IOUG – Developer – Application Express

APEX Debug Options

Karen Cannell, Integra Technology Consulting

The APEX Debug Conundrum
co·nun·drum [kə núndrəm] (plural co·nun·drums)
noun Definition: 1. something confusing: something that is puzzling or confusing
Debugging Oracle Application Express (APEX) can be a conundrum. It is a PL/SQL application, but there is no traditional way to “launch” it, and no traditional way to step through the code. It is an HTML page, but “View Source” does not give any information on what code ran, when and with what values. So how does a developer know what APEX is doing when? How does one determine if APEX is executing a code module, or why it is not? This paper aims to ease the conundrum by presenting a suite of APEX-supplied and external debug options readily available to APEX developers.
APEX is a blend of technologies – PL/SQL and SQL that generates HTML pages using CSS, templates and JavaScript and perhaps web services. Tracking and resolving problems in this multi-“layer” environment necessitates a blend of tactics to examine what is happening in each components of the application.

The debug options described here include APEX-supplied utilities such as Debug mode, Session and Event information, remote PL/SQL debugging using Oracle SQL Developer, and the use of web development tools such as Web Developer and Firebug. The intent is to provide enough information to get a developer started in using these options. The reader is encouraged to consult the references included at the conclusion of this paper for more information on each topic presented. Application of a mixture of these debug tactics will help get one through most APEX debug challenges.
Change of Thought

Troubleshooting in APEX requires a different line of thinking, and an expanded set of tools than many of us – traditional PL/SQL or Oracle Forms developers - are used to. The shift from a traditional PL/SQL or Oracle Forms environment to APEX is a change from an enclosed application to the web. Web applications entail coding on multiple layers and therefore one must think along those same layers when troubleshooting. Gone are the days of step through the code in a debugger, or adding text message output to show our progress. Developers now need to examine the HTML, verify the style sheets, check for any JavaScript, review process and web service behavior, and, if warranted, step through code in a debugger.
The change of thought is mainly in the initial triage, when determining which component of a web application is the likely source of an issue. Depending on the application, a problem could be in generated or hand-coded HTML, a style sheet, JavaScript, in the SQL of a report, validation, computation, or condition, in a PL/SQL process or in a web service.
Knowing, or guessing, which component is causing the problem determines which debug tactic to start with. Making an educated guess is partly experience, and partly knowing how APEX works. APEX developers must have an understanding of the overall APEX web page generation process in addition to understanding of the business application logic. Several of the APEX utilities described below are designed to report on the flow of events that occur in constructing an APEX page. While not “debug tools” in the traditional sense, these activity and event reports are essential in targeting APEX issues because they show the steps APEX executes in generating a page. The next sections review debug options specific to Oracle APEX, remote PL/SQL debugging and the of use of generic web development tools for APEX troubleshooting
[image: image1.png][Fome [Apptiostion 1107 | Eait Page 101 | Crest | sexsion | Acty | Debug | Show Eat Limks

Figure 1 – APEX Developer Toolbar
APEX –Supplied Debug Options
APEX has several built-in tools to assist a developer in troubleshooting application behavior without leaving the APEX environment. The APEX Developer Toolbar, the set of links at the bottom of every un-deployed APEX application page, includes the Session, Debug and Activity options. These allow the developer to view session state, debug information, and application activity. Every developer should become thoroughly familiar with these options. Additional utilities for Application Reports, object dependencies and trace enable-ing further assist a developer in finding and resolving interface, logic and performance errors.
Figure 2 – APEX Session – Application Items
[image: image2.png]7 PagefeT bispiay 15 =] view[Fopicaton tems = [Ga|

Application: 1107 Participant Match - DEMO

Session 2799892843302560
User RMOUG
Workspace 3771531489660401
Browser Language en-us

Application Items

Application _item Name. Item Value
107 APEXUB SAVED DEBUG -
o7 APEXUB_SAVED_REQUEST _ CLEAN_PPT_ATCH TABLES
o7 ArP_ioBNUM -
o7 A_AIAX_LOAD_USG Claring Matches.
o7 AEVENT D 8308
o7 FI01_TENP HDESHOW -
o7 FSP_AFTER LOGN_URL _ 7p=1107}127958528433025608
o7 TEMPORARY_TEM -
1-8 L

= [Done EAENERIY,

View Session State

The Session link in the Developer toolbar allows one to view session state values. The Session link opens a popup window, which displays session state by Application, Page Items, Application Items, and Session State. This interface displays the current values of the page and application items for the application. This is where to look to see if application or page items have been set correctly. Figure 2 illustrates the Session interface for Application Items.
The Page Items view of the Session interface lists the application, page, item name, display option, item value and status. The Page Item status is I, U or R for Inserted, Updated or Reset. The status settings help identify recently set or updated items.
[image: image3.png]0.02:

0.02: 5 H O W: spplication="1107" psge="101" worispace=" request=™ sesion="324581422926740"
0.02: Langusg derived fom: FLOW_PRIMARY_LANGUAGE, curent brovser language: &n-us

0,03 atersasson set ls_language="AMERICAIF

0.03: aier session st ns_terton=AVERICA™

0.03: NLS: CSV charset=EBMSWINIZE2

0.03: NLS: Set Decimal separator=""

0.03: NLS: Set NLS Group separator="."

0.03: NLS: Sat dite format= DO-MON-RR"

0.03: _Sstiing sesion time_zon to 05:00

0.03: NLS: Language=en-us

0.03: Application 1107, Authenticstion: CUSTOM2, Page Template: 15058330301985227

0.03: _Sassion ID 2245816225257404 can b used

0.03: _ Application session: 324581422926740¢, user=

0.03: _ Dtermine f usar "ACCSF2" wonspos “3771531439880401 can develop applicstion “1 107" in werkspace “2771521485880401"
0.03: Sassion Fateh session header information

0.03: _Matsdsts: Fetch psge striouts for spplication 1107, page 101

0.03: Fton session stste from ctabase

003 Branch point BEFORE_HEADER.

0.03: Fetoh spplication meta dsts.

005 Computation point BEFORE_HEADER.

005 Frocassing point. BEFORE_HEADER.

0.0 Proosss “Gat Usemam Coskie": PLSOL (BEFORE_HEADER) declare varchar2(265) = nul; © owa_soki. coekis; bagin o = owa_cockie gst(LOGIN_US
P101_USERNANE = cvals(1; sxosption when otners than nul: enc:

0.05: Show pag templste hesder

005 Computation point AFTER_HEADER

o'

COLLABORATEO08

Technology a7 Applications Foren for the Oraele Comemunty

i
|

ORA-01722 nvalia number

Error in show_hide_collection_output(): ORA-01722: invalid number

Retum to application

Figure 3 – Application with Error

[image: image4.png]COLLABORATE

Technology a7 Applications Foren for the Oraele Comemunty

ORA-01722: nvalid number

Error in show_hide_collection_output(;: ORA-01722: invalid number

Retur to application

 Figure 4 – Application with Error, Debug Mode Output. Error line highlighted

Debug Mode

The Debug link in the APEX Developer’s Toolbar turns on the APEX Debug Mode. Debug Mode is perhaps the single most useful tool in diagnosing APEX application errors. In Debug Mode, APEX lists debug information for major steps in the page generation process on the application page, mixed in with displayed HTML elements. The list of debug messages is helpful in determining which computations, validations and processes executed, and in what order, with what values. Reviewing this list and comparing the listed actions with the intended actions, helps one discover where events are or are not firing, with correct or incorrect values. The usefulness of Debug Mode is best illustrated with a few examples.

Figures 3 shows an application with a problem. Figure 4 displays the same application in Debug Mode. In Figure 4, the highlighted line indicates that the error message was thrown from the PL/SQL process SHOW_HIDE_OUTPUT, which calls show_hide_collection.show_hide_collection_output(). Now one knows where to look for the error.

[image: image5.png]001,
001
001
001
001
001
001
ooz
003
003
002
003

Branch point: BEFORE_COMPUTATION.
Computation point. AFTER_SUBMIT
Tebs: Perto Branching for Tab Requests
Branch point BEFORE_VALIDATION
Partom validations
Branch point BEFORE_PROCESSING.
Frocassing point. AFTER_SUBMIT
D0 nt run process “EXECUTE_PA" procsss point=AFTER_SUBMIT, condition t/pS=ALWAYS, nn button pressed=EXECUTE P
D ot run process Creste_MV_PINFO_ORIG_PPT", proosss point=AFTER_SUBMIT. condiion type=NEVER, when bution pressad
D ot run prooess "BATCH_PRELOAD_REORG_TABLES", process poini=AFTER_SUBMIIT, condition type=, when bution presses:
0 nt run process "BATCH_PRELOAD_NEW_TABLES". proces poini=AFTER_SUBMIT, condition ype=. when button prased=FR
Process “CLEAN_PPT_UATCH_TABLES" PLSGL (AFTER_SUBHIT) DECLARE v_ststus FLS_INTEGER = 0; BEGIN REORG CLES

<> 0 THEN RAISE_APPLICATION_ERROR(20001 Eror Clearing Maich Tables:||SQLERRIM) END IF; END;

032

Do ot run prooess “CLEAR_REORG_TABLES", process point=AFTER_SUBMIT, condilion ype=, when buton pressed=CLEAR_REC
D ot run prooess "BATCH_PROCESS_CONFIRMED", process point=AFTER_SUBMIT, condition type=, when bution pressed=BAT
D it run prooess "BATCH_PROGESS_TO_NEW_STRUCTURES. process point=AFTER_SUBMIIT, condition type=, when bution o
D ot run prooess "FLUSH_UNMATCHED_FPT", prooess poini=AFTER_SUBMIT, condition ype=, when buton pressed=FLUSH_U\
D0 not run process "FLUSH_REMAINING_PPT". procsss poini=AFTER_SUBNIT, condition type=, when button pressed=FLUSH_UNI
Process "SET_AIAX_LOAD_MSG": ON_DEMAND (AFTER_SUBNIT) 5310448235151815
‘Sesion Sate: Saved tem “A_AAX_LOAD_NSG" New Valué=-. Cleanng Matanes .-

Branch point AFTER_PROCESSING

Evalusting Brancn: AFTER_PROCESSING type: “REDIRECT_URL buton: 12380788432457077 branch: (Unconditionsl)
Evalusting Branch: AFTER_PROCESSING type: "REDIRECT_URL buton: 12381585400457080 branch: (Unconitionsl)
Evslusting Branch: AFTER_PROCESSING type: “REDIRECT_URL buton: 12350885125457079 branch: (Unconditionsl)
Evslusting Branch: AFTER_PROCESSING type: “REDIRECT_URL button: 12381140288457079 branch: (Unconditionsl)
Evslusting Branch: AFTER_PROCESSING type: “REDIRECT_URL button: 12381385434457080 branch: (Unconditionsl)
Evalusting Branch: AFTER_PROCESSING type: "REDIRECT_URL button: 12381788104457080 branch: (Unconditionsl)
Evalusting Branch: AFTER_PROCESSING type: “REDIRECT_URL buton: 12088265230421234 branch: (Unconditionsl)
Evalusting Branch: AFTER_PROCESSING type: "REDIRECT_URL button: 12382753122457081 branch: (Unconitionsl)
Evslusting Branch: AFTER_PROCESSING type: "REDIRECT_URL buton: 12373335858577557 branch: (Unconditionsl)
Evalusting Branch: AFTER_PROCESSING type: "REDIRECT_URL buton: 12378447130885154 branch: (Unconitionsl)

Evslusting Branch: AFTER_PROCESSING type: "REDIRECT_URL buton: 12428885599524165 branch: (Unconditionsl)
Evalusting Branch: AFTER_PROCESSING type: "REDIRECT_URL button: (o Button Pressed) branah: (Unconditionsl)
Unenditions! branch taken

S O W pplicsion="1107" page="41" worspace=" requesi=" session="2769892842202580"
Lengusge derived fom: FLOV_PRIMARY_LANGUAGE, curent rouser language: &n-vs

siter sesion set nls_langusge="AMERICAN"

s o ERICA

Figure 5 – Debug Mode Debug Messages

Figure 5 shows an excerpt from a more complex set of debug messages on a page that contains numerous conditional processes. This trail of debug messages tells the developer that one process fired (CLEAN_PPT_MATCH_TABLES), and then another process (SET_AJAX_LOAD_MSG) fired. Other processes were recognized but not processed due to conditions on the processes. In this case, the second process was resetting an application item (A_AJAX_LOAD_MSG.) when it should not have. Correcting the condition on the second process resolved the problem of the wrong message being displayed.

In both examples, the debug messages helped identify where within APEX to address and solve the problem. Figures 3 and 4 illustrate how in Debug Mode APEX clearly identifies each processing point, computation point, branch point and validation point, and whether each conditional processes is executed or not. Each region and item is listed as encountered. The time element to the left of each line is a running total of CPU time. Figures 3 and 4 are abbreviated for space considerations, however, the debug messages continue interspersed with the displayed page elements through to the After Footer and End Show messages at the bottom of the page.

APEX debug messages tell which processes where firing, in what order, and with what values. From this information, one can discern whether conditions are correct and whether processes are firing in the correct order. Debug Mode is useful not only for diagnosing specific problems, but also for learning more about how APEX operates. The debug messages are a listing of each step in the APEX page generation process, from the request through all after footer actions.

Debug Mode can also be entered by setting the DEBUG component of the p parameter in the APEX URL to YES. The YES must be in uppercase to be recognized by APEX. To exit Debug Mode, click on the No Debug link in the Developer Toolbar, or set the APEX URL DEBUG flag to NO, again in uppercase.

Wwv_flow.debug

All of the debug messages displayed in figures 3 and 4 are APEX-generated debug messages. A developer can augment the APEX messages with additional, custom debug messages by adding code to output debug messages, much like adding debug output using DBMS_OUTPUT.PUT_LINE, by inserting calls to the APEX utility wwv_flow.debug.

Wwv_flow.debug takes a single string argument. The argument can be any text the developer wants to see in the debug message flow. Since the debug message flow is HTML, one can embed font and style information if desired. Wwv_flow.debug calls can be inserted in APEX processes, computations, validations or other code constructs, as in the code in Listing 1.
wwv_flow.debug(‘In PROCESS_CONFIRMED process using value: ’||:P1_ITEM);

or in a stored procedure:

PROCEDURE show_hide_collection_output AS

 BEGIN

 -- debug message

 wwv_flow.debug('
 g_flow_id = '||

 :APEX_APPLICATION.g_flow_id||

 '
 g_glow_step_id = '||

 :APEX_APPLICATION.g_flow_step_id||

 '');
 htp.prn('<script type="text/javascript">' || CHR(10));

 htp.prn('<!--' || CHR(10));

 htp.prn('window.onload=function(){' || CHR(10));

 FOR c1 IN

 …

Listing 1 – wwv_flow.debug Call
Activity

The Developer Toolbar Activity link displays an Activity interface, through which the user can view a series of application and session activity reports. The main categories of activity reports are Page Views, Caching, Developer Activity and Sessions, as in Figure 6. Most of these are informational and are of most value in learning how APEX operates and how developers and users are working with an application. The Developer Activity reports are perhaps more useful than others in diagnosing problems, as they form a trail map of the development process.

[image: image6.png]ORACLE" Application Express Logout Help

Home > Application Builder > Application 1117 > Application Reports > Activity

Page Views Developer Activity
e) sz e B e
I I 0] evviewtorpage s @] v Aopiation Change for age 55 © View Developer Gommerts for
evser] exome Page 56
10| Brusertorpage 56 (| BrDeveioper By 2y
(] BrPage @) By Page Creation By Day
@] Broay @) B Page Wodification By Day
@) ByUsereyDay
@) rtour Sessions

g1 ersession ‘ [Actve Sessions
Caching

(] cached Pages
g

] cacnsaegons or

Figure 6 – APEX Activity Reports
For example, the Developer Activity by Application Change report, illustrated in Figure 7, is helpful in the debug process because it shows all changes made by a developer by application, page, date, developer, component and identifier. In brief, it shows who did what to what when. In cases where something used to work and now does not, this report is useful in tracing which components were touched, which is often a clue as to which components to inspect to resolve a problem.

Figure 7 – Developer Activity by Application Change Activity Report [image: image7.png]ORACLE' Application Express

Logout Help [3

(TP Appiication B SOL Workshop |/ Utites
Home > Application Buider > Appiication 1107 > Application Reports > Actity > Developer Activiy By Application Change. rece IR0 L
L=t
9 page Developer| Component[AI- =] since [10ssconds =] isplay[5 =] _Go
Page Name Date ¥ Updated Developer Component Component Name Identifier
o8008
54 mines Region Partcpant Hatch Home Page -
o7 Home wiste 5] Update ACCSP3 sazsiostronase
e EEED g
o7 a s s X Updsie ACCSPS PageProcess CLEAN_PPTUATCHTABLES 12365541425457091
Administraton 71
oanaz008
Snarea 25 nours Appication
o7 gusd wsers 2] Update ACCSP3 SHOW_HDE_OUTPUT 1ee0szrTzrsO0tAZT
oa0a2008
Snarea 25 nours Appication
o7 gusd [Update ACCSP3 SHOW_HDE_OUTPUT 1ee0szrTzrsO0tAZT
oane2008
Snarea 27 nours Appication
o7 gusd o Update ACCSP3 SHOW_HDE_OUTPUT 1ee0szrTzrsO0tAZT
WAL RUN-
oa07008
Partcpant 7nours Region Step 4 Process Confimed
o7 a B s Update ACCSP3 & r2ss0es01azz982t

View Select List on Page Definition

The View select list in the Page definition interface contains a series of useful options. Developers are most used to the default Definition option, which is the familiar page builder interface. The Events, Objects, History, Groups and Referenced selections contain useful information, but developers often overlook them as they are outside of the normal page builder flow. The Events and References options are most useful for learning and troubleshooting page construction. Figure 8 shows the full Page View select list.
[image: image8.png]ORACLE' Application Express

o Roptcston puteors optcaton 1075 Page 31
Preooel @ 2| 5] e[S (G| m o]

Page Rendering

Eal= -

Page
Page Name: Maiches Paricisans Template: Asslicaton detault
HederText: st sc=ORKSPACE INAGES

Fistory

ot
Fefrenoed
N

Figure 8 – APEX Page View Select List Options

Events

The Page View Events interface shows details of all defined page controls and processes for the current page. Events are displayed in chronological order of how APEX renders the page, executes logic and runs processes. Figure 9 shows a typical Events hierarchy. The default is to show all used controls and processes. The Show All radio option displays all possible controls and processes The Events interface is useful to understanding the order in which events are executed, which helps in understanding how APEX renders a page and execute the logic embedded in it. For example, the Events interface may show events occurring in a different order than expected, in which case a developer can take steps to correct the problem

Referenced

The Referenced option of the Page View Select List displays page components and shared components referenced by the current page. These may include breadcrumbs, Page 0 items, lists, branches, tabs and parent tabs. This view is also useful in understanding the composition of the current application page. Understanding page composition helps when deciphering debug messages, watching for correct event processing.
[image: image9.png]Logout Help

IR (i) iiies)
e Ao Do Aemtemton 110 S Pooe 21S Poue Trons DRG0 009

L e
D pacelEr lven B G| stowt @ sowused] €1 5] e Macheaarnts

Page Rendering

ORACLE' Application Express

Home) 470

Page Processing

£ process: Afer Header SHOIW HDE OUTEUT (show_tide_memor.) © process: n suomtan seore
Computaton ZpeL s SsveReauest
v CAPEXB_SAVED_.)
=} v
€22 process: On Submitand Before
Computaton SET_AJAXLOAD UESSAGE (DECLARE
v v_all.)
=} v
Computation: After
Subme 10724 SHOW UNCONFRIED ONLY FLAG
v (ON.)
=} v
Computation: After
T BT e TS . e | [Sion 2052 SiOW uicoNEEUED WY s
) P2¢ WATCH TYPE DISPLAY Iigen] v
= ¥ o vaidstions
a v
€28 process: After Subm Rese! Pagnaton
reset_pagnato.
HTMLesc: £ 2
= a0 ‘SUBMIT Location: Botiom v
@) P24 MATCH TYPES [Radiogroup (wih Submt)] | £ process: After Submt Resel report search
) P24 QUERY CONTROL [Hdden] | (P2¢_REPORT_SEAR.)
(100) P24 SHOW UNCONFIRMED ONLY FLAG [Hidden] v
€28 process: After
v Submit CONFIRM_MATCHES BY TYPE (DECLARE:
=})
® F2¢ CONFRM BY TvPE sy Pocess A
22 COUFRL B 77 Subm CONFRU HATCHES BY_ SCORE (DECLARE Vi
© P24 CONFRM BY SCORE [Butons] | |
(@0 P24 UNCONFRM BY TYPE [Buttons] v
a0 P24 MATCH SCORE CUTOFF [Select List with Submit]
v £ process: After
Subm CONFRU SELECTED WATCHES (DECLARE
=] VRo.)
saL: ‘Select " "MATCH_D" match_id, W*“MATCH_ID" mate... BorderkessRegion | | £5F process: After
-y ReSET Locator: Tempate Cose | | Submé UNCONFRI WATCHES 5 TYPE (DECLARE
(10) P24 REPORT SEARCH [Text Field (always submits page when Enter pressed)) | | Vi -)
(@20 P24 ROWS [Select List with Submit] v
P24 o Butons
S s) e——
] Subm CONFR AL DISPLAYED WATCHES
@) P24 SHOW ONLY UNCONFRMED [Butons] || (0EC) ARE vRo..)
(s0) P24 CONFIRM SELECTED [Buttons] v
(10) P24 UNCONFIRM SELECTED [Buttons]
v £ process: Afer
Subme UICONFRI SELECTED MATCHES (DECLARE
=] VRo.)
Select M WATCH_D" match_id W ATCH_D" mate... BorderkessRegon | |2 Go To Page 10=645P D 2¢ SSESSO (Afer
(10) P24 UNCONF SEARCH [Text Fiekd (always submits page when Enter pressed)] | | Processing) sequence: 10Unconditional
(@20 P24 UNCONF ROWS [Select List with Submit] v
€D Emiey [Butore] | |3 6o To Page: mp=srLow D 24asessN-80
“0) —_— (e (After Processing) sequence: 10 button=SUBMIT
0y P24 SHOW CONF AND UNCONF [Buttons]
(s0) P24 UNCONF CONFIRM_SELECTED [Buttons]
=}
HTHL el Text Templte:Sdebariegion

[B o computtons

Longusge: enus

Asplication Express 20.0.00.20

Wortspace” ACCSP3_User 10US|

Copyright © 1999, 2007, Oracle. Al ighs reserved

Figure 9 – Page View Events Report
Application Reports

The Application Reports are a collection of reports about the contents and activity of the current APEX application. Activity reports are one category of Application Reports. The Application Reports main menu can be reached through the Tasks menu in the sidebar region of the APEX builder application interface, as illustrated in Figure 10. These reports are not directly useful in debugging in the traditional sense of troubleshooting lines of code, but they do provide details about the content of the application and activity so far. The major report categories are Shared Components, Page Components, Activity and Cross Application.
The Application Reports (Shared Components (Database Object Dependencies report displays information on valid and invalid database objects, including PL/SQL processes. This report is described in greater detail in the Validation of PL/SQL Processes section below.

The reader is encouraged to check out the contents of the Application Reports to gain better understanding of APEX page generation.
[image: image10.png]/SQL Workshop),

Home > Application Builder > Application 1107

Application: 1107 - Participant Match - DEMO

i SR

Run Application Supporting Objects Shared Components Export / Import

S Pagelview[loos =loispiay[T5 =] [Go| [Gesiapages

o PRBO VL

© Delste this Application
© Copythis Application
o Page Groups

Page Locks

© User Interface Defauls
© Export Repository

o Application Reports

Application Reports

1 Home

Figure 10 – Application Reports Access
DBMS_APPLICATION_INFO

APEX makes calls to DBMS_APPLICATION_INFO for each database session and each page rendered to set Module, Client Info and Client Identifier information. Module is set to APEX:APPLICATION <application number> PAGE <page number>, Identifier is set to the user and instance, and Client Info is set to the APEX logged in user. The code APEX uses to set application information is displayed in Listing 2.

 BEGIN
 DBMS_APPLICATION_INFO.SET_CLIENT_INFO(g_user);
 DBMS_SESSION.SET_IDENTIFIER(SUBSTR(g_user,1,
 (64 - LENGTH(g_instance)-1))||
 ':'||TO_CHAR(g_instance));
 DBMS_APPLICATION_INFO.SET_MODULE('APEX:APPLICATION '||
 TO_CHAR(g_flow_id),'PAGE '||
 TO_CHAR(g_flow_step_id));
 EXCEPTION

 WHEN OTHERS THEN

 NULL;
 END;

Listing 2 – APEX DBMS_APPLICATION_INFO Call

This information forms a log of which APEX applications and pages are executing, and what queries the pages are issuing. It can be viewed through queries to VSQL, VSQLAREA and for database versions 10.2.0.2 and higher through V$SESSION. Listings 3 and 4 show some sample queries. The APEX Utilities (Database Monitor (Top Sql reports also make use of this information, as shown in Figure 11.
SELECT sql_text,

 action,

 module,

 program_id,

 program_line#

 FROM v$sql

WHERE module LIKE '%APEX%'

Listing 3 – Sample V$SQL Query of APEX Application Info

SELECT plsql_entry_object_id,

 plsql_entry_subprogram_id,

 plsql_object_id,

 plsql_subprogram_id,

 module,

 action

FROM v$session

WHERE module = 'APEX:APPLICATION 1103'

Listing 4 – Sample V$SESSION Query of APEX Application Information – 10.2.0.2 and higher

The output of these queries shows which APEX application number and page are executing for which client name (APEX authenticated user name) and session.

[image: image11.png]ORACLE' Application Express Logout Help
(Fome)/ Appiication Buider |/ SOL Workshop | AT

Home > Utiities > Database Monitor > Top SQL

D sauted ™ e sccusons] ol FPEGRRLETONTIE |

Top &y [Bfer Gt/ Rows Frovessed (=] Display Top 10 =]
Butter Gets utter

=y

Time n Thows ©‘ceta’
EEFS mor Groioo Geetro Giefes mHo Gmim
[
STTReoTE ALOE = 15 WA URRA_iD
. TR e e | ostey) A
Q ey s . a se0 APEAPPLCATION TR
R e
Ry
Secoatry cason 10 - 15t
seisor scrazsore e a0
o ion saereRERcios witeE
. SRR e = 139 AND DsER_ID I (
Q e oos 2 " sss AREEARRLEATION S) A
SEcoatty covs 0 - 18 owpER Y
oo LT seta e, oerar,
o0
seasor cumsens_so s,
Q ey e 2 s ss0 ARAPPLCATION i ook
on ok scErvIzy os wovsess
Q B o - . Jeo APOXAPPLICATION sELs0r 5o e _riow sm_oorions
s stz o TmRe shoe T - 157 A e = 31
Disese oimo wiv_rion_scrvITt_sosis ¢
T sthe, CoMEovNT STTRLRTE, FLas,
Tt ons, bsealD, T Booases,
Ve nomke, Fiow 1o, Sren. oo,
e A —
tses 0t a0 ApexappLicATION Lo, caoos_cb, sanse,
. cPU: .01 Buffer: 228 0 7 75 4103 oo FTYRE,

'SQLERRM_COMBONENT_NAME, BAGE_MODE,
CACHED_ReGIONS) VALUES (-Bie ,
URBER (15),
:Bl0 , :B9
s¢, w83, w2,

Figure 11 – APEX Utilities (Database Monitor (Top SQL Report

Developers can of course add DBMS_APPLICATION_INFO calls in stored procedures and APEX processes to further instrument an APEX application with information that will allow us to tracking execution or progress of various application processes.

?P_TRACE URL Argument

For cases when more detailed query performance and timing information is required to diagnose am APEX performance problem, one can initiate a trace file. Adding ?p_trace=YES to the APEX URL generates SQL Trace information for the page show/accept request cycle for the current session. The trace file is generated to the directory designated in the database user_dump_dest parameter.
An APEX URL with trace enabled looks like:

http://server.mycompany.com:7777/pls/apex/f?p=1107:1:8672053472734971:::::?p_trace=YES
The actual trace command that APEX issues is:

ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT FOREVER, LEVEL 12'

For alternate trace levels, one should instrument the alternate trace setting with an On Load – Before Header process to turn the alternate trace setting on:
EXECUTE IMMEDIATE ‘ALTER SESSION SET EVENT ‘’<alternate trace setting>> CONTEXT FOREVER, LEVEL 12’’’;

followed by an On Load – After Footer process to set the alternate trace setting off:
EXECUTE IMMEDIATE ‘ALTER SESSION SET EVENTS ‘’< same trace settings>> CONTEXT OFF’’’;
The resulting trace file can be viewed using tkprof or any other trace-reading utility, such as Trace Analyzer.

Generating and reviewing trace information enables one to see exactly what SQL queries executed and with what values, and to better track timing issues. Then a developer can return to the APEX builder interface to correct the problem query.
PL/SQL Debug Options
There are several tactics for debugging and tuning SQL queries and PL/SQL processes in APEX, from applying best practices through use of a traditional debugger. Note that in all cases the code module being debugged is developer-entered PL/SQL and SQL, not the APEX core PL/SQL.
Know your application.

This sounds obvious, but knowing what an application is supposed to do, how, and in what order is essential for clean development and testing. That a module runs with no errors is not enough, it must produce the desired result.
Modularize

Separate business logic from presentation logic. Place business logic in code modules or web services that are distinctly separate from the presentation aspects of one’s application. In APEX, the simplest way to do this is to place business logic in PL/SQL packages or web services and to call those modules in APEX page or application processes. This coding best practice isolates business logic for reuse, keeps it separate from the presentation interfaces and enables easier debug and maintenance of the modules.

Build and Tune Outside First

The first rule in building and optimizing SQL and PL/SQL within APEX is to ensure that the code runs outside of APEX. Build, test and tune queries and code modules at a SQL prompt, or in a PL/SQL IDE such as SQL Developer or TOAD. Perform all preliminary tuning and debugging of PL/SQL modules outside of APEX, in an environment where one can leverage the building and tuning features of the IDE.

Bind

Within APEX, use bind variables in queries, conditions and other application logic to reference session state values. As in PL/SQL, use of bind variables usually the more efficient way to reference values. Again, this is a matter of optimizing APEX performance through general PL/SQL best practices.

[image: image12.png]Parsing Errors

Hame. Page Error Compiled As. Parsed As Temp Object Status

create or replace procedure HTHLDBD2837074069170310 as.
Lvalue varchar2(30);

Lbookean boolean;

begin

retun;

for ot n (seect

“PARTICPANT_ID",

“PA_TYPE",

'SUBSTR(ein_ssn, 1, 3)f-1SUBSTR ein_ssn 4 2)f-ISUBSTR(ein_ssn§,¢) EN_SSN",
“CORPORATE_NAME",

“PARTICR_NAME",

dw_reorg get_matches_nine(partiipant_id, §) matches,

“LAST_NAWE,

FRST_NANE',

“MIDDLE_NANE",

“NAME_SUFFIX,

“BRTH_DATE",

“DATA_SOURCE",

“DENT”,

“SUPPLEER_LICENSE_TYPE",

Ine=11 erm=PLISQL: ORA-0090:: 'SUBSTR(phone_nbr,1,3)1-TSUBSTR(phone_nbr,4 3}-TSUBSTR(phone_nbr 7.¢)
“DIW_REORG""GET_WATCHES_INLIE™: "PHONE_NBR',

ALL partcpants '] e S Accsp3 WVALD &5
SQL Statement ignored. from HV_PNFO"

‘where (corporate_name IS NOT NULL OR
(frst_name 1S NOT NULL or last_name IS NOT NULL))

—AND 00X = -730_QUERY_CONTROL

AND.

«

nsir(upper(PA_TYPE") upper(nvi(_value,PA_TYPE))) > 0 or
nsir(upper("SUPPLER_D") upper(nvi(value, SUPPLER_D")) > 0 or
et unmer (L ICENSE NERS unserimul] valie “LICENSE NBRU = 0 or

Figure 12 – Database Object Dependencies (Compute Dependencies, Parsing Errors

Validate PL/SQL Processes – Compute Dependencies
APEX includes a utility to validate all PL/SQL processes in an application, in a somewhat round-about way. The Application Reports (Shared Components (Database Object Dependencies report menu contains a Compute Dependencies button. Compute Dependencies check for any PL/SQL errors in user-defined PL/SQL. Compute Dependencies essentially compiles each PL/SQL module checking for object dependencies. Generation of this report will take a few minutes. In the resulting report, the Parsing Errors in the Hide/Show region at the bottom of the report are cases where the PL/SQL module will not compile. Figure 12 shows an excerpt from the Parsing Errors section of a dependencies report. The Compute Dependencies option is a one-stop way to verify that all PL/SQL modules in an application are valid.

Remote Debugging

Sometimes one really needs to see what is happening when a PL/SQL module is called from within APEX. Finally, one gets to step through some code! One can debug the PL/SQL in an APEX session using an IDE that supports remote debugging, This paper describes remote debugging using SQL Developer, though TOAD or JDeveloper should work similarly.

Note that remote debugging only works when the debug tool has a clearly defined and accessible stored procedure – the code module must exist in the database. This is another reason to modularize code.
SQL Developer Remote Debug
Perhaps the most important feature SQL Developer offers the APEX developer is the ability to debug PL/SQL processes through the remote debug feature. The SQL Developer debug listener waits for a connection from the APEX session. Once the two are connected, a developer can step through PL/SQL code in the SQL Developer interface. .

[image: image13.png]Dyconnections | (EJreports

BRY

@ Connections

8 cosnwiz

3 accspn2
3 accss Reca.
@ Accses

3 Acceps_tH

3 accses

3 accses

B ccspacin
3 Acspainn_TH
B8 Accswes

B ccsrot
B8 ccspraom

§ Saw

o Conner

ko

3 0] % peiets s
g o sams

8] e

9 e

g DA Gather Schema Staitics
8 ;L £17 asssociate Migration Repostory.

5 | £ Dot it Resstory
812 tmcste it sty

B safist

To initiate a remote debug session:

Figure 13 – SQL Developer Remote Debug Option

1. Create a SQL Developer database connection using File (New Connection and fill in the appropriate information.
2. Ensure the that user of the database connection has the necessary debug privileges:
DEBUG CONNECT SESSION

DEBUG ANY PROCEDURE

3. Connect to the database by opening the database connection.

4. Start a remote debug “listening” session from SQL Developer by right clicking on the Database Connection in the Connections navigator and selecting the Remote Debug option, as in Figure 13.
[image: image14.png]Accsprec_TH
I8 coLLABoRATE

Bos

8
& i re— x

8o o
8o,

[
S
Do Locaess

8 L J

8 ossTESTY

8 FLows 030000

Figure 14 – Remote Debug Listen Port and IP Address

Enter the listening port number and the IP address of the machine with the database, as in Figure 14. The range of ports can be set in a SQL Developer Preferences (Tools(Preferences from the SQL Developer menu).
[image: image15.png][Elsl+-Log | [IFun banager

Local adress=127.0.0.1)

Figure 15 – SQL Developer Debug Listener Started

When the Debug Listener is started, the Run Manager will display the listener process, as in Figure 15.
5. Invoke the debugger from the APEX application by this call:

 DBMS_DEBUG_JDWP.CONNECT_TCP(‘127.0.0.1’, 4000);

This can be accomplished in a variety of ways. For example, use a button that calls a page or application process(an easily removable feature that can deleted or set to Never display when debugging is done), or embed the call to the debugger at the start of the process to be debugged.
6. In SQL Developer, set breakpoints in the code mode to be debugged.
7. Run the application to execute the code to be examined. Control will automatically switch to SQL Developer when the application reaches the code with the breakpoint.
8. Debug the code through the SQL Developer interface.

Remote debugging is not an every-day tactic, but does help for cases where it is not obvious what values a code module is picking up from APEX, and there is no visible way to track code progress. Remember to end the Debug Listener process when through debugging.
SQL Developer - APEX Reports

SQL Developer has built-in reports for viewing APEX applications, schemas, pages and workspaces. These are fairly high-level reports and are not particularly useful for debug activities. However, these are examples of user-defined reports in SQL Developer, and examples of queries against the FLOWS schema objects Developers can build their own queries against the FLOWS repository.
Web Development Tools
The APEX-supplied and PL/SQL-focused debug options are mainly focused on the database-centered page generation processes. To address appearance and page behavior aspects of an APEX application, one must turn to a web development tool. The key feature of web development tools is the ability to view and edit web interface components such as the HTML source code, the CSS style sheet and JavaScript.
[image: image16.png]e Edt Vew Hstory Gookmarks Toos Hep

E- 9 - @ O @ = [hip/unahuntess tunahunter.com7777/pls/apexip=1107242246270831550 [v [B | &) b @ &+
© Disable~ & Cookies~] CSS~] Forms~ ¥ Images~ @ Information~) Miscellaneous = ./ Outlne - j § Resize -/ Tools~ {2] View Source - .~ Options = X

Logout [&]

Figure 16 – Web Developer Tool Bar

When all of one’s APEX development is within the APEX wizards and builder interface, a developer may never need the features of a web development tool. As soon as one ventures into customizations using the APEX_ITEM and collections API’s, custom user interface templates, or specialized JavaScript, a web development tool is essential.
The details of web development tools are beyond the scope of this paper, however, APEX developers performing customizations should eventually become familiar with one or more of these tools. Web development tools range for expensive interfaces designed for professional use to shareware and freeware for general public web development use. Many are particularly suited to one form of development or another. Two tools that are particularly popular for and suited to APEX development are the Firefox add-ins Web Developer and Firebug. (This is sure hint that this author develops primarily in Firefox!). These are mentioned for their breadth of features, ease of use and cost (free). The following sections give an overview of each tool and a few examples of their use. One can of course use any web development tool that is compatible with the development browser.
Web Developer

Web Developer is a Firefox browser add-in that contains a wide variety of web developer utilities. Installation is a simple as clicking the Install Now button on the download page from a Firefox browser window. Web Developer will automatically install in the Firefox browser. When Firefox restarts, the Web Developer toolbar will appear, as in Figure 16. All Web Developer options are also available from the Firefox browser Tools (Web Developer menu.

The Web Developer main menu categories are Cookies, CSS, Forms, Images, Information, Miscellaneous, Outline, Resize, Tools view Source and Options. The category headings do not do the contents justice – there are a lot of useful tools here for figuring out exactly what’s what with the HTML, CSS and JavaScript on your APEX page. APEX developers who add AJAX features will be most interested in the ability to examine <div> element details and JavaScript. Developers who build custom page templates and themes will appreciate the Form, Information and Outline menus, and the myriad of options for displaying HTML element information.

[image: image17.png]@ [0 ni atuness naturter com 777 pllapexip-1107242799892855305 [1 B |

© Diabie” @ Cookies 1G5) o [B) Imagee” | © Inioemaiion () Miscelanons - 2/, Ouie~ § § Resize~ o Tools~) View
WebDeveloper [t bod > form swesFlowForm s F{3NiesageHolder ont> table> Toody ~ & >4~ ~ eble -RIS221 /32654473 {3Borden

(G | L Image Information-hitp/tunah... 4 Firebug- Web Development Evol..| | | | Oracle Enterprise
I o Ve, LoIorado, Us?

=122 Fonen for the Oracle Communty D Es

le |/ Match Admini Processes |fEEVEASRITA PSS / Reorganized Participants & Resuits |/ A

L 77px Top: 72¢px
Wist: Spx_Height 9px

Other

Font Family. Arial Helvetics, Geneva sansserf
[

Ancestors egion for more information on the fems and butions in that region.
niml ‘¢ hidden by clicking on the + or - button to the right of the region ttle.
body

form #FlouFarm
Giv #t13MesssgeHolder
font

table

ooy

v

L 1 to MYgh type and confirm matches by match type or by selected parent participant

Processes | _View Source Partiipants | _View Reorganized Participants |

o
T table #R15221172920544872 112BoraizssRgion 2 90)

ooy
o ®andthe Match Type region and choose ane of the match type options.

d 413RegionBody
T oivreponiR15221176826584873 | options below

T RS2 oREBSEAR 3ot n Processes ugng the Match Admin PRocesses tab.
v

th #CONF 113Reportieader

Children

e

Matched Pariicipants - by lame, dent (score 90)
Al patcipants matched by Name, dent (score 99 Click on 2 column heading o sort by that colurn

D% he Search funion o narrow e 3

Chckonmelﬁsﬂﬂyl’"@nﬁmm es button to view only UNConfirmed matches.
Display[15] | Go | _Reset | _Display Unconfirmed Miatches Only | | Confirm Selected Miatch Sets

Mat Confirm Phone Birth
Detail CoNf pisplay Mame Address Nbr Date

Figure 17 – Web Developer Display Id & Class Details Option

To illustrate Web Developer in action, consider the case where a developer has added a checkbox to a report, a Select All checkbox in the header, and written a PL/SQL process that reads the values of the checkbox and updates records in the database accordingly. Using the Web Developer Information(Display Id & Class Details option helps the developer verify the Id of the checkbox element, so he or she can be sure to reference the correct element in the PL/SQL. The Information (Display Element Information displays details of each element on an HTML page, as one clicks on the element. Figure 17 shows the Display Element Information option for the highlighted checkbox.

The CSS(View CSS and Edit CSS options are most helpful when editing page, region and item templates, or creating a new theme. View CSS displays the current class settings. Edit CSS allows one to change those settings and immediately see the results. One can then save or discard the edited CSS. This feature is handy when editing templates to match a corporate user interface, or any case where a developer needs to make element style modifications.
[image: image18.png]Ble Edt Vew Hstory Bookmarks Tooks Heb

@ D€ 0 @ =D hipmnatuntzess matunter com777 s apenp-io7 222162531550 |1)

[Google B EE
| © Disable- & Cookies~ [€SS~ (] Forms - (W] Images~ @ Information - () Miscellaneaus - 5/ Oufine~ 4 Resize~ g2 Tools - {2 View Source - £ Opfions~ 3

Parent ADDRESSES Record

Parent PARTICIPANTS Record

| View & Confirm Child Matches

T E——— i
pig Proc A cont Name
U oty s
I se90 442 N N =] " JOHNB GLORY MD 21863 O01SZJ974312 410-634-2152 215927217 31JAN-T4 N
H . lcwsets
s
Ciy, State,
Zip)
o

(SOUNDEX
kil | _l_‘

4" Inspect | htmldb_html clementsjs~ | PIFalL @@

Conle HTML €5 | soipt | DOM Net Optons+ || Watdh | Bresigotms | Optons
ces 2| (noname) tmidb_htmi_eleme...(ine 875) 3
aes 12 (pesEull >= 50)(function confimmbelete (msg,zeq) {
ace cueBle style color='zed';

267 jelse if (pctRull >= "80"){ ¥ (no name) htmidb_htmi_eleme...line 579) @
aca coxBlk.style.color='sAASIA' s confDel= confim("Would you like to perfom
265 jelse(¥ (no name) 1(line 18) 3
o s s e, delete_nessager"fowld you like to 2
72 ¥ (noname) Tlline 34) @
(273 1 // =na eharCounc() dosubmic ()7
a7
© 75 funcvion confimbelets (msg,zeq) (
76 £% (zaqemull) (zeq='Deleca’)
a77 var contDel = meg;
a7 P
® =5 confbal= confimm("Would you like to perform this delste sstion?’);
azo yelse
aa1 confbel= confizm(nsg) ;)
asz it (confDel=mtrue) (doSubmic (zeq);}
e83| 1
ass
“oc funceion submitEnter(ivemObi,e)(
Sii var xeyeode:
ae7 if (window event) keyeods = window. event. keyCode;
(- else if () keycode = e.vhich:
ass else zecum crue;
aso 1% (xeyeode = 13)¢
as1 doSubmiz (1temb3 . 1d)
asz zesurn false;
asa e
ass setun true:
T i

T

Figure 18 – Firebug JavaScript Debug and Breakpoint Interface

Firebug

Firebug offers many of the same features as Web Developer, in a slightly different format and package. Firebug is also a Firefox add-in, and is installed by clicking on the Install Now button on the Firebug home page. Firebug can be started as a pane in the same window or in a separate window. The main Firebug interface headings are Console, HTML, CSS, Script (for JavaScript) and Net.

The essential features to view and edit HTML, CSS, and JavaScript are all there. The Firebug JavaScript Console is very helpful for informational messages and for testing custom JavaScript. The HTML tab displays all HTML for the page in hierarchical format, expandable by main HTML tag. The CSS tab displays all CSS for the page. The Script tab displays all JavaScript and the JavaScript debug interface. The DOM tab displays all DOM element descriptions. The Net tab displays network header/response information and timing. Firebug offers the developer a lot to work with!

The JavaScript debugger is a great feature, though sometimes finicky to get started in this author’s experience. When it is cooperating, use of the Firebug JavaScript debugger is a simple as opening Firebug, selecting the Script tab, selecting the JavaScript file to access, setting a break and refreshing the page. Figure 18 shows the Firebug JavaScript debugger in action.
A full explanation of the capabilities of Web Developer or Firebug is beyond the scope of this paper. Developers who venture beyond the APEX wizards into adding their own templates, themes, JavaScript or customized processes using the APEX API’s should check out the features of Web Developer, Firebug, or some other web development tools that offers similar features..
Code Instrumentation

A paper on debug options would not be complete without a comment on code instrumentation. Developers often overlook this useful tool for tracking what is going on in an application during development and in production. Code instrumentation is the process of a developer purposely inserts informational messages, hidden or displayed (but usually hidden), to indicate what the application is doing when. Usually instrumentation is placed in an application to monitor progress, to monitor executions, to log executions, or for debugging. Instrumentation may be as simple as a DBMS_OUTPUT.PUT_LINE message (or its HTML equivalent htp.p), or a more complex system of inserts into journal tables to track execution details.
Code instrumentation is a topic in itself. It should be planned carefully and designed to serve its purpose without interrupting the normal production flow of an application. Developers have several ways to instrument APEX code, depending on the type of process the type of code, and what needs tracking.

If adding debug messages, consider the IF V (‘DEBUG’) construct to toggle instrumentation on or off with the APEX Debug Mode. Use wwv_flow.debug(‘Your Message Here’) to add custom debug messages. For saving information that is more extensive or a record-by-record log of execution progress, insert records into a separate “journaling” table, a table created specifically to hold the informational messages. Use calls to DBMS_APPLICATION_INFO in cases when one needs to track application execution in production environments. Keep messaging to a minimum and as unobtrusive as possible if instrumentation will be left in production code.
Test and Debug in Different Browsers

As with all web development, it is essential to test in all browsers. Do not assume that since APEX is an Oracle product that all APEX-produced applications will be clean in all browsers. Browsers update frequently, and user settings for cookies and JavaScript in particular vary greatly. Test at a minimum in Internet Explorer 6 and 7, Firefox and a MAC-orient browser such as Safari and Opera.
Debug Options – Triage

With so many APEX debug options, where does one start? In general, triage for an APEX problem is that same for any other coding problem. Figure out where to problem is and then use the appropriate tool to correct it.

The first step is to Think. What is happening, what could cause that result. This often narrows the issue down to SQL, PL/SQL, the APEX flow of events, HTML, CSS or JavaScript. Use APEX Debug Mode to determine what and where the problem is in the APEX flow. Once the issue is generally diagnosed, use the appropriate debug option to address and resolve the problem.

Incorrect report results or data results indicate SQL or PL/SQL or APEX process errors. For SQL and PL/SQL issues ensure that the code executes properly outside of APEX by using an IDE or SQLPlus. Ensure the correct values are in use through the Session interface. If necessary start a remote debug session to examine exactly what occurs as the code executes. Performance issues that cannot be resolved by SQL and PL/SQL tuning outside of APEX may require a trace file to properly diagnose and address. Use of the #TIMING# indicator may narrow a performance issue to a certain region, so one can focus on the SQL in that region. Events or processes not firing indicate problems in the sequence of flow events, possibly caused by the conditions and session state values that control the conditions Use APEX Debug Mode, the Session interface and the APEX Activity Reports and utilities to further track these issues. Turning processes or page elements on and off by changing the element conditions also helps track and solve event flow problems. Incorrect or misaligned elements on a page indicate HTML errors or places where additional HTML tags or styles may be needed to produce the desired result. Use web development tools to view and edit the HTML, JavaScript and styles sheets to address interface issues.
Many issues will involve a combination of tactics. A methodical approach in resolving one “layer” of issues at a time is recommended. For example, correct all SQL and PL/SQL issues first, then ensure all events are firing in order and under the correct conditions, and then address interface issues. Above all knowing which debug tool and technique to employ comes from knowing one’s application, knowing how APEX operates, and experience.
Debug Options – Less Confused?

To summarize, APEX is a blend of technologies – PL/SQL, SQL, HTML, CSS, JavaScript and more – and debugging APEX necessitates a blend of debug tactics. Fortunately, there is a variety of readily available options for debugging APEX applications. APEX supplies a series of utilities for viewing application, page and event information, ranging from the Application Reports series to the Page View Events list to the Database Objects Dependencies report that helps one locate database objects with errors. APEX Debug Mode displays informational messages of each step in the page generation process. The p_trace APEX URL argument enables creation of a trace file, which can be reviewed for SQL execution, timing and tuning information. One can debug PL/SQL modules using the SQL Developer Remote Debug capability. HTML, CSS and JavaScript issues can be view and resolved using web development tools such as Web Developer and Firebug. They key is to know how APEX generates pages, to know the tenets of one’s application, and to employ a variety of tactics to meet the challenge at hand.
Thus, the APEX debug conundrum, “How do I debug APEX?” is solved. The remaining puzzle is “What is wrong with my code?” which is exactly where one should be at the start of a debug session.
Resources

The APEX OTN Forum - http://forums.oracle.com/forums/forum.jspa?forumID=137 . The APEX user community is active and growing. It is your best source for APEX how-to’s and answers for users of all abilities. Know it, Bookmark it. Use it. Contribute to it.

SQL Developer - Home Page on OTN http://www.oracle.com/technology/products/database/sql_developer/index.html
Web Developer - http://chrispederick.com/work/web-developer/ Web Developer is a free Firefox (Flock, SeaMonkey) add-in that adds a menu and a toolbar that contains a wide variety of web developer tools.

Firebug - http://www.getfirebug.com/. Firebug is a free Firefox extension web development tool for edit and monitoring of CSS, HTML and JavaScript.

Online APEX Resources

The APEX OTN Forum - http://forums.oracle.com/forums/forum.jspa?forumID=137 . The APEX user community is active and growing. It is your best source for APEX how-to’s and answers for users of all abilities. Know it, Bookmark it. Use it. Contribute to it.

The APEX Studio - http://htmldb.oracle.com/pls/otn/f?p=18326:1:3795991895340045::NO::: There are a growing number of APEX applications out here that are free to download and use as is or modify for your own purpose. This is the Oracle-hosted APEX hosting site. It includes applications, utilities, themes, tips and tricks. Watch for early adopter versions of APEX.

The APEX OTN Technology Center – http://www.oracle.com/technology/products/database/application_express/index.html The Oracle Technology Network Application Express home page.

9

Paper # 463

