Apex, LDAP and Active Directory
Application Express

Apex, LDAP and Active Directory Integrating the Technologies

Debra Addeo, Douglas County School District

Introduction

This paper will give a high level overview of LDAP (Lightweight Directory Access Protocol) and Active Directory. Then it will apply these principles to Apex. It will outline a method to for an Apex application to use the authorization from Active Directory.
What is LDAP?
LDAP (Lightweight Directory Access Protocol) is an Internet protocol that programs use to look up information from a server. LDAP is a protocol like FTP (File Transfer Protocol). FTP and LDAP can be used to send information.
As a protocol, LDAP does not define how programs work on either the client or server side. It defines the "language" used for client programs to talk to servers (and servers to servers, too) and access information in a directory also known as an LDAP directory. The client can be any software that can issue the LDAP commands. Using LDAP, data will be retrieved from (or stored in) the correct location within our information directory.

One of the benefits of and LDAP directory is that it can be accessed from almost any computing platform, from any one of the increasing number of readily available, LDAP-aware applications. It's also easy to customize internal applications to add LDAP support.

The LDAP protocol is both cross-platform and standards-based, so applications needn't worry about the type of server hosting the directory. In fact, LDAP is finding much wider industry acceptance because of its status as an Internet standard. Companies are willing to write LDAP integration into their products because they don't have to worry about what's at the other end.
An LDAP directory is particularly useful for storing information that you wish to read from many locations, but update infrequently. For example, all of the following could be stored very efficiently in an LDAP directory:

The company employee phone book and organizational chart

External customer contact information

Infrastructure services information, including NIS maps, email aliases, and so on

Configuration information for distributed software packages

Public certificates and security keys

What is Active Directory?

Active Directory (AD) is an implementation of LDAP directory services by Microsoft for use primarily in Windows environments. Its main purpose is to provide central authentication and authorization services for Windows based computers. Active Directory also allows administrators to assign policies, deploy software, and apply critical updates to an organization. Active Directory stores information and settings in a central repository.
Active Directory is a directory service used to store information about the network resources across a domain. A Windows Server domain or Windows NT Domain is a logical group of computers running versions of the Microsoft Windows operating system that share a central directory database.
An Active Directory (AD) structure is a hierarchical framework of objects. The objects fall into three broad categories: resources (e.g. printers), services (e.g. email) and users (user accounts and groups). AD provides information on the objects, organizes the objects, controls access and sets security.

Each object represents a single entity — whether a user, a computer, a printer, or a group — and its attributes. Certain objects can also be containers of other objects. An object is uniquely identified by its name and has a set of attributes — the characteristics and information that the object can contain — defined by a schema, which also determines the kind of objects that can be stored in the AD.

Each attribute object can be used in several different schema class objects. These schema objects exist to allow the schema to be extended or modified when necessary. However, because each schema object is integral to the definition of AD objects, deactivating or changing these objects can have serious consequences because it will fundamentally change the structure of AD itself.

The framework that holds the objects is viewed at a number of levels. At the top of the structure is the Forest - the collection of every object, its attributes and rules (attribute syntax) in the AD. The forest holds one or more transitive, trust-linked Trees. A tree holds one or more Domain and domain trees, again linked in a transitive trust hierarchy. Domains are identified by their DNS name structure, the namespace.

The objects held within a domain can be grouped into containers called Organization Units (OUs). OUs give a domain a hierarchy, ease its administration, and can give a semblance of the structure of the AD's company in organizational or geographical terms. OUs can contain OUs - indeed, domains are containers in this sense - and can hold multiple nested OUs. Microsoft recommends as few domains as possible in AD and a reliance on OUs to produce structure and improve the implementation of policies and administration. The OU is the common level at which to apply group policies, which are AD objects themselves called Group Policy Objects (GPOs), although policies can also be applied to domains or sites (see below). The OU is the level at which administrative powers are commonly delegated, but granular delegation can be performed on individual objects or attributes as well.

The actual division of the company's information infrastructure into a hierarchy of one or more domains and top-level OUs is a key decision. Common models are by business unit, by geographical location, by IT Service, or by object type. These models are also often used in combination. OUs should be structured primarily to facilitate administrative delegation, and secondarily, to facilitate group policy application. Although OUs form an administrative boundary, the only true security boundary is the forest itself and an administrator of any domain in the forest must be trusted across all domains in the forest.
Authentication and Authorization

Authentication

Authentication is the process of verifying who a person is. This is done with a username and password. Just because someone has the correct username and password it does not mean that they should have full access to your system. This is where authentication comes in to play. Active directory or any other method can be used to find out if the password and username are correct.

Authorization
Authorization is the finding out if the person with the correct username and password are now authorized to access the application and the data within the application. This can be accomplished many different ways. One can check a group in Active Directory or there could be a simple list in a database table that allows access to the data in the application. An example of this would be where an application would check to see if someone had administrative privileges.
Integrating the Technologies

Why would I use Active Directory and LDAP?

Most database applications are accessed through two or three different methods. The first one would be to have a database account and be able to access the database directly. Using this method the database stores the encrypted password and handles the password expiration. Many web applications use one database username and password that is not available to the user but then contains a table with usernames and passwords. The application needs to keep the passwords secure and handle the password expiration. Also the application would need to know when users are no longer with the company and end permissions.

If a company is currently using Active Directory or any other LDAP based server a database application can then access the username and password on Active directory for authentication. Using Active Directory the application does not need to keep usernames and passwords or handle the functions that need to be done for password and user maintenance. Depending on the group structure within active directory it could be used for the authorization or the exclusion of authorization for an application. The application would be free to concentrate on the other more important functionality.
DBMS_LDAP package

Oracle has a package called dbms_ldap that allows the issuing of LDAP commands from the database. Apex uses this package with a wrapper to do the connections to LDAP. This package is shown mostly for troubleshooting problems with the connection from Apex.

This package can be used to verify a username and password. It can also be used to search the tree to see what groups the user is currently in or add, delete or modify a user. This presentation is only going to look at searching the tree for information and verifying passwords for users.
create or replace function chk_ad(in_connect_name IN VARCHAR2 DEFAULT NULL,

 in_connect_pw IN VARCHAR2 DEFAULT NULL,

 in_search_username IN VARCHAR2 DEFAULT NULL,

 in_search_id in VARCHAR2 DEFAULT NULL)

 RETURN varchar2 IS

retval PLS_INTEGER;

my_session DBMS_LDAP.session;

ldap_host VARCHAR2(256);

ldap_port VARCHAR2(256);

ldap_user VARCHAR2(256);

ldap_passwd VARCHAR2(256);

-- The following is the base of the search tree

ldap_base VARCHAR2(256) := 'dc=mycomany,dc=com';

my_attrs DBMS_LDAP.string_collection;

my_message DBMS_LDAP.message;

my_entry DBMS_LDAP.message;

entry_index PLS_INTEGER;

my_dn VARCHAR2(256);

my_attr_name VARCHAR2(256);

my_ber_elmt DBMS_LDAP.ber_element;

attr_index PLS_INTEGER;

i PLS_INTEGER;

my_vals DBMS_LDAP.STRING_COLLECTION;

v_username VARCHAR2(200);

BEGIN

retval := -1;

ldap_host := 'activedirectorymachine';

ldap_port := '389';

ldap_user := in_connect_name;

ldap_passwd := in_connect_pw;

DBMS_OUTPUT.PUT_LINE(RPAD('LDAP Port ',25,' ') || ': ' || ldap_port);

DBMS_LDAP.USE_EXCEPTION := TRUE;

-- Connect to the server and get a session

my_session := DBMS_LDAP.init(ldap_host,ldap_port);

DBMS_OUTPUT.PUT_LINE (RPAD('Ldap session ',25,' ') || ': ' ||RAWTOHEX(SUBSTR(my_session,1,8)) || '(returned from init)');

-- Bind to the server to authenticate the user. If all you need to do is to check the user then code could be finished after the bind.

retval := DBMS_LDAP.simple_bind_s(my_session, ldap_user,ldap_passwd);

DBMS_OUTPUT.PUT_LINE(RPAD('simple_bind_s Returns ',25,' ') || ': '|| TO_CHAR(retval));

-- If you need to search for attributes about the user then the code continues

-- If the attribute is set to * then all attributes are retrieved. This is helpful in the case where you do not know the attribute name and need to find it.

--my_attrs(1) := '*';

-- Multiple attributes can be retrieved in one search

my_attrs(1) := 'uidNumber';

my_attrs(2) := 'userPrincipalName';

-- Perform the search. Finding the principal name may be part trial and error because one may or may not need the mycompany.com. It just depends on how AD is setup.

 retval := DBMS_LDAP.search_s(my_session, ldap_base,

 DBMS_LDAP.SCOPE_SUBTREE,

 '(userPrincipalName='||in_search_username||'@mycompany.com)',

 my_attrs,

 0,

 my_message);

 DBMS_OUTPUT.PUT_LINE(RPAD('> search_s Returns ',25,' ') || ': ' || TO_CHAR(retval));

 DBMS_OUTPUT.PUT_LINE (RPAD('> LDAP message ',25,' ') || ': ' || RAWTOHEX(SUBSTR(my_message,1,8)) ||

 '(returned from search_s)');

 -- count the number of entries returned

 retval := DBMS_LDAP.count_entries(my_session, my_message);

 DBMS_OUTPUT.PUT_LINE(RPAD('> Number of Entries ',25,' ') || ': ' || TO_CHAR(retval));

 DBMS_OUTPUT.PUT_LINE('+++');

 -- End output Heading --

 -- get the first entry

 my_entry := DBMS_LDAP.first_entry(my_session, my_message);

 entry_index := 1;

IF my_entry IS NULL THEN

-- If the entry is null then can search the sub tree for additional information.

 retval := DBMS_LDAP.search_s(my_session, ldap_base,

 DBMS_LDAP.SCOPE_SUBTREE,

 '(uidNumber='||in_search_id||')',

 my_attrs,

 0,

 my_message);

 DBMS_OUTPUT.PUT_LINE(RPAD('> search_s Returns ',25,' ') || ': '|| TO_CHAR(retval));

 DBMS_OUTPUT.PUT_LINE (RPAD('> LDAP message ',25,' ') || ': ' ||RAWTOHEX(SUBSTR(my_message,1,8)) ||

 '(returned from search_s)');

 -- count the number of entries returned

 retval := DBMS_LDAP.count_entries(my_session, my_message);

 DBMS_OUTPUT.PUT_LINE(RPAD('> Number of Entries ',25,' ') || ': '|| TO_CHAR(retval));

 DBMS_OUTPUT.PUT_LINE('+++');

 -- End output Heading --

 -- get the first entry

 my_entry := DBMS_LDAP.first_entry(my_session, my_message);

 entry_index := 1;

END IF;

 -- Loop through each of the entries one by one

 while my_entry IS NOT NULL loop

 -- print the current entry

 my_dn := DBMS_LDAP.get_dn(my_session, my_entry);

 DBMS_OUTPUT.PUT_LINE (' entry #' || TO_CHAR(entry_index) || ' entry ptr: ' ||RAWTOHEX(SUBSTR(my_entry,1,8)));

 DBMS_OUTPUT.PUT_LINE (' dn: ' || my_dn);

 my_attr_name := DBMS_LDAP.first_attribute(my_session,my_entry,

 my_ber_elmt);

 attr_index := 1;

 while my_attr_name IS NOT NULL loop

 my_vals :=DBMS_LDAP.get_values (my_session, my_entry,

 my_attr_name);

 if my_vals.COUNT > 0 then

 FOR i in my_vals.FIRST..my_vals.LAST loop

 DBMS_OUTPUT.PUT_LINE(' ' || my_attr_name|| to_char(i) || ' : ' ||

 SUBSTR(my_vals(i),1,200));

 IF my_attr_name = 'userPrincipalName' THEN

 v_username := SUBSTR(my_vals(i),1,instr(my_vals(i),'@',1,1)-1);

 END IF;

 IF my_attr_name = 'uidNumber' AND lower(my_vals(i)) = lower(in_search_id) THEN

 retval := dbms_ldap.unbind_s(my_session);

 RETURN v_username;

 END IF;

 end loop;

 end if;

 my_attr_name := DBMS_LDAP.next_attribute(my_session,my_entry,

 my_ber_elmt);

 attr_index := attr_index+1;

 end loop;

 my_entry := DBMS_LDAP.next_entry(my_session, my_entry);

 DBMS_OUTPUT.PUT_LINE(' --- ');

 entry_index := entry_index+1;

 end loop;

-- Release the bind.

retval := dbms_ldap.unbind_s(my_session);

return v_username;

end;

AD can be indexed just like a database table. If there are speed issues with the above commands then ask the administrator to index the item that is being searched. It can make a large difference in the speed of the above commands.

Adding Active Directory to Apex

Open the application and go to Shared Components:
[image: image1.png]
You will need to create an authentication scheme. Click on the create button and the next wizard will appear:
[image: image2.png]
Choose based on a pre-configured scheme from the gallery

[image: image3.png]
Choose the Show Login page and Use LDAP Directory Credentials

[image: image4.png]
I chose Use Page 101 as Login Page but either option can work here. It depends on the application.

[image: image5.png]
Enter the LDAP information for the production instance. If the / does not work try the @ with the dcsdk12.org

[image: image6.png]
Enter a name and press Create Scheme

[image: image7.png]
An icon appears on the screen. You need to set the authentication scheme as the default. Press the link on the right side that says Change Current.

[image: image8.png]
Choose the one that was created as the current one.

[image: image9.png]
Press next and then press Make Current

[image: image10.png]
You can now run the application using the user name and password from active directory.

Authorization

[image: image11.png]
Click on the Authorization Schemes to configure.

Authorization could be as simple as using a query from a table in the database as shown below. It could be as complex as using the procedure from above to check the groups in Active Directory.

[image: image12.png]
When using a query like the one above remember that the v(‘APP_USER’) will be returned in upper case.

Conclusion

Active Directory (or any other LDAP based Directory) and LDAP can be used to handle the authorization and authentication for an application. This allows the application builder to handle application specific issues and not worry about the username and password functions that need to be performed by an application.

