsbr_api.add_folder API requires definition with every use of the type of page to create with the p_type_caid input variable; since the goal is always to create the same Standard Page Type and strip out invalid characters, creating a re-usable call to the API within a PORTAL_ACTION_TOOLS package will save a lot of time and effort not to mention errors! A basis for this code as a function:
-- Remove any spaces and insert underscores with REPLACE

l_changedpagename := REPLACE(l_changedpagename, ' ', '_');

-- Remove any commas.

l_changedpagename := REPLACE(l_changedpagename, ',', '');

-- Remove any periods.

l_changedpagename := REPLACE(l_changedpagename, '.', '');

-- Remove any apostrophes.

l_changedpagename := REPLACE(l_changedpagename, chr(39), '');

-- Remove any slashes / \

l_changedpagename := REPLACE(l_changedpagename, chr(47), '');

l_changedpagename := REPLACE(l_changedpagename, chr(92), '');

-- Remove any colons :

l_changedpagename := REPLACE(l_changedpagename, chr(58), '');

-- Remove any asterisks *

l_changedpagename := REPLACE(l_changedpagename, chr(42), '');

-- Remove any questionmarks ?

l_changedpagename := REPLACE(l_changedpagename, chr(63), '');

-- Remove any quotation marks "

l_changedpagename := REPLACE(l_changedpagename, chr(34), '');

-- Remove any less/greater thans <>

l_changedpagename := REPLACE(l_changedpagename, chr(60), '');

l_changedpagename := REPLACE(l_changedpagename, chr(62), '');

-- Remove any vertical bars |

l_changedpagename := REPLACE(l_changedpagename, chr(124), '');

-- Remove any ampersands &

l_changedpagename := REPLACE(l_changedpagename, chr(38), '');

-- Remove any number signs #

l_changedpagename := REPLACE(l_changedpagename, chr(35), '');

-- If the resulting l_vendorpagename is greater than 60 characters, remove all characters after number 60

IF LENGTH(l_changedpagename) > 60

THEN

l_changedpagename := SUBSTR(l_changedpagename, 0, 60);

ELSE

NULL;

END IF;

-- Create the new page

l_newpageid := wwsbr_api.add_folder(

p_caid => groupid,

p_parent_id => parentid,

p_name => l_changedpagename,

p_display_name => newpagedisplayname,

p_type_id => wwsbr_api.FOLDER_TYPE_CONTAINER,

p_type_caid => 0

);

-- process cache invalidation messages

wwpro_api_invalidation.execute_cache_invalidation;

The variable, l_changedpagename is declared as VARCHAR2 while l_newpageid is a NUMBER and is returned at the end of the function. Calling this function from the package that will be responsible for creating Client Repository Pages; the following may be called instead of the code above for each page. The groupid variable is the Page Group ID, parentid is the parent Page ID, newpagename is the internal page name and newpagedisplayname is the New Page’s Display Name that will be seen.
new_page := PORTAL_ACTION_TOOLS.create_page(

groupid => l_group_id,

parentid => l_parent_id,

newpagename => l_orgpagename,

newpagedisplayname => l_orgpagedisplayname

);
As a best practice, writing packages containing tools that are reusable to complete tasks within Portal using the Portal APIs is usually a great benefit. It is much less complicated than repeated concern over providing correct values into often-cryptic input variables on the APIs, preparing the input variables for APIs as part of a routine. Best of all, this best practice reduces to five lines of code a call that would take approximately 50 yielding a clear programming cost savings especially when variable collisions are taken into account if the code were repeated in the procedure creating the pages.
Applying Page Security

Recall from earlier that when a page is created, Parent Page permissions carry over to Sub-Pages much like Sub-Pages will automatically utilize the Parent Page’s Template. While useful for the ACLs to “trickle down” in some situations, it presents an issue on a Clients Repository when access should differ between the Client Repository Home Page and each of the Sub-Pages. The wwsec_api.remove_group_acl Portal API is useful in resolving this issue as it will remove granted security rights for explicitly specified groups, callable after page creation. The downside is that it takes some additional time to remove security that has undesirably “trickled down.” Setting security permissions is possible by calling the wwsec_api.set_group_acl API which may be used to grant group security permissions on a page or, any object for that matter. Sticking with the theme of code reusability, this API could be included within the ACTIONS package as a function or procedure.
Portal Page Navigation

A key requirement of the Client Portal Repository is that it will improve navigation across clients allowing users to click and select the client page desired without any searching required within Oracle Applications TeleSales or other modules. This functionality may be written as an HTML FORM posting directly to Portal’s Database Action Descriptor sending Client Page’s Page ID, Page Group ID and including the Portal DAD and Portal Database Schema Name. A FOR LOOP will be responsible for opening the SELECT retrieving all Sub-Pages or the listing of Client Repository Home Pages. The output of which is below. In version 10.1.4, this code is rewritten to concatenate the Client Page Name after a slash to the URL of the Clients Repository Page as the URLs differ between Portal versions.
HTP.P('
<form name="clients" id="clientsform" action="/portal/page?" method="GET">

<select id="clientlist" multiple name="_pageid" size="20" style="width: 100%;">');

FOR PAGES IN CLIENTPAGES (476498)

LOOP

HTP.P('<option value="' || PAGES.SITEID || ',' || PAGES.ID || '">' || PAGES.TITLE || '</option>');

END LOOP;

HTP.P('<input type="hidden" name="_dad" value="portal">

<input type="hidden" name="_schema" value="PORTAL">

<p align="right"><input type="submit" value="Go!"></p>

</form>');
[image: image6.jpg]
(Listing of Client Pages on Client Repository Home Page)
Within a Client Page, a Custom dynamic navigation Portlet offers multi-level navigation allowing one-click access to each of the business areas that serve a particular client developed by utilizing SELECTs from proprietary code that returns the current page information and showing the client Home Page, business area Sub-Pages and objects created beneath them from various Oracle Applications Modules. This technique is similar to the earlier discussed navigation to a Clients’ Homepage from the Clients Repository Home Page.
[image: image7.jpg]
(Dynamic Navigation on a Client Repository Home Page)
Deployment in Applications

Job Creation Procedure in Portal

A database link is required to pass a call from each Oracle Applications Module that the Client Repository is implemented within to Portal to create pages. Calling Portal APIs directly or procedures that reference them over a database link is restricted and only may be referenced from within the Portal database. The solution to this issue is defining a procedure that will receive the call from the Oracle Applications database and create a database job within the Portal database to execute the procedure creating a Clients Repository. The procedure that creates the job is also responsible for passing the correct values against the procedure which creates the Clients Repository, but this procedure must first take into account which values are passed from the Oracle Applications database and is included below. To resolve issues when creating the job with apostrophes REPLACE is included on the job strings to avoid errors resulting from strings that were left open.
BEGIN

IF objecttype || objectname || objecttypeid IS NULL

THEN

jobstring := 'ITCINTRANET.ITCA_CLIENTS_REPOSITORY.createclientpages(''' || REPLACE(partyname,'''','') ||''',' || partyid || ');';

ELSE

jobstring := 'ITCINTRANET.ITCA_CLIENTS_REPOSITORY.createclientpages(''' || REPLACE(partyname,'''','') ||''',' || partyid || ',''' || objecttype || ''',''' || REPLACE(objectname,'''','') || ''',' || objecttypeid || ');';

END IF;

dbms_job.submit(

job => jobno,

what => jobstring

);

COMMIT;

Custom PLL, Calling Portal
With the job procedure in place allowing Client Repository cration on the fly, it is possible to implement Custom PLL in any Oracle Applications Module allowing Repository creation within specified objects. This solution was implemented on the Organization and Opportunity Tabs within Oracle TeleSales as well as projects within the Oracle Projects Module. To create a new Repository, users click on the Attachments paperclip in the top toolbar, select Portal Repository as the Attachment Type and click the Save button. The Custom PLL returns a URL pointing to the main Clients Repository Page on the Portal in the Source tab of the Attachments window including additional attributes such as Party ID and may include Thing Type and Thing ID if the Repository is created from an Opportunity or Project. Of course, the repository may or may not already exist for the Client Organization Page or maybe the sub-object already exists in the Repository. Benefiting from the exceptions that check the IDs passed to the procedure responsible for creating the Clients Repository against existing entries within the CLIENTS_THINGS table, it makes no difference whether the pages exist or not when the new Attachment is added within Oracle Applications. Oracle Applications is only responsible for passing the correct URL to the Clients Repository Home Page while Portal takes care of the error handling and passing users to the correct Object Pages.

Linking to and From Portal
Receiving Links from Oracle Applications Modules
At this point, it is possible to create a Client Repository and requested Sub-Objects from any Oracle Applications module if it does not already exist with page permissions. Navigationally, Client Repository Home pages are accessible from the Clients Repository Page within the Intranet Site. The URL link created within Oracle Applications Attachements, however, will link to this Client Repository Home page. In the end, it forwards directly to the correct Client Repository Page or Sub-Object page. Receives values of attributes from the page URL with a Portal API, it is possible to lookup the correct Portal Page ID from the aforementioned CLIENTS or CLIENTS_THINGS tables and forward the user immediately with JavaScript Redirect embedded into the page to the Client Repository Page. Sometimes, end-users are faster or more eager to arrive at a newly created Client Repository page than the speed with which the Portal database can create it. Recall that an IS_COMPLETE column was included on the tables; this column is taken into account when the user is trying to access the page. If the page is not yet created, the Clients Listing Page will refresh twice checking if the pages have been created and forward to the user to thecorrect page immediately once it is set as complete. However, if the Repository is not yet completed, the last refresh will display an error because the pages have not been created and present the standard listing of available Client Repositories.
[image: image8.jpg]
 (Error when Page has not been created)
Linking from Portal to Oracle Applications Modules
Embedding a Custom Portlet on the Template that every Client Repository Page derives its layout from allows implementation of functionality to link directly to Organizations and Opportunities within Oracle TeleSales or Projects in the Oracle Projects module. Recall that it is possible to retrieve the information related to the current page including the Page Name. With the addition of logical tests within a Custom Portlet, logical tests determine what type of page the user is currently looking at. If viewing the Client Home page, an Opportunity or Project Page, a lookup against the tables will be performed gaining the Party ID or Object ID dynamically creating a link to the correct Oracle Applications module that will display in a new window.

Monitoring Solution Performance

Since the solution outlined in this paper relies heavily upon a database job to create the pages within the Portal database, it is advisable to monitor for failures or issues. Most environment monitoring tools typically look at the alert log in the database which is where the database job errors will typically appear. Other monitoring solutions, however, may require additional configuration.
Next Steps, Conclusion
The solution outlined offers a structured repository for unstructured content within Oracle Portal for an organization’s clients. Each repository contains separate containers for each of the organization’s business areas offering a strong complement to the short comings of Oracle Applications Modules. Granted, there are other tools available for this purpose but these tools do not offer the same level of accessibility, and they are much more costly to use. This solution also offers the possibility of presenting documents uploaded within the Clients Repository to Clients via a Client Extranet developed on the existing Oracle Portal instance. Evaluating the benefits of a powerful 360 degree view into client activity and low costs, the Portal Client Repository integrated with Oracle Applications really offers the big picture!
� For more information on Custom Portlet implementation, reference another Collaborate 2008 whitepaper from Thomas McGrath titled, “What's Your Number? Keeping Employee Information Updated with Oracle Intrenet Directory and Portal” where the subject is thoroughly discussed.

1

 Paper #521

