Data Warehousing

Sleight of Hand: A Look at Oracle Partition Exchange
David Start, Johnson Controls Inc.
Abstract
With constant demands for shorter outages and more data, Data Warehouses are starting to feel their load windows diminish and disappear. Partition Exchange is one way to help the battle for good quality data with minimal outages. Partition Exchange gives the flexibility to do maintenance and verify the data before the data is available to the end user. In a small amount of time, data can be “published” to the end users minimizing the time their data is unavailable or incomplete. This paper will look into the process of partition exchange, the advantages of partition exchange, as well as a few different methods of implementing partition exchange.

The process
Structures

In order to do a simple partition exchange two objects are required. The first object is a partitioned or subpartitioned table. Partitioning is a way to break a large table up into smaller pieces called partitions. Each partition is a table in the database that has metadata linking it with other partitions to create a partitioned table. Like partitioning, subpartitioning is a way to break a partition up into smaller pieces called subpartitions. More information can be found about partitioning in the Data Warehousing documentation from Oracle (PL). For data loads, the best options for partitioning would be either list, range, or a combination of the two if using subpartitioning. Unlike hash partitioning, with range and list, there is greater control of exactly what data goes into which partition. The second object needed is an exchange table. The exchange table is a table that matches the partition table’s structure including indexes, constraints, and storage. This just helps to avoid any possible errors, bugs, or undesired side effects.
The Load

The traditional way to load data would be to load data via an insert, direct mode insert, or “create table as select”. This could take a signification amount of time and resources if the data loaded was large, in the millions of records. Partition exchange is a way to load the data into a table without having to physically insert the data. Depending on the implementation, the partition exchange can be done in under a second whereas the traditional load could take minutes or hours. Partition Exchange is the process of swapping a table for either a partition or subpartition of a partitioned table. At a high level, the exchange table is renamed to the partition and the partition renamed to the exchange table. The details on how this swap happens are discussed later in this section.
Command

The command to do partition exchange is:

alter table <table_name>
[image: image1.png]
There are several options to the partition exchange command. When performing a partition exchange, just the table can be exchanged or if the indexes are local, they can be included as well. This is done by using the including indexes or excluding indexes clauses. If the indexes are not exchanged then either the indexes would have to be rebuilt or if the indexes are global, then they can be updated using the update global indexes clause. Also there is an option to specify whether or not to check if the rows in the exchange table match the partition key of the partition they are being exchanged with. This option is specified with the with validation and without validation clauses. Further details on this command can be found in the SQL Reference (DL).

Under the Covers
The reason why partition exchange is so fast is that behind the scenes only data dictionary updates occur. Queries against user_objects will show that the object ids for the exchange table and the partition do not change but the data object ids for the objects switch. Here is a snapshot of user_objects for the exchange table and a partition of a partitioned table before the partition exchange is executed.
	OBJECT_NAME
	SUBOBJECT_NAME
	OBJECT_ID
	DATA_OBJECT_ID

	PTN_EXCHANGE_TABLE
	(null)
	128202
	128202

	PTN_TABLE
	PTN_20000_30000
	128200
	128200

After the partition exchange is executed here is what the table shows.
	OBJECT_NAME
	SUBOBJECT_NAME
	OBJECT_ID
	DATA_OBJECT_ID

	PTN_EXCHANGE_TABLE
	(null)
	128202
	128200

	PTN_TABLE
	PTN_20000_30000
	128200
	128202

The data object id for the exchange table changes from 128202 to 128200 and the opposite occurs for the partition. Since the data object ids change, queries started against a partition will continue to finish running against the exchange table. This is very important to make note of because anything that happens to the exchange table after the partition exchange could affect running queries. Any new queries will make use of the new partition.
Considerations

A few things should be noted about the partition exchange. When using the with validation clause, the exchange table is scanned to determine if the rows match the partition key. This can slow down the process greatly if the exchange table is large. If the load process is sound, validation may not be needed.
Using the update global indexes clause can also add a lot of time onto the process. Alternatively, local indexes could be used and can be exchanged when the table is exchanged. Local indexes are a way to create individual indexes on each of the partitions instead of one large index over the entire partitioned table. If the indexes are not local, then the one large index has to be updated or invalidated.
Since partition exchange is just data dictionary updates, make sure the exchange table is in the correct tablespace. If partition exchange is being used with transportable tablespaces, either leave the tablespace in the database after the exchange or make sure that the table is moved into the correct tablespace before exchanging.
Also, in order to do a partition exchange, there must be a partitioned table. This means that the partitioning option license is needed as well as the Enterprise Edition of the database.
Advantages

There are many advantages to partition exchange. A few of the advantages are reduced or eliminate maintenance outages, the ability to perform validation and shorten the window data is not available to the end user. This next section will cover these reasons in more detail.

Maintenance Outage

One of the hardest things to do with global applications is get an outage for maintenance. This maintenance may include things like compression, analyzes, table reorganizations, index rebuilds or many other operations. Once the data is loaded into the exchange table and before it is swapped, the maintenance can occur since the table is not seen by the end user. Also the data could be copied into a table and have the maintenance run there. Once the maintenance is finished, the table could then be swapped with a partition. The only option to do some of these maintenance operations without partition exchange would be to schedule an outage.
Validation

Many mature data warehouses have processes in place that will ensure the integrity of the data. This may be as simple as verifying that the data is within a certain range to something more complex like certain key amounts tie back to the source system. Data would normally have to be loaded into a work table and have these processes run on them. Once the checks were satisfied, this data would then have to be loaded into the final table. Worse yet, sometimes to avoid this second load step, data was loaded into the final table and the processes were run against the final table. These two approaches can be slow and in some cases very risky. With partition exchange, the data isn’t loaded into the final table, but instead into a work table. Here the validation occurs and then simply exchanged with the final table. This is a performance increase over the first approach since the data doesn’t have to be loaded twice. Also the work table is not exchanged until after the validation, this will give more stability over the second approach. If the validation fails, “fix it” jobs can be run and the work table revalidated or the exchange doesn’t run and someone is paged manually fix the data.
Load Window

Partition exchange helps in reducing outage windows for end user queries. In a normal load, the old data is removed and the new data is inserted. Depending on how the process is written, this could be a significant amount of time the data is not available to the end users. Now the data can stay in place and allow reports to continue running while the loads run preparing the exchange table. Then, at anytime, the exchange table can be swapped with a partition. Also, if the reason for the load is to fix incorrect data, that load can be run all the way up to the loading of the exchange table. If the data looks correct, the exchange can happen. If the data is still incorrect, then the end user is not impacted and someone can go back and continue to work on the data.

Methods

The way partition exchange is implemented can vary greatly from place to place. The following section highlights just four of the possibilities of implementation. The four solutions could be better for one situation or another based on code used to load the tables, the complexity of the overall solution and the flexibility of the solution
	[image: image2.png]

	Figure 1

Single table load

The first and simplest method is to have a single nonpartitioned exchange table and a partitioned table. The data is loaded into the nonpartitioned table and then exchanged with a partition of the partitioned table. The sample code for this is available in Appendix A.
The advantage to this approach is the simplicity. One exchange table is needed and one exchange has to be run. Since there is only one fixed exchange table the code does not have to be dynamic. This can allow for the use of many tools or PL/SQL. Keeping the exchange table’s and the partitioned table’s structures in sync is easy since there is only one table.
The disadvantage to this approach is that only one load can happen at a time. If there are two partitions that need to be loaded, the two processes would have to run in serial. This can be troublesome if the idea is to stage all of the data to be exchanged at a later time or parallelize the load for performance.
The best scenario for this method would be a consistent load, like a daily load into a table that was partitioned on day. The number of partitions being loaded is only one and it is known ahead of time that there won’t be any more.
Multiple Exchange tables
	[image: image3.png]

	Figure 2

The second method is to have many non partitioned exchange tables and a single partitioned table. The data could be loaded into multiple exchange tables. As each exchange table is finished being loaded, the table could be exchanged. Otherwise, there could be a process afterwards that would cycle through all of the exchange tables swapping them into the partitioned table. Appendix B has sample code to demonstrate this exchange.
The advantage to this approach is it allows for multiple exchange tables to be loaded at the same time. This would allow for the load to be parallelized or stage several exchange tables to be swapped in later.
There are a couple of problems with this approach. The first problem is that the number of exchange tables needs to be known ahead of time. Eight days worth of data cannot be processed at one time if there are only seven exchange tables. The second problem is that there are more objects. If the partitioned table is altered and a column is added, then all of the exchange tables have to be altered. The last problem is that the code has to be able to handle multiple table names and know what data to put into which table. This means that the code will become more complex by either storing all of the tables or using dynamic sql to handle passing in the table name.

The best scenario for this method would again be a consistent load, however, it can be larger than one partition. For example, if daily data was loaded a week at a time, seven exchange tables could be created and the entire week could be loaded at once.

Dynamic Exchange Tables
	[image: image4.png]

	Figure 3

The third method is to dynamically create the non partitioned tables. Here the only object needed initially is the partitioned table. When a partition needs to be loaded, the process would dynamically create an exchange table. This can be done by using a utility like dbms_metadata or storing the exchange table definition. Each time the load process would spawn another load, another exchange table would be created. As the load for that exchange table finished, the table could be exchanged in or at the end of all of the loads the tables could be exchanged in batch. An example of this method can be found in Appendix C.
There are many advantages to this process. The first is that the ddl changes to the partition table do not have to be propagated to the exchange tables since they are dynamically created. The only time that a change would have to be made is if the ddl was stored. The second is that the amount of parallelism is not limited by the number of exchange tables. Since the exchange tables are not being reused, the exchange tables can be kept around as a way to recover incase there was an issue with the new data.

There are also many disadvantages to this approach. This process can create a large number of exchange tables, so a good amount of spare storage will be needed. If one partition is loaded in the normal process and then today fifty partitions need to be loaded, the database should have to have enough storage around to accommodate that increase. Secondly the code will become very complex. Not only will the code need to be able to create tables, but it will have to keep track of what exchange tables it created, what data was loaded into them, and where those exchange tables will go in the partitioned table. If there are separate processes handling each partition’s load, then the code will have to make sure it doesn’t create duplicate named objects. Lastly, there has to be some process that will handle the cleanup of the exchange tables.
The best scenario for this method would be when the amount of data was not known or could fluctuate. A single load or multiple loads like the previous approaches can be handled by using the dynamic tables. This process can also handle additional loads like reloading of partitions, initial loads, and monthly restatements.
The Middle Man

	[image: image5.png]

	Figure 4

The fourth method is to use two partitioned tables and an exchange table. One of the partitioned tables would be used as a work table and the exchange table would act as a middle man table. The Data would be loaded into the work partitioned table. Once loaded, a process could determine which partitions had data in them and swap the partition with the middle man table and then exchange the middle man table with the corresponding partition in the final partitioned table. Appendix D has sample code to demonstrate this method.
The advantage to this process is the ability to load multiple partitions worth of data without passing different exchange table names for each partition to be loaded. This allows for the use of most tools as well as PL/SQL. Also the ETL code can be simple, only the exchange program needs to know about partitioning.

There are several disadvantages to this approach. If the append hint is being used then only one insert statement can be operating on the table at a time, unless it specifies which partition. Another disadvantage is the amount of storage needed to keep two versions of the partitioned table around, the work table and the actual table. Also since there are two partitioned tables, all changes to one table need to be applied to the middle man table as well as the other partitioned table. This also includes additional partitions in the case of the other partitioned table.

This approach works well when working with packages that cannot use dynamic table names but still have the requirement to load multiple partitions worth of data.
Conclusion

Partition exchange is a simple process that involves swapping a table for a partition or subpartition of another table. The reason for partition exchange can be for many reasons. Less interruption to the end users by reducing maintenance windows, increasing quality with validation, or improving the end user experience with smaller load windows are just a few reasons to use partition exchange. Partition exchange can be implemented in a variety of ways. A single exchange table can be used if the loads are simple. Increasing the number of exchange tables can allow for more loads to be staged or loaded in parallel. Dynamically creating exchange tables is a way to give more flexibility to the load process. The use of a work partitioned table as well as a middle man table can still give the same flexibility without the added complexity. However, with any process, before deciding to switch a load to use partition exchange, make sure to test thoroughly.
References

Lane, Paul. “Oracle Database Data Warehousing Guide, 10g Release 2 (10.2) Part NumberB14223-02”

Oracle, December 2005
Fogel, Steve. “Oracle Database Administrator's Guide 10g Release 2 (10.2) Part Number B14231-02”

Oracle, May 2006

Lorentz, Diana. “Oracle Database SQL Reference 10g Release 2 (10.2) Part Number B14200-02”

Oracle, December 2005
Appendix A
Setup
Procedures
/*

This procedure loads the exchange table with some data.

The inputs to this procedure are the exchange table, the source table, the start range of sequence numbers, the end range of sequence numbers.

*/

create or replace procedure load_table(v_target_table in varchar2, v_source_table in varchar2, v_start_range in number, v_end_range number) as

begin

 execute immediate 'truncate table ' || v_target_table;

 execute immediate 'insert into ' || v_target_table || ' select * from ' || v_source_table || ' where seq_nbr between ' || v_start_range || ' and ' || v_end_range;

 commit;

end;

/

/*

Anything can be put into this procedure to handle the maintenance on the exchange table before it is swapped in.

The input is the exchange table name.

*/

create or replace procedure maintenance(v_table in varchar2) as

begin

 dbms_stats.gather_table_stats(null, v_table);

end;

/

/*

This procedure handles the swapping of the exchange table with the partitioned table.

The inputs to this procedure are the partition table, the partition name, and the exchange table name

*/

create or replace procedure ptn_exchange(v_ptn_table in varchar2, v_ptn_name in varchar2, v_exch_table in varchar2) as

begin

 execute immediate 'alter table ' || v_ptn_table || ' exchange partition ' || v_ptn_name || ' with table ' || v_exch_table;

end;

/

Tables

/* This is the partitioned table that is going to be the final reporting table */

create table ptn_table

(seq_nbr number,

 owner varchar2(30),

 name varchar2(128))

tablespace edw_data

partition by range(seq_nbr)

(PARTITION "PTN_0_10000" VALUES LESS THAN (10000),

 PARTITION "PTN_10000_20000" VALUES LESS THAN (20000),

 PARTITION "PTN_20000_30000" VALUES LESS THAN (30000),

 PARTITION "PTN_30000_40000" VALUES LESS THAN (40000));

/* This is the exchange table that will be swapped with the above table */

 create table ptn_exchange_table

(seq_nbr number,

 owner varchar2(30),

 name varchar2(128))

tablespace edw_data;

/* This is just a table to hold the data to be loaded */

create table temp_table

(seq_nbr number,

 owner varchar2(30),

 name varchar2(128))

tablespace edw_data;

/* This sequence is used in populating the temp table with the load data */

create sequence seq_nbr start with 1;

Data

/* Quick generation of some data to be loaded */

insert into temp_table

select seq_nbr.nextval, a.owner, a.object_name from dba_objects a, dba_objects b

where rownum < 40000;

commit;

Load

/*

 This load process will load the exchange table, perform any maintenance on the exchange table and then swap the exchange table with a partition.

*/
begin

load_table('PTN_EXCHANGE_TABLE', 'TEMP_TABLE',20000, 29999);

maintenance('PTN_EXCHANGE_TABLE');

ptn_exchange('PTN_TABLE', 'PTN_20000_30000', 'PTN_EXCHANGE_TABLE');

end;

/

Appendix B

Setup

Procedures
/*

This procedure loads the exchange table with some data.

The inputs to this procedure are the exchange table, the source table, the start range of sequence numbers, the end range of sequence numbers.

*/

create or replace procedure load_table(v_target_table in varchar2, v_source_table in varchar2, v_start_range in number, v_end_range number) as

begin

 execute immediate 'truncate table ' || v_target_table;

 execute immediate 'insert into ' || v_target_table || ' select * from ' || v_source_table || ' where seq_nbr between ' || v_start_range || ' and ' || v_end_range;

 commit;

end;

/

/*

Anything can be put into this procedure to handle the maintenance on the exchange table before it is swapped in.

The input is the exchange table name.

*/

create or replace procedure maintenance(v_table in varchar2) as

begin

 dbms_stats.gather_table_stats(null, v_table);

end;

/

/*

This procedure handles the swapping of the exchange table with the partitioned table.

The inputs to this procedure are the partition table, the partition name, and the exchange table name

*/

create or replace procedure ptn_exchange(v_ptn_table in varchar2, v_ptn_name in varchar2, v_exch_table in varchar2) as

begin

 execute immediate 'alter table ' || v_ptn_table || ' exchange partition ' || v_ptn_name || ' with table ' || v_exch_table;

end;

/

Tables

/* This is the partitioned table that is going to be the final reporting table */

create table ptn_table

(seq_nbr number,

 owner varchar2(30),

 name varchar2(128))

tablespace edw_data

partition by range(seq_nbr)

(PARTITION "PTN_0_10000" VALUES LESS THAN (10000),

 PARTITION "PTN_10000_20000" VALUES LESS THAN (20000),

 PARTITION "PTN_20000_30000" VALUES LESS THAN (30000),

 PARTITION "PTN_30000_40000" VALUES LESS THAN (40000));

/* These are the exchange tables that will be swapped with the above table */

 create table ptn_exchange_table_1
(seq_nbr number,

 owner varchar2(30),

 name varchar2(128))

tablespace edw_data;

create table ptn_exchange_table_2

(seq_nbr number,

 owner varchar2(30),

 name varchar2(128))

tablespace edw_data;

create table ptn_exchange_table_3

(seq_nbr number,

 owner varchar2(30),

 name varchar2(128))

tablespace edw_data;

/* This is just a table to hold the data to be loaded */

create table temp_table

(seq_nbr number,

 owner varchar2(30),

 name varchar2(128))

tablespace edw_data;

/* This sequence is used in populating the temp table with the load data */

create sequence seq_nbr start with 1;

Data

/* Quick generation of some data to be loaded */

insert into temp_table

select seq_nbr.nextval, a.owner, a.object_name from dba_objects a, dba_objects b

where rownum < 40000;

commit;

Load

/*

 This load process will load multiple exchange tables, perform any maintenance on the exchange tables and then swap the exchange tables with various partitions. Each set of operations could be run in separate sessions if needed. A set of operations is a load, maintenance and exchange on the same exchange table.
*/
begin

/*

These next 3 statements need to be run in one session
*/

load_table('PTN_EXCHANGE_TABLE_1', 'TEMP_TABLE',10000, 19999);

maintenance('PTN_EXCHANGE_TABLE_1');

ptn_exchange('PTN_TABLE', 'PTN_10000_20000', 'PTN_EXCHANGE_TABLE_1');

/*

These next 3 statements can be run in the same session above or in a separate session.

*/

load_table('PTN_EXCHANGE_TABLE_2', 'TEMP_TABLE',20000, 29999);

maintenance('PTN_EXCHANGE_TABLE_2');

ptn_exchange('PTN_TABLE', 'PTN_20000_30000', 'PTN_EXCHANGE_TABLE_2');

/*

These next 3 statements can be run in the same session above or in a separate session.

*/

load_table('PTN_EXCHANGE_TABLE_3', 'TEMP_TABLE',30000, 39999);

maintenance('PTN_EXCHANGE_TABLE_3');

ptn_exchange('PTN_TABLE', 'PTN_30000_40000', 'PTN_EXCHANGE_TABLE_3');

end;

/

Appendix C

Setup

Procedures
/*

This procedure loads the exchange table with some data.

The inputs to this procedure are the exchange table, the source table, the start range of sequence numbers, the end range of sequence numbers.

*/

create or replace procedure load_table(v_target_table in varchar2, v_source_table in varchar2, v_start_range in number, v_end_range number) as

begin

 execute immediate 'truncate table ' || v_target_table;

 execute immediate 'insert into ' || v_target_table || ' select * from ' || v_source_table || ' where seq_nbr between ' || v_start_range || ' and ' || v_end_range;

 commit;

end;

/

/*

Anything can be put into this procedure to handle the maintenance on the exchange table before it is swapped in.

The input is the exchange table name.

*/

create or replace procedure maintenance(v_table in varchar2) as

begin

 dbms_stats.gather_table_stats(null, v_table);

end;

/

/*

This procedure handles the swapping of the exchange table with the partitioned table.

The inputs to this procedure are the partition table, the partition name, and the exchange table name

*/

create or replace procedure ptn_exchange(v_ptn_table in varchar2, v_ptn_name in varchar2, v_exch_table in varchar2) as

begin

 execute immediate 'alter table ' || v_ptn_table || ' exchange partition ' || v_ptn_name || ' with table ' || v_exch_table;

end;

/

/*

 This procedure creates an exchange table. This procedure stores the ddl in it.

 The input to this procedure is what the unique identifier will be on the table name

*/

create or replace procedure create_exchange_table(v_exch_table_name in varchar2) as

begin

execute immediate 'create table ' || v_exch_table_name || ' (seq_nbr number, owner varchar2(30), name varchar2(128)) tablespace edw_data';

end;

/

Tables

/* This is the partitioned table that is going to be the final reporting table */

create table ptn_table

(seq_nbr number,

 owner varchar2(30),

 name varchar2(128))

tablespace edw_data

partition by range(seq_nbr)

(PARTITION "PTN_0_10000" VALUES LESS THAN (10000),

 PARTITION "PTN_10000_20000" VALUES LESS THAN (20000),

 PARTITION "PTN_20000_30000" VALUES LESS THAN (30000),

 PARTITION "PTN_30000_40000" VALUES LESS THAN (40000));

/* This is just a table to hold the data to be loaded */

create table temp_table

(seq_nbr number,

 owner varchar2(30),

 name varchar2(128))

tablespace edw_data;

/* This sequence is used in populating the temp table with the load data */

create sequence seq_nbr start with 1;

Data

/* Quick generation of some data to be loaded */

insert into temp_table

select seq_nbr.nextval, a.owner, a.object_name from dba_objects a, dba_objects b

where rownum < 40000;

commit;

Load

/*

 This load process will create an exchange table, load the exchange table, perform any maintenance on the exchange table and then swap the exchange table with a partition.

*/
begin

create_exchange_table('PTN_EXCHANGE_TABLE_5');

load_table('PTN_EXCHANGE_TABLE_5', 'TEMP_TABLE',10000, 19999);

maintenance('PTN_EXCHANGE_TABLE_5');

ptn_exchange('PTN_TABLE', 'PTN_10000_20000', 'PTN_EXCHANGE_TABLE_5');

end;

/

Appendix D
Setup

Procedures
/*

This procedure loads the exchange table with some data.

The inputs to this procedure are the exchange table, the source table, the start range of sequence numbers, the end range of sequence numbers.

*/

create or replace procedure load_table(v_target_table in varchar2, v_source_table in varchar2, v_start_range in number, v_end_range number) as

begin

 execute immediate 'truncate table ' || v_target_table;

 execute immediate 'insert into ' || v_target_table || ' select * from ' || v_source_table || ' where seq_nbr between ' || v_start_range || ' and ' || v_end_range;

 commit;

end;

/

/*

Anything can be put into this procedure to handle the maintenance on the exchange table before it is swapped in.

The input is the exchange table name.

*/

create or replace procedure maintenance(v_table in varchar2) as

begin

 dbms_stats.gather_table_stats(null, v_table);

end;

/

/*

This procedure handles the swapping of the exchange table with the partitioned table.

The inputs to this procedure are the partition table, the partition name, and the exchange table name

*/

create or replace procedure ptn_exchange(v_ptn_table in varchar2, v_ptn_name in varchar2, v_exch_table in varchar2) as

begin

 execute immediate 'alter table ' || v_ptn_table || ' exchange partition ' || v_ptn_name || ' with table ' || v_exch_table;

end;

/

/*

 This procedure swaps all of the partitions from the work partitioned table that have rows in them with the corresponding partitions in the final table.

 The inputs to this procedure are the work partition table name, the middle man table, and the final partition table name.

*/

create or replace procedure partition_to_partition(v_wrk_partition_table in varchar2, v_middle_man in varchar2, v_final_partition_table in varchar2) as

begin

 dbms_stats.gather_table_stats(null, v_wrk_partition_table);

 execute immediate 'truncate table ' || v_middle_man;

 for x in (select partition_name from all_tab_partitions where num_rows != 0 and table_name = v_wrk_partition_table) loop

 ptn_exchange(v_wrk_partition_table, x.partition_name, v_middle_man);

 ptn_exchange(v_final_partition_table, x.partition_name, v_middle_man);

 ptn_exchange(v_wrk_partition_table, x.partition_name, v_middle_man);

 end loop;

end;

/

Tables

/* This is the partitioned table that is going to be the final reporting table */

create table ptn_table

(seq_nbr number,

 owner varchar2(30),

 name varchar2(128))

tablespace edw_data

partition by range(seq_nbr)

(PARTITION "PTN_0_10000" VALUES LESS THAN (10000),

 PARTITION "PTN_10000_20000" VALUES LESS THAN (20000),

 PARTITION "PTN_20000_30000" VALUES LESS THAN (30000),

 PARTITION "PTN_30000_40000" VALUES LESS THAN (40000));

/* This is the partitioned table that is going to be the work table */

create table ptn_wrk_table

(seq_nbr number,

 owner varchar2(30),

 name varchar2(128))

tablespace edw_data

partition by range(seq_nbr)

(PARTITION "PTN_0_10000" VALUES LESS THAN (10000),

 PARTITION "PTN_10000_20000" VALUES LESS THAN (20000),

 PARTITION "PTN_20000_30000" VALUES LESS THAN (30000),

 PARTITION "PTN_30000_40000" VALUES LESS THAN (40000));

/* This is the exchange table that will be swapped with the above table */

 create table middle_man_table

(seq_nbr number,

 owner varchar2(30),

 name varchar2(128))

tablespace edw_data;

/* This is just a table to hold the data to be loaded */

create table temp_table

(seq_nbr number,

 owner varchar2(30),

 name varchar2(128))

tablespace edw_data;

/* This sequence is used in populating the temp table with the load data */

create sequence seq_nbr start with 1;

Data

/* Quick generation of some data to be loaded */

insert into temp_table

select seq_nbr.nextval, a.owner, a.object_name from dba_objects a, dba_objects b

where rownum < 40000;

commit;

Load

/*

 This load process will load multiple partitions in the work table with data, perform any maintenance on the work table and then swap the partition of the work table with the middle man table and then again swap the middle man table with the final partitioned table.

*/
begin

load_table('PTN_WRK_TABLE', 'TEMP_TABLE',10000, 39999);

maintenance('PTN_WRK_TABLE');

partition_to_partition('PTN_WRK_TABLE', 'MIDDLE_MAN_TABLE', 'PTN_TABLE');

end;

/

1

210

