Database - Performance Tuning

New Tuning Features in Oracle 11g – How to make managing your database free of stress
Penny Cookson, Sage Computing Services

Introduction

One of the key problems that have haunted Oracle sites since the introduction of the Cost Based Optimizer is the ability to provide a stable level of performance over time. The very responsiveness of the CBO to factors such as changes in statistics and initialization parameters can lead to sudden changes in performance levels. Oracle 11g introduces a number of features that will assist the DBA in providing a stable environment for mission critical applications. You should be aware that some of the functionality described in this paper requires additional licenses such as the Tuning Pack.
Finding Diagnostic Information

The Automatic Diagnostic Repository (ADR)
In Oracle 11g, trace files and other files used for diagnosing problems have been moved to a file based repository known as the Automatic Diagnostic Repository (ADR). The following types of files are grouped in this location:
· trace files
· alert log
· dump files
· health monitoring reports
· incident and problem descriptions

These files can be viewed and manipulated using a command line interface ADRCI or the Enterprise Manager Support Workbench.
Locating Trace Files

The ADR base directory is defined by the parameter DIAGNOSTIC_DEST, or the ORACLE_BASE directory you supplied at installation time if DIAGNOSTIC_DEST is not defined. The diagnostic directory diag is located under the ADR base. There is a subdirectory for each product under diag. As an example you will now find background and user trace files for the ora11 sid and ora11 database together in the following location <ORACLE_BASE>\diag\rdbms\ora11\ora11\trace. The initialization parameters background_dump_dest and user_dump_dest are deprecated and will be ignored. The location of diagnostic directories can be determined using V$DIAG_INFO . The location of a trace file for a particular user session can be determined from the TRACEFILE column in V$PROCESS.
Bind Peeking and Adaptive Cursors
Previous Behaviour

From Oracle 9 the CBO has used bind peeking. When a statement that uses a bind variable is parsed, the CBO “peeks” at the value of the bind variable in order to determine the access path. In cases where the data is skewed and a histogram exists, this can cause severe performance problems. If the first value used is a minority value, and an indexed access path is selected, then this same access path will be used for fetching majority values when the statement is subsequently executed.
Oracle 11g Behaviour

Oracle 11g introduces adaptive cursors in which the plan will adapt to the value of the bind variable supplied at execution time. V$SQL has two new columns, IS_BIND_SENSITIVE and IS_BIND_AWARE. The first time you execute a statement , using a variable value with different selectivity from the value used when the statement was parsed, it uses the original plan. The second time it changes the plan and become bind aware.

Example:

SELECT sql_id, child_number, is_bind_sensitive, is_bind_aware

FROM v$sql

WHERE sql_id ='95jktg3mza0qm';
[image: image1.png]The statement with a sql_id of '95jktg3mza0qm'has been executed three times. The first two occasions used CHILD_NUMBER 0. On the third occasion it changed the plan and used CHILD_NUMBER=1
Note that the number of executions displayed in the table V$SQL_CS_STATISTICS does not get incremented correctly. Use V$SQL to determine the number of times a statement has been executed.
What the DBA Needs To Do
The beauty of adaptive cursors is that all the DBA needs to do is to minimize the flushing of statements from the shared pool. Once the CBO has taken the wrong access path on the first occasion it encounters a different bind variable value, the next execution will adapt to the bind variable. Therefore as long as these alternative paths are in memory, skewed data and bind variables will no longer cause a problem.

Gathering Statistics
Oracle 11g introduces significant improvements in statistics gathering functionality. These fill in some of the gaps in information that caused the CBO to make poor decisions in some cases. They also provide for greater levels of stability.

Multi Column Statistics
Gathering statistics on combinations of columns is now supported. This improves plans for complex dependency patterns.
Example with Single Column Statistics
Table EVENTS_LARGE has approx 100,000 rows
There are approx 25,000 rows with ORG_ID = 2264
There are approx 75,000 rows with COMMENTS=’TEST’
There are 4 rows with COMMENTS=’TEST’ and ORG_ID = 2264

Consider the following statement:

SELECT count(b.comments)
FROM train.events_large e, train.bookings_large b
WHERE e.org_id = 2264
AND e.event_no = b.event_no
AND e.comments = 'TEST'
The trace file with only single column statistics will contain the following:

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 5.00 22.52 35341 36337 0 1
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 4 5.00 22.52 35341 36337 0 1
Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=36337 pr=35341 pw=35341 time=0 us)

 175 HASH JOIN (33365083 card=1076293)

 4 TABLE ACCESS FULL EVENTS_LARGE (card=18810)

5767168 TABLE ACCESS FULL BOOKINGS_LARGE (card=5767168)
Example with Multi Column Statistics
We can gather multi column statistics using the following statement:
BEGIN
 dbms_stats.gather_table_stats(ownname=>'TRAIN', tabname=>'EVENTS_LARGE', cascade=>TRUE,
 method_opt => 'FOR COLUMNS (org_id, comments) SIZE SKEWONLY', no_invalidate=>FALSE);
END;
The trace file with multi column statistics will contain the following:

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.01 0.01 0 1175 0 1
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 4 0.01 0.01 0 1175 0 1
Rows Row Source Operation
------- ---
 1 SORT AGGREGATE
 175 NESTED LOOPS
 175 NESTED LOOPS (card=865)
 4 TABLE ACCESS FULL EVENTS_LARGE (card=15)
 175 INDEX RANGE SCAN BK_EVT2 (card=57)
 175 TABLE ACCESS BY INDEX ROWID BOOKINGS_LARGE (card=57)
The CBO is now aware that the combination of the two column values occurs very few times and will use a nested loop join. Extended statistics can be viewed using USER_STAT_EXTENSIONS. DBAs moving to Oracle 11g should identify dependencies between columns and create multi column statistics. They are not created automatically. Such statistics are useful for dependent sets of columns such as Country and State.
Expression Statistics
Statistics can also be gathered on expressions of columns. While it has been possible to gather statistics on expressions of columns by creating a function based index, this allows us to have statistics on expressions of columns when the column is not indexed.
The following example demonstrates how we can gather expression statistics:

BEGIN
 dbms_stats.gather_table_stats(ownname=>'TRAIN', tabname=>'EVENTS_LARGE', cascade=>TRUE,
 method_opt => 'FOR COLUMNS (INITCAP(comments)) SIZE SKEWONLY', no_invalidate=>FALSE);
END;
Setting Preferences for Gathering Statistics
The DBMS_STATS.GET_PARAM and DBMS_STATS.SET_PARAM procedures are now obsolete. Preferences for gathering statistics should now be set using the following subprograms from DBMS_STATS:

· GET_PREFS Function (returns the preferences)
· SET_TABLE_PREFS (set for individual tables)

· SET_DATABASE_PREFS (sets for all tables, can include/exclude SYS tables)
· SET_GLOBAL_PREFS (the default for new objects)
Note that preferences can now be set for individual tables, however one of the most annoying aspects of the ability to set table level preferences, is that we cannot use this functionality to define the multi column statistics or expression statistics that we want to gather for the table.

Example – Setting table Preference in Enterprise Manager

[image: image2.png]It would be ideal if we could set the preferences for each table to define the multi column statistics and expression statistics we want to collect.

This screen is used to define table level preferences, however the syntax displayed is not supported and would result in an error.

As a result we cannot just set preferences and then user GATHER_SCHEMA_STATS, but will need to execute separate statements to gather these new statistics types.

Publishing Statistics

The gathering of statistics has been a frequent reason for database performance to take an unexpected dive. When a new set of statistics has had a negative impact on performance, the DBA has then had to hurriedly return an old set of statistics. Oracle 11g allows us to separate the publishing of statistics from the gathering process. The steps involved in gathering new statistics should now be as follows:
1 Set preferences such that PUBLISH = ‘FALSE’’
2 Gather statistics. These can be viewed in DBA_TAB_PENDING_STATISTICS
3 Test the new statistics by setting optimizer_pending_statistics = TRUE for a session.
4 Use dbms_stats.publish_pending_stats to publish the statistics or dbms_stats.delete_pending_stats to remove them.
A DBA should now never be in a situation where a change in statistics has an adverse effect on performance. Note that the default setting for global statistics is PUBLISH = TRUE. This should be changed to FALSE for a stable environment.
Automatic Tuning
An automatic tuning task is configured by default in the Oracle 11g database. It runs in the maintenance window. This runs the automatic tuning optimizer, which allows the CBO additional time to evaluate the execution paths for statements. It may also take additional actions, for example partial execution of the statements. The targets for the tuning will be high resource statements identified from the Automatic Workload Repository. As part of the recommendations made by the automatic tuning task a SQL*Profile may be recommended. You have the option of allowing Oracle to implement the SQL*Profiles automatically, or of reviewing them and implementing them manually if you choose. The report produced by the utility provides an estimate of the benefit gained. If you implement the SQL*Profile, either automatically or manually, the profile information is stored in the SQLOBJ$ and SQLOBJ$DATA tables, which are accessed at parse time and used to provide additional information to the CBO in determining the best access path.
[image: image3.png]Example:

[image: image4.png]SELECT obj_type, plan_id, name,flags,
 last_executed

FROM sqlobj$

WHERE signature = ‘1697466342721355938’
AND category = :2

SELECT comp_data
FROM sqlobj$data

WHERE signature = ‘1697466342721355938’
AND category = :2

However good this looks, letting Oracle implement tuning fixes without finding the underlying problem is likely to cause problems that could be fixed to remain, for example an index may be missing. I would suggest the following is a better approach:
·
Let it do its automatic tuning
·
Don’t let it automatically implement
·
Check its recommendations and implement if the problem cannot be fixed any other way
SQL Plan Management

The ultimate tool in maintaining the stability of a database under CBO is the SQL*Plan Management facility. SQL*Plan Management is like a trip down memory lane for all those DBAs who remember the stability of the Rule Based Optimizer. There are numerous changes that can affect the plan used by the CBO. These include:

· System Statistics

· System parameters

· Session parameters

· SQL Profiles

· Outlines

· Optimizer statistics

· Software versions

· Indexes
Any change to these factors can cause a new plan to be selected, with a possible adverse effect on performance.
Capturing Plans
SQL Plan Management allows the plans of statements to be collected automatically by setting OPTIMIZER_CAPTURE_SQL_PLAN_BASELINE = TRUE, or manually using the DBMS_SPM package. When capturing plans automatically, the statement must be executed twice to be captured. The package allows plans to be collected from statements in a tuning set or in the cursor cache. The baseline is a set of stored and accepted plans.
New Plans
When a new plan is identified, either during execution of statements, or from running the SQL Tuning Advisor, the plan will not be used till it is accepted. If a plan is created as the result of accepting a profile from the SQL Tuning Advisor it will be automatically accepted. This is another reason for manually controlling the acceptance of SQL*Profiles in environments in which you want to maintain a high level of control. You can use DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE to accept plans which perform better than the previous plan for the statement. In mission critical environments where change needs to be tightly controlled, plans can be accepted manually for maximum control. This approach however requires the DBA to check and verify each change in plan and then approve it. The evolution of plans can be performed automatically by scheduling the DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE job to run during a maintenance window. If the call to the function does not include a parameter defining the specific statement it will be run for all non accepted statements. The function returns a report.
Note that SQL Plan Management does not allow adaptive cursors to function correctly. The presentation will include a demonstration of this problem and recommend an approach.

SQL Performance Analyzer

While SQL Plan Management is designed to provide stability in a slowly evolving environment, the SQL Performance Analyzer allows more significant changes to be tested before implementation. This can assist in managing software and hardware upgrades. This facility allows representative workflows to be recorded, replayed under the new conditions and then analyzed for problems.
Summary – Existing applications
Given the new features available for managing performance in an Oracle 11g database, the following approach is recommended to take advantage of all the new functionality:

a) Migrate to a Test instance of 11g

b) Run the application and collect the workload as a SQL Tuning set
c) Run SQL Performance Analyzer to catch the “before” picture
d) Add extra statistics (multi column and expression) where required
e) Run automatic tuning – without automatic implementation

Look at suggestions

Fix the problem or

Accept the profile
f) Lock any statistics where required (e.g very dynamic tables)

g) Run the SQL Tuning set in SQL Performance Analyzer and compare
h) Perform any manual tuning required and repeat from g)
i) For a database requiring a high level of stability

Baseline the application SQL

Manually evolve plans

New Applications and the Results Cache

Possibly the most exciting new feature to be included in the Oracle 11g release is the SQL and PL/SQL Results cache. This feature could radically change the way applications are developed with significant resulting improvements in performance.
SQL Query Results Cache

If the parameter RESULT_CACHE_MODE is set to FORCE then results of SQL queries will be stored in the results cache in the SGA and used as a source of data for future queries. These results will be invalidated if the underlying data is changed. The statement SELECT * FROM v$result_cache_objects can be used to view the contents of the cache.

The automatic storage of query results in the results cache is likely to lead to the retention of large amount of results sets, many of which will never be used again. Results are aged out according to a LRU algorithm. A more sensible approach would be to enable result caching only for statements which return data which is known to be used multiple times. The /*+ result_cache */ hint can be used to determine the data to be retained. In environments where there is excess memory available, developers should be encouraged to identify commonly used query results and use this hint.
PL/SQL Function Results Cache
A more controlled mechanism for using the results caching feature is the ability to store the return values of PL/SQL functions in the results cache. There are some issues in terms of dependencies, however this feature allows us to design something akin to a two tier model within the Oracle database structures. The feature is restricted by the inability of the PL/SQL results cache to be used in a function returning an object, however this can be worked around. A demonstration of the approach will be included in the presentation.
With a correctly designed layer of PL/SQL functions, the SQL used to access data can fetch data from the results cache. Let us say we have a package called BusinessObjects which returns a PL/SQL table. This table can be stored in the results cache, and SQL statements in the application can be structured as follows:
SELECT expr1, expr2, expr3, expr4

FROM TABLE(BusinessObjects.getsomevalues(p_param1);

4

Paper 704

