Development

414: Getting Started with Oracle Spatial Without Stopping to Ask Directions
Louise Miller, BAE Systems

Spatial Overview
Everyone is interested in spatial data these days. We all run Google Earth to look at the Washington Monument, use Mapquest to find the nearest ATM, and then use our GPS to get there. Oracle has the capability to associate geographic data in the database to bring it into the new world of Spatial and manage the ever increasing amounts of map and geolocated data.

There is no such thing as a spatial database or spatial table. There is only a column of types like SDO_GEOMETRY and SDO_GEORASTER. Oracle Spatial is a set of object types, methods and functions which add location to a database row. Note that the spatial data types are subject to the same Oracle quirks as any objects types and user-defined data types. All spatial functionalities are accessed by methods.

Spatial resides in the MDSYS schema, and will be created by default when creating a database with DBCA. You can check if Spatial has been created either by looking for the MDSYS schema or selecting from DBA_REGISTRY. The MDSYS account should then be locked. It has DBA privileges but there is no need to ever log into it, so the usual security tricks (revoking CREATE SESSION, CONNECT and giving it a nasty password) are a good idea as well. MDSYS cannot be exported, so there is no security hole there.

SELECT COMP_NAME, STATUS FROM DBA_REGISTRY WHERE COMP_NAME = ‘Spatial’;

What is GIS
Geographical Information Systems are the tools that allow us to collect and manipulate spatial data. In the past, these tools were used by people like surveyors and cartographers to catalog property boundaries and to ensure that homeowners didn’t dig up a sewer line when putting in a swimming pool. Now GIS has left the rarified world of cartographers and photogrammetrists and is part of our daily life.

[image: image1.png]Latitude

-90
(west)

i

Copyright Eric Johnston www.satsig.net. Used with permission.

To start out with, a short refresher of basic geography is in order.

Latitude is the north/south location of a point on the globe. Lines of latitude are non-intersecting circles with varying radii. 0° latitude is the equator and -90° South is the South Pole.

Longitude is the east/west location of a point on the globe. They are all of equal length and meet at the poles. 0° runs through Greenwich, England and 180° is basically the International Date Line. Anything located east of the International Date Line and west of Greenwich is negative and anything located west of the International Date Line and east of Greenwich is positive. It’s important to keep longitude and latitude straight in your mind.

Longitude is often stated as East/West, but Oracle always uses positive numbers for east and negative numbers as west. Likewise, a latitude that is south of the equator is negative and north is positive.

Note that Oracle defines coordinates as Longitude / Latitude, whereas most other uses of coordinates use Latitude / Longitude.

Coordinate Systems
The Earth is not flat, nor is it a perfect sphere (or even a perfect ellipsoid!) so the adjustments that are necessary to turn a round globe into a flat map must be augmented by adjustments to turn a perfect sphere into an ellipsoid. Satellite based GPS uses the WGS84 datum because it is measured from the center of the Earth. Localized maps may use other reference coordinate systems, and it is always necessary for you to know the reference coordinate system your data is based on. If your data is not geodetic, (i.e. not latitude and longitude), you will need to use a reference coordinate system meant for non-geodetic data.
Spatial measurements will be associated with one of three types of coordinate systems:

· Geodetic:
Based on an ellipsoidal model of the Earth’s surface. Locations will be in Latitude / Longitude.
· Projected:
A flat map projection of the area.

· Local:
Not associated with the Earth’s surface. Used for Cartesian graphing. This would be used for non-Earth mapping applications such as CAD. Also useful for Flat Earthers.

As a DBA or Oracle developer you will probably not be called on to select a coordinate system, but you will need to know which one your data uses. There is a list of valid coordinate systems in MDSYS.CS_SRS. It is possible to add additional reference systems, but you need to know what you are doing. Refer to the Spatial Users’ Guide and Reference.

Some common coordinate reference systems are:

· WGS84:

World Geodetic System, used by GPS systems.

· NAD83:

North American Datum, focused on North America

· ETRS89:

European Terrestrial Reference System, focused on Europe

· Non-Earth (centimeters):
A non-geodetic coordinate reference system

Quick definitions:

· Datum:

A set of reference points against which measurements are made

· Geoid:

A model that approximates the irregular shape of the earth at mean sea level. Used as the base of measurements of height.

· Ellipsoid:

A spheroid with flattened poles used as an approximation of a geoid.

Tolerance
You have to determine the tolerance for your queries. The Spatial Users’ Guide and Reference defines tolerance as “the distance that two points can be apart and still be considered the same (for example, to accommodate rounding errors).” It defines the level of precision. Do not use a tolerance that is smaller than the precision of your data. The minimum valid value for a geodetic reference system is 5 cm. That’s a little less than 2 inches. You won’t have geodetic data that’s more precise than that.
Minimum Bounding Rectangle

Another concept that is important to understand is the minimum bounding rectangle, or MBR. An MBR is a geometric approximation that is the smallest possible rectangle that can contain a geometry. An MBR is also referred to as a “Bounding Box.”
[image: image2.png]MBR

Geometry |\,

Minimum bounding rectangle and Geometry.
Notice that the area of the MBR completely includes the geometry and also some area outside of the geometry. This will be more extreme for geometries that are oddly shaped.

Vector VS. Raster

Digitized maps are either vector or raster. A vector map is a set of map features, i.e. a spatial object plus some attributes. Map features are anything that will appear on a map – roads, rivers, national boundaries. A spatial object can be a point, a line or a polygon (lines that describe an area) in 2D, 3D or 4D. (There are more complex types such as collections and compound lines. Refer to the Spatial Users’ Guide and Reference if you need to use them.) Attributes are exactly what they sound like - data items that are associated with the feature, such as Name, Area, Population. A raster map is an image that represents a map or an aerial photograph and may or may not have a spatial component. A map can be created using only vectors, only rasters or a combination of the two. For example, many mapping programs such as Google Earth and MapQuest will allow the user to see a street map, (vector) an aerial image, (raster) or a hybrid (a vector map overlaid onto a raster image.) Oracle’s vector implementation is called Oracle Spatial and their raster implementation is called Oracle Spatial GeoRaster. We will discuss GeoRaster briefly at the end of this paper.
The map below is an example of a hybrid of vector and raster. The yellow lines and the street and building names are features (vectors) overlaid on an aerial image.

[image: image3.png]! ; 3
[¥
. [Commercialf =
"Fe\t{:;rgll N
Bank

=

\‘C vl'(_‘&(_:s..l}‘ler N «
YPark | 4

[
3S:UBLLISYS)
RN,

Hybrid Vector and Raster Map

Creating or acquiring Spatial data
Data can be manufactured or acquired from various sources. One good source of sample data is NAVTEQ, which has graciously provided map data for San Francisco and Washington, DC for use in Spatial training. Other good sources are various national and state governments. You can create your own spatial data using SQL*Loader and data such as the .csv files used by providers of Point Of Interest data for handheld devices. (For example, some data providers use files that are simply formatted longitude, latitude, name of the POI). You can use products such as Google Earth to find the latitude and longitude of a location and use that to manufacture Spatial data.

There are several conversion products on the market that will convert data such as ESRI shape files into Oracle SDO_GEOMETRY. SAFE Software’s FME is the most well known, but there is also a freeware product called shp2sdo.

Oracle provides several transformations to convert data from one coordinate system to another. Look at the Spatial Users’ Guide and Reference for SDO_CS.

After the data is loaded it will be necessary to validate it. Oracle is more selective than some products and will not permit data that has problems such as self-crossing elements, duplicate points, polygons whose first and last points are not identical. Remember that the previously defined tolerance will be used here to determine “same location.”

You will want to use the packaged procedures SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT or SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT to validate the geometry objects.

Getting Started With Oracle Spatial

Spatial columns are created and used differently than standard Oracle data types. They behave in some ways like a user-defined object.

The creation and use of a spatial column requires three things:
· A column of type SDO_GEOMETRY

· An entry in a view called USER_SDO_GEOM_METADATA
· A spatial index
USER_SDO_GEOM_METADATA will describe the spatial column to the index, and is also used by some tools (notably FME) to determine a spatial object’s existence. The spatial index is required by the spatial operators and unlike a traditional index, some of the operators will throw an exception if the index is missing. USER_SDO_GEOM_METADATA contains a column of type SDO_DIM_ARRAY which is a non-scalar object type.

SDO_GEOMETRY data type
SQL> desc sdo_geometry

Name

Null?

Type

SDO_GTYPE

NUMBER

SDO_SRID

NUMBER

SDO_POINT

MDSYS.SDO_POINT_TYPE

SDO_ELEM_INFO

MDSYS.SDO_ELEM_INFO_ARRAY

SDO_ORDINATES

MDSYS.SDO_ORDINATE_ARRAY

· SDO_GTYPE:

Four digits. Format is called “D00T” in the manual.

The first digit is the number of dimensions (2, 3 or 4); the second

refers to the linear referencing system (outside the scope of this paper, for our

purposes make it equal to 0); and the last two digits refer to the geometry type (00

through 07). For example, 01 is a point and 02 is a polygon, so 2003 is a two-

dimensional polygon and 3001 is a three-dimensional point. Refer to the Spatial

Users’ Guide and Reference for more information.

· SDO_SRID:

This is the same definition as in USER_SDO_GEOM_METADATA.

· SDO_POINT:

X,Y,Z

· SDO_ELEM_INFO

Describes how to interpret the SDO_ORDINATES. The first element is the

starting offset (will be 1 for a simple polygon); the second is the element type (1 for

a point, 2 for a string, 1003 for a simple polygon). The third element is the

interpretation. Refer to the Spatial Users’ Guide and Reference for more

information.

· SDO_ORDINATE_ARRAY
This contains the actual points.

SDO_GEOMETRY data type example

This example will create a table with a spatial column and add one feature, the Colorado Convention Center. I extracted the longitude and latitude manually (and inexactly) using Google Earth.

CREATE TABLE my_map_feature_table (

 my_primary_key

NUMBER

,name_of_the_feature
VARCHAR2(50)

,my_map_geometry

SDO_GEOMETRY)
TABLESPACE my_tablespace;
ALTER TABLE my_map_feature_table

ADD CONSTRAINT pk_mmf PRIMARY KEY (my_primary_key);

INSERT INTO my_map_point_table

VALUES (

 54321,
--
Random PK

'Some Random Point',

SDO_GEOMETRY(

2001,

--
Two dim point

8307,

--
WGS 84

SDO_POINT_TYPE
(-104.996842,

39.742196

NULL),

NULL, NULL));

INSERT INTO my_map_feature_table VALUES (

12345,

-- This is just a random PK

’Colorado Convention Center’,

SDO_GEOMETRY(
2003,

-- Two dimensional polygon

8307,

-- WGS 84

NULL,

-- not a point, so this is null

SDO_ELEM_INFO_ARRAY(1,

-- Start from the 1st position

 1003,
-- Simple polygon

 1),

-- Straight-line segments

SDO_ORDINATE_ARRAY(-- Longs. and lats.

-104.995474, 39.743238, -- Same as last

-104.996842, 39.742196,

-104.997722, 39.741468,

-104.997176, 39.741152,

-104.996964, 39.740835,

-104.996964, 39.740475,

-104.996663, 39.740441,

-104.995362, 39.741384,

-104.994243, 39.742307,

-104.994177, 39.742657,

-104.994953, 39.742947,

-104.995474, 39.743238))); -- Same as 1st

SELECT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT(

my_map_geometry, .005)

FROM

my_map_feature_table;
SDO_GEOMETRY Methods
The spatial object type includes methods to retrieve information about the object. There are 7 methods (as of 10gR2) that will return the number of dimensions, the geometry type and even return the WKB and WKT. (Well-known binary and Well-known text.) Methods are discussed in the Spatial Users’ Guide and Reference. An example:

SELECT mmft.my_map_geometry.Get_Dims()

FROM my_map_feature_table mmft

WHERE mmft.name_of_the_feature = ’Colorado Convention Center’;

MMFT.MY_MAP_GEOMETRY.GET_DIMS()

 2

USER_SDO_GEOM_METADATA

Before building a Spatial Index on a SDO_GEOMETRY column, you must populate a row in the view USER_SDO_GEOM_METADATA or ALL_SDO_GEOM_METADATA, to describe the type of data that will be (or already is) in that column. Any mandatory or optional parameters that are populated will be used for validation and building a spatial index. Most Spatial functions will not work until the index is built.
The column DIMINFO is of data type SDO_DIM_ARRAY, which is a varray of type SDO_DIM_ELEMENT.

SDO_DIM_ELEMENT is defined as an Axis name, the Lower and Upper boundaries and then a Tolerance. You define one SDO_DIM_ELEMENT for each dimension; 2, 3 or 4. (If you are doing theoretical physics and require N dimensions you will need to define a new user data type.)

SQL> desc user_sdo_geom_metadata

Name

Null?

Type

TABLE_NAME

NOT NULL
VARCHAR2(32)

COLUMN_NAME

NOT NULL
VARCHAR2(1024)

DIMINFO

MDSYS.SDO_DIM_ARRAY

SRID

NUMBER

· TABLE_NAME:

Name of the table containing the SDO_GEOMETRY object.

· COLUMN_NAME:

Name of the column of type SDO_GEOMETRY.

· DIMINFO:

Description of the dimensions in the data. This column is of type SDO_DIM_ARRAY
·

which is a varray of type SDO_DIM_ELEMENT.
· SRID:

This designates the coordinate system. Set this to a value from the
table MDSYS.CS_SRS if

all of the geometries in this column will be based on the same coordinate system. If you are

using a local coordinate system the data vendor should provide this information. Leave this

null if the data is based on different coordinate systems or the information is unavailable.

Note: WGS84 is designated SRID 8307.

SQL> desc sdo_dim_array

SDO_DIM_ARRAY VARRAY(4) OF MDSYS.SDO_DIM_ELEMENT

Name

Null?

Type

SDO_DIMNAME

VARCHAR2(64)

SDO_LB

NUMBER

SDO_UB

NUMBER

SDO_TOLERANCE

NUMBER

· SDO_DIMNAME:
The name of the axis. Examples would be ‘X’ or ‘Longitude.’

· SDO_LB:

The lower boundary of the range of allowable values. For geodetic data, this would be -180

for longitude and -90 for latitude.

· SDO_UB:

The upper boundary of the range of allowable values. For geodetic data, this would be 180

for longitude and 90 for latitude.

· SDO_TOLERANCE:
Tolerance is defined in meters if the data is associated with a geodetic coordinate system.

The minimum value is .05 meters (5 cm). If the coordinate system is non-geodetic, it will be

defined in the unit of measure of the coordinate system. Unit of measure cannot be

 specified.

Example:

SQL> INSERT INTO USER_SDO_GEOM_METADATA

VALUES

('MY_MAP_FEATURE_TABLE',

'MY_MAP_GEOMETRY',

SDO_DIM_ARRAY(

SDO_DIM_ELEMENT('LONGITUDE', -180, 180, .5),

SDO_DIM_ELEMENT('LATITUDE', -90, 90, .5)

),

8307);

Creating An Index
CREATE INDEX sk_mmf ON my_map_feature_table (my_map_geometry)

INDEXTYPE IS MDSYS.SPATIAL_INDEX;

The index is an R-tree index. It’s built on the MBR, making that type of query much faster.

The more information you give the index the better it will be, especially if you have point data.
Here is a second example using the optional “Parameters” keyword:

CREATE INDEX sk_mmf ON my_map_feature_table (my_map_geometry)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

PARAMETERS ('TABLESPACE=my_tablespace

LAYER_GTYPE=POLYGON

SDO_INDX_DIMS=2');
Spatial Queries
There are 17 spatial operators (as of 10gR2) that can be used in the “where” clause of a query. Spatial queries differ from traditional queries in that the selection criteria are topological (for example: “touch,” “contains,” “disjoint”) or are related to distance (for example: “within distance,” “nearest neighbor”). The first geometry in the query statement should be the geometry to be searched (i.e. the table column) and the second should be the query window. There are also procedures and functions that provide similar functionalities, but the operators use the spatial index (in fact it is required) and the procedures and functions do not, so use the operators whenever possible.

There are two types of Spatial queries, primary and secondary. Primary queries are a quick elimination of non-matches using the MBR. This type of query will return all of the correct results, but will also include any geometries that fall within the part of the MBR that is outside the query geometry.

Secondary queries are exact and more costly.
Some examples of Spatial Operators
SDO_FILTER

(geometry_in_the_database, query_geometry, param) performs a primary query. The param in this case is optional. This will test “true” if the two geometries are not disjoint, “false” otherwise. This is the only operator that will work with more than 2D (until 11g).

SELECT
name_of_the_feature

FROM

my_map_feature_table

WHERE SDO_FILTER
(

my_map_geometry,

SDO_GEOMETRY(2001,8307,

SDO_POINT_TYPE
(-104.995,

39.741,

NULL),

NULL,

NULL),

'mask=ANYINTERACT') = 'TRUE';

NAME_OF_THE_FEATURE

Colorado Convention Center
SDO_RELATE

(geometry_in_the_database, query_geometry, param) is used for topological queries. Performs a primary and then a secondary query.

Example:

SELECT
name_of_the_feature

FROM

my_map_feature_table

WHERE SDO_RELATE
(

my_map_geometry,

SDO_GEOMETRY(2001,8307,

SDO_POINT_TYPE
(-104.995,

39.741,

NULL),

NULL,

NULL),

'mask=ANYINTERACT') = 'TRUE';

no rows selected
or equivalently:

SELECT
name_of_the_feature

FROM

my_map_feature_table

WHERE SDO_ANYINTERACT
(my_map_geometry, some_other_geometry) ='TRUE';

SDO_WITHIN_DISTANCE does exactly what the name implies, but note that there is an optional tolerance parameter that defines a buffer around the geometry that will be shaped like that geometry and the size of the tolerance.

[image: image4.png]

Tolerance buffer: anything within the tolerance will match.

Spatial Packages

There are numerous spatial packages that extend the functionality of Oracle spatial.

SDO_GEOM duplicates some of the functionality of the spatial operators, but does not require or use a spatial index. SDO_GEOM also has member subprograms that are used to determine relationships between geometries, (RELATE, WITHIN_DISTANCE) validate geometries, and give information about geometries (SDO_AREA.) There are 19 subprograms in SDO_GEOM as of 10gR2.

SDO_UTIL is a package that contains a grab-bag of utility functionality to do things like CONVERT_UNIT, PREPARE_FOR_TTS (transportable tablespaces,) GETNUMVERTICES and TO_GMLGEOMETRY (which converts the geometry into a form of GML that ESRI can’t read…) There are more than 20 subprograms in SDO_UTIL.
Example:

select name_of_the_feature NAME, sdo_util.getnumvertices(my_map_geometry) POINTS

from my_map_feature_table;

NAME

POINTS

Colorado Convention Center

 12

Oracle GeoRaster

Oracle Spatial GeoRaster is an object type that combines a raster map or image with an embedded spatial component. It is considerably more complicated to spatially enable an image than a vector. A georaster table will contain a column of type SDO_GEORASTER and requires an additional table of type SDO_RASTER to contain the spatial element. GeoRaster data can be viewed using Oracle MapViewer. The Oracle Spatial GeoRaster manual has some very good examples of the use of this object type. The actual data that is loaded comes from a raster file. There are two load utilities, the server side sdo_geor.importFrom and the client side GeoRasterLoader. There is also a third-party tool from LizardTech which will load raster data.
Some new Spatial features in 11g

· True 3d.
· SDO_Filter, SDO_Anyinteract, SDO_Within_Distance, SDO_NN and other PL/SQL functions will now accept 3D geometries as input.

· LiDAR
· A technology that uses lasers to measure topography. Similar to radar.
· Oracle Spatial 11g has two new data types, SDO_Point_Cloud (raw LiDAR data) and SDO_TIN(triangulated irregular networks) to support LiDAR data for further processing.
Gotchas
· USER_SDO_GEO_METADATA
· Must be properly populated before attempting to use any spatial data including building a spatial index. The table and column names are case sensitive, but usually will converted to uppercase.

· FME uses USER_SDO_GEO_METADATA to determine the existence of a spatial column, and it’s likely that other tools do as well.

· Use a realistic value for tolerance. If it’s too large, the matches will be too sloppy. If it’s too small, too few polygons or points will match.

· You cannot use dblinks in a query if a spatial index is defined out that table.

· Spatial Indexes: If you forget to create the spatial index, most of the spatial functionality will not work.

· There is a maximum size for SDO_ORDINATE_ARRAY, and that size is 1,048,576 numbers. That’s 524,288 for two dimensions. Be careful for geometries that were extracted by automated tools.

· Export/Import will not export the MDSYS schema.

· OEM will not display Geo objects, but Toad and SQL*Plus will.

· When exporting Transportable Tablespaces
· Before the transport, run SDO_UTIL.PREPARE_FOR_TTS on the source database.

· After the transport, run SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS on the target database.

· Transportable tablespaces cannot accommodate endian changes.

· Transporting partitioned tablespaces with spatial indexes is tricky. The LOBs end up in the user’s default tablespace and will not properly transport.

Bibliography
Intro book on GIS:

Heywood, Ian, Sarah Cornelius, and Steve Carver. An Introduction to Geographical Information Systems, (3rd Edition). Upper Saddle River, NJ: Prentice Hall, 2006.

The Oracle Spatial “Bible.” You must own this book (or the first edition):

Kothuri, Ravikanth V., Godfrind, Albert, Beinat, Euro. Pro Oracle Spatial for Oracle Database 11g (Expert's Voice in Oracle). New York, NY: Apress, 2007.

My favorite Spatial White Paper:

Geringer, Daniel. “Oracle Spatial Best Practices.” Oracle Corporation. December 2003. http://www.oracle.com/technology/products/spatial/pdf/spatial_best_practices.pdf
Other very interesting information about using Oracle Spatial:

Armitage, Tim. “Getting Started with Oracle Spatial.” Oracle Corporation, 2006. http://download.oracle.com/otndocs/products/spatial/pdf/au_melbourne06_start.pdf
Francica, Joe. “Oracle Spatial 11g's Enhancements.” Directions Magazine, March 15, 2007. http://www.directionsmag.com/article.php?article_id=2427&trv=1
Ihm, Jean, Lopez, Xavier , Ravada, Siva. “Oracle Spatial 11g: Advanced Spatial Data Management for Enterprise Applications.” Oracle Corporation, July 2007. http://www.oracle.com/technology/products/spatial/pdf/11g_collateral/spatial11g_advdatamgmt_twp.pdf
Lokitz, Justin. “Integrating Oracle Spatial with Google Earth.” Oracle Corporation, July 2007. http://www.oracle.com/technology/pub/articles/lokitz-spatial-geoserver.html
Murray, Chuck. Oracle® Spatial User's Guide and Reference. Redwood City, CA: Oracle USA, Inc.: March 2006.

Murray, Chuck. Oracle® Spatial Developer's Guide. Redwood City, CA: Oracle USA, Inc.: October 2007.

 “Oracle Spatial & Oracle Locator: Location Features for Oracle Database 11g.” Oracle Corporation. http://www.oracle.com/technology/products/spatial/index.html
Qian, L.J., Sharma, Jayant. “Oracle Application Server 10g. (10.1.3) MapViewer.” Oracle Corporation, October 2006. http://www.oracle.com/technology/products/mapviewer/pdf/mapviewer1013_technical_wp_1.pdf
http://www.orafaq.com/faq/what_is_oracle_spatial
“Oracle By Example (OBE): Performing Location-Based Analysis.” Oracle Corporation. http://www.oracle.com/technology/obe/10gr2_db_vmware/datamgmt/spatial/spatial.htm

20

#414

