Database: Backup/Recovery

Part 1 -- RMAN in the Trenches:
To Go Forward, We Must Backup

Philip Rice, University of California Santa Cruz
Space: The Final Frontier

Before showing how feature choices affect space and time, it will be good to cover some basics. With RMAN, there are two backup format choices, both of which will check for corruption. Both will capture completion metadata, so RMAN knows how to handle recovery. An Image Copy is similar to an OS copy, except that an Oracle server session produces it. The Image Copy is suited to fast recovery, partly because compression is not possible. The Enterprise Manager 10g Suggested Backup method creates an image copy with incremental changes rolled forward (i.e. it is refreshed daily), enabling a quick return of the database to its state at any point during the preceding 24 hours
:

run {
allocate channel oem_disk_backup device type disk;
recover copy of database with tag 'ORA$OEM_LEVEL_0';
backup incremental level 1 cumulative copies=1 for recover of copy
 with tag 'ORA$OEM_LEVEL_0' database;
}

The default Backupset format
 will be the focus in this paper, looking at Incremental rather than Full backups. Incremental Level 0 captures datafile content, used with the RESTORE command. Compare the EM Suggested Backup with a sample Incremental Backupset command:

RMAN> backup incremental level = 0 CHECK LOGICAL tag LVL0 database;

Incremental Level 1 captures block changes since the last Incremental Level 0 or Level 1. The combination of 0 and 1 allows saving a significant amount of backup space. Compression allows even greater space savings. Full is similar to Incremental Level 0, except that Full will not allow capturing incremental changes. 9i had Level 0 to 4. A mix of levels on different days would allow somewhat shortened backup times, but that wider range did not provide much extra value. 10g only has Level 0 and 1.
As of 9i, the CONFIGURE command allows setting certain command line options once for each database, so they do not need to be specified in each backup run. There is a relatively limited set, so it is easy to see the possibilities in one screen display:

RMAN> SHOW ALL;

Options that are not set explicitly will be shown as "# DEFAULT" at the end of the line, as a comment. Some CONFIGURE defaults are what many sites would want. For example, for configuration of DEFAULT DEVICE TYPE, disk is assumed. If this is what you want, simply let this stay as is, with no explicit setting on your part. Settings displayed from SHOW ALL will be in effect for a BACKUP or RESTORE command where the option could be included, allowing scripts to be simplified.
Retention policy is an option that can be set with CONFIGURE. RMAN offers two retention policy choices. REDUNDANCY 1 is the default, and this determines the number of backup copies you want at any time. 9.2 documentation says “By default, the retention policy is configured to REDUNDANCY = 1 to maintain compatibility with the behavior of REPORT OBSOLETE in earlier RMAN releases.”
 The RECOVERY WINDOW gives a guaranteed time span for Point In Time recovery (PIT), but REDUNDANCY does not.

For the moment, look at disk only, and ignore tape. Figure 1 shows a baseline plan for the example in this paper. A Level 0 with a backup size of 50GB will be taken each Saturday night, and there are enough database block changes so that the Level 1 will take 10GB on each of the other six nights of the week. For clarity, only a single database backup will be considered in this example.

[image: image1.wmf]1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

10

20

30

40

50

Level 0 every 7 days (50 GB),

 Level 1 other days (10 GB)

Example: Daily space used for Incremental Level 0 and 1

Figure 1

When a new Level 0 is done with the default choice of REDUNDANCY 1, previous incrementals are OBSOLETE, i.e. not needed for the retention requirement. In Figure 1, that would be day 8, 15, etc. Figure 2 shows the cumulative space requirement for REDUNDANCY 1. The front set of bars is the same as in Figure 1, and the back set of bars is total space required. The first week is not OBSOLETE until the next Level 0 is completed, so there is a spike of 160GB before dropping down to 60GB on the next day.
[image: image2.wmf]1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

20

40

60

80

100

120

140

160

Level 0 every 7 days (50 GB),

 Level 1 other days (10 GB)

Space requirement example for Redundancy 1 (retention default)

Figure 2

The REDUNDANCY 1 default can offer PIT recovery, but that depends on when the last Level 0 was done, so there is effectively no PIT span guaranteed. This choice may be reasonable for a Development database, where developers can adapt because precise data content is of less importance. There would be a varying PIT of 0-6 days possible in our example, based on day of the week when recovery is done.

A Production database is more likely to require a guaranteed PIT. A RECOVERY WINDOW is a PIT to any time in the past <nn> days. To fit this into the example, the CONFIGURE command will set the PIT span to 7 days:

RMAN> CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 7 days;

Figure 3 shows the same Level 0 and 1 frequency and backup size each day that was in the example for the REDUNDANCY 1 default. At the end of one week, 110GB of disk backup space is required for a 7 day RECOVERY WINDOW. Bear in mind that a PIT guarantee of 7 days is not a sliding window. On the second Saturday, the prior Level 0 must still be there to allow reaching back 7 days. This holds true until after completion of the third Level 0. So this example will have a maximum of three Level 0s at one time, with two Level 0s through most of the week. This example requires a maximum of (50*3) plus (10*12), for a total of 270GB.

[image: image3.wmf]1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

50

100

150

200

250

300

Level 0 every 7 days (50 GB),

 Level 1 other days (10 GB)

Space requirement example for Retention Window of 7 days

Figure 3

Now look at a couple of simple choices that affect the space requirement.

For any database where Level 1 is of moderate size, the best use of space is a window that is one less than the multiple of Level 0 frequency. In the example, that would be a 6 or 13 or 20 day Recovery Window. With that simple change, an older Level 0 will become obsolete prior to creation of the next Level 0. Figure 4 shows that the 6 day choice minimizes the spikes of space use, reducing our maximum space requirement by 50GB. Similarly, a 13 day retention choice allows almost an extra week compared with 7 day retention, without requiring much extra space.

[image: image4.wmf]1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

50

100

150

200

250

300

350

Day, with Level 0 every week

Space required (GB) for various retention periods

Daily size:

Level 0 or 1

6 day

retention

7 day

retention

13 day

retention

Figure 4

So far, the numbers only include space for one database. Now consider one server with a half dozen databases, and the script backs up each one serially. The DELETE OBSOLETE command will do two things. It will remove any backup files that are no longer needed, and it will clear the entries out of the metadata (controlfile and optional catalog), since that information is no longer needed. In the following pseudocode, take a look at DELETE placement:

for ORACLE_SID in [DBs to be backed up]
RMAN> BACKUP level = 0 CHECK LOGICAL tag LVL0 database;
RMAN> DELETE NOPROMPT OBSOLETE;
[End loop]

Putting DELETE at the end needs an extra 50 GB temporarily each time through the loop, because the most recent Level 0 must be completed before the older one becomes obsolete. Be aware that the script works on just one ORACLE_SID at a time, so the second pass in the loop can not see an obsolete Level 0 from a different ORACLE_SID in the first pass. Putting DELETE in front means that RMAN is not aware of the six obsolete Level 0s until the next day, which is (50*6), for a total of 300GB extra required. Just by changing the placement of the DELETE command, there is a difference of 250GB in this example. Using Flash Recovery Area (FRA) would be somewhat different, because space is cleared automatically when your quota is exceeded. However, the Recovery Window choice and the DELETE command placement ideas should be valid because your quota allocation for the FRA could be less than it would be otherwise.

Setting FORMAT explicitly

To establish a naming convention for backups, FORMAT can be explicitly set in the CONFIGURE command, with path and file name appearance specified once for each database. Inclusion of %d can allow the database name to be generically referred to in a directory path as well as in the backup file name. Note that RMAN is not able to create a new directory on the fly for a newly created database. The directory needs to be created at the OS level, or the backup will fail.
RMAN> CONFIGURE CHANNEL DEVICE TYPE disk FORMAT = '/orabackup/%d/%d_%s_%p_%t';

The controlfile can be included when backups are done, with path and file name appearance similarly specified once for each database:

RMAN> CONFIGURE CONTROLFILE AUTOBACKUP ON;

RMAN> CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE disk

TO '/orabackup/%d/%d_%F';
Compression: On the Space/Time Continuum
We have three types of compression. In 9i, blocks that were never used did not get included in the backup. In 10g, binary compression became an option. As of 10.2.0.2, empty blocks did not get included in the backup, even if they had been used at some time.
Oracle recommends not mixing RMAN vs. 3rd party methods of compression. 10g documentation does not explain the reason for the recommendation. However, a second time through binary compression can result in a backup of larger size than a single compression. Tape vendors have had their own compression methods in place for many years, so that is a likely area to consider potential mixing of methods. The SysAdmins at our site say that we have hardware tape compression. They don’t believe it will be a problem to mix methods, with the tape side simply seeing that it can’t compress further. Even if the second compression results in a larger total backup size, they believe the difference is not likely to be significant. At our site, binary compression is done on disk because there is a significantly better use of space, and the resulting backup file can be taken more quickly to tape. 11g documentation clarifies this trade-off, pointing out that it will be best to avoid scheduling binary compression during times when CPU use is likely to be high.

A couple years ago, database migration from 9.2 to 10.2 allowed an opportunity to measure the benefit from binary compression. Hardware used in the first test was an older Sun server, with CPU speeds circa 2001. A 9.2 Level 0 backup (not compressed by definition except for blocks that were never used) took 29 minutes, with a size of 39.2 GB. A 10.2 Level 0 backup on that same machine took 4 hours, with a size of 6.2 GB. That better than 6:1 ratio for space, but 8 times as long to run. This test was shortly before a move to a Sun V490, built in 2006, with a faster CPU. With parallel 2 on the V490, run time was 41 minutes rather than 4 hours, almost as good as the original 9.2 time. With fast hardware, we can get space savings and still keep to a reasonable run time.

Some of the V$ (controlfile) and RC (catalog) views have a COMPRESSION_RATIO column. The Level 0 and Archive ratios of 6:1 or 7:1 in RC_BACKUP_SET_DETAILS fit nicely with my test result. However, I found that the Level 1 ratio in RC_BACKUP_SET_DETAILS is not realistic, with a value that is much too high, averaging around 400:1.

An OTN tuning paper advises 1 channel per tape drive or physical disk. Do not necessarily assume a faster run time with more channels. But higher parallel uses more CPU, which helps compression time.

The CONFIGURE command can be used to determine the BACKUP TYPE. Choices are BACKUPSET (default), COMPRESSED BACKUPSET (binary compression, 10g and above), or COPY (Image Copy, mentioned at the beginning of the paper). The following example results in binary compression, and PARALLELISM 2 saves time by making better use of multiple CPUs:
RMAN> CONFIGURE DEVICE TYPE DISK PARALLELISM 2 backup type to COMPRESSED BACKUPSET;
With the Advanced Compression Option in 11g, two compression algorithms are available, with ZLIB being the newer variety. "The BZIP2 algorithm is optimized for maximum compression, whereas the ZLIB algorithm is optimized for CPU efficiency. BZIP2 consumes more CPU resource than ZLIB, but will usually produce more compact backups."

Optimization

There are two types of optimization up to 10g, with a third variety as of 11g.

Restore Optimization means that a file is not restored from backup if it is already in the correct location and expected information is found. This feature started with 9i, and it is always turned on, so no action is required. This can be especially helpful when recovering from tape after a power failure, because copying large files from tape a second time could eat up a lot of time.

Backup Optimization must be explicitly turned on:

CONFIGURE BACKUP OPTIMIZATION ON;

This takes effect when the RMAN job uses channels of only one device type.
 It applies to:
· BACKUP DATABASE

· BACKUP ARCHIVELOG with ALL or LIKE options

· BACKUP BACKUPSET ALL
· BACKUP RECOVERY AREA
· BACKUP RECOVERY FILES
· BACKUP DATAFILECOPY

This feature sounds good, but documentation hasn't been very clear regarding when it should be used. The good news is that for each of the following situations, RMAN is smart enough to coordinate with your retention policy:

· Read-only or off-line tablespaces would be good candidates, because they do not change.

· Another situation is if you decide to keep your original archives in place for several days, like this:
RMAN> BACKUP archivelog all;
RMAN> DELETE archivelog until time 'sysdate-3';

With BACKUP OPTIMIZATION not turned ON, the RC_BACKUP_REDOLOG catalog view shows one backup copy for each distinct redo log sequence number (i.e. multiplex is ignored), but will make one backup copy for each day that archive remains on disk.
The situation for BACKUP BACKUPSET is more subtle. This command will take an existing backupset and make a copy at another destination, either disk or tape. In making the original backupset, a new Level 0 will allow RMAN to find older backups that can be marked as OBSOLETE, so they can be deleted based on your retention policy. That kind of awareness does not carry through when making the extra copy at another destination. The example in this paper creates a Level 1 for 6 out of 7 days in the week. For the situation where BACKUP BACKUPSET is used and BACKUP OPTIMIZATION is not turned ON, the destination (typically tape) will have an additional copy of Level 0 every day, not just once a week! With a 7 day retention requiring at least two Level 0s being in place each day, the two additional destination copies each day can add up to a large amount of space, with very little extra value. The extra space required on the destination (and time to write it out there) can be greatly reduced when optimization is turned ON.

Optimized UNDO Backup can be enabled in 11g. "During backup, undo that is not needed for recovery of the backup (for example, for transactions that have already been committed), is not backed up. In past releases, all undo was backed up."

RMAN> CONFIGURE BACKUP UNDO OPTIMIZATION;

Bringing Tape into the Picture
Using disk for backup is fast, simple, readily monitored and diagnosed, and we see improving value with increased capacity. Tape gives the benefit of separate physical removable media. Our site has had occasional tape problems, and there has been less urgency when using both disk and tape.

It's tempting to just have RMAN do backup to disk, and let your Operations group handle copying to tape. The problem is that the RMAN metadata knows nothing about tape content. 10g allows registering a backup set into the metadata, but that was not possible in 9i. The best circumstance for this situation is if your PIT requirement is the same for both disk and tape. For example, your end users agree that recovery never needs to be done beyond 7 days, and you have enough disk for a 7 day retention window. Now imagine what would happen if disk backups files were lost due to disk media failure or some other reason such as accidental manual deletion of disk backup files. The metadata in the controlfile and optional catalog will still be available. For this situation, tape is not directly used for recovery. Tape is only there as a safety measure in case a backup disk is not available. In this case, the RMAN metadata does not need to know about tape content, because tape files could be copied to the original disk locations. That means that the tape system can age out its backups separately, and RMAN can remain blissfully ignorant of how tape is being handled.

I've heard of two companies where only three days of backup could be kept on disk, and OS commands were used to copy to tape. To do recovery with a weekly Level 0, multiple days would need to be copied from tape to the original disk location, so files would match the metadata knowledge. With disk space for only three days and a weekly Level 0, recovery would be difficult and time consuming at best.

The Media Management Layer (MML) is an API that lets RMAN talk to your tape software. There are disadvantages. Our site had a central license, and the MML required extra cost for each client. Since the MML is an API, error messages will come from the tape vendor, which means a diagnostic limitation. I’ve thought of “Waiting for Godot” at times, where two characters in the play anticipate the imminent arrival of someone who never shows up. When I first used the MML, it hung, and there were no error messages. After some digging, I found a documentation reference that it typically happens when the system is waiting for a tape to be inserted. With disk, DBAs can act more independently and see what is happening. With the MML, there will be more mysterious layers and a higher dependence on others. For a typical Unix setting, a SysAdmin will need to install the tape software, and the DBA can then do a symbolic link to that location from the Oracle Home. When the MML reports a problem, it usually needs attention from the SysAdmin in charge of the tape system.

Even though there is extra complexity, the extra effort can be worth it for many situations. The BACKUP BACKUPSET command writes a copy from your backup set, so it avoids the need to read from your source datafiles again. This command can go disk to disk, or disk to tape, but not tape to tape. Keep that in mind if you're considering a Virtual Tape Library. Even though disk is the physical media for a VTL, RMAN would consider it to be a tape device. The implication is that you need VTL to be a secondary destination, not primary.

The main MML benefit is that RMAN metadata knows about both destinations. If the backup disk fails, tape is automatically used for recovery, with no intervention on your part. This is one of the most elegant and powerful features that RMAN has to offer. You can easily test this by renaming directories at the backup disk area.
There is only one retention period per database, which has an effect on metadata maintenance. The tape vendor at our site uses “Tape Index” as the term for its metadata. If you have delete privileges in the tape index, RMAN can be the driver. You can use the KEEP clause, and DELETE OBSOLETE will know you are overriding the retention period. KEEP must be used in the backup script, because KEEP is not available in the CONFIGURE command. An alternate for KEEP is to set the retention policy for tape, use DELETE OBSOLETE for tape, and separately delete from disk for a shorter time span, e.g.:

RMAN> DELETE OBSOLETE DEVICE TYPE DISK RECOVERY WINDOW OF 7 DAYS;

If you do not have delete privileges in the tape index, the tape system controls maintenance there. RMAN sees an EXPIRED file as one that is no longer on the disk or tape media. You can use CROSSCHECK (which tells the RMAN repository which files are no longer there) plus DELETE EXPIRED. An alternative is to use different tape profiles, with different periods.

Specifying Device in Scripts

When using the MML, there will be two device types: DISK and SBT (System Backup to Tape). Sometimes you can let the script use the default device type, but other times, you’ll need to explicitly name the device.

Script 1: BACKUP to disk

Do not specify device in the BACKUP command, let it use the disk default. For DELETE OBSOLETE, the catalog knows about tape too. If you do NOT have delete privilege from tape, specify DEVICE DISK so RMAN does not try to communicate with tape. If you DO have delete privilege from tape, you can leave out the device type reference, because you would want RMAN to communicate with both devices.

Script 2: BACKUP BACKUPSET – disk to tape

You’ll need to specify DEVICE TYPE SBT (or SBT_TAPE) so RMAN does not try use the default disk device. Now that a device is explicitly named, it affects Catalog Maintenance. If you do NOT have delete privilege from tape, use CROSSCHECK. If you DO have delete privilege from tape, you can use DELETE OBSOLETE.

Script 3: RESTORE/RECOVER

The CONFIGURE command can set up automatic channel allocation, so the catalog knows everything necessary to complete these tasks. With that in place, there is no need to specify a device. The following is an example of telling your system about tape. In the event of disk backup media failure, RMAN knows where to get a copy of content on tape.
RMAN> CONFIGURE DEVICE TYPE sbt PARALLELISM 2;

RMAN> CONFIGURE CHANNEL DEVICE TYPE sbt FORMAT '%d_%T_%U'
 send 'NSR_ENV=(NSR_SERVER=srvrname.yourdomain.com, NSR_GROUP=oracle-rman)';

Inside the retention period you’ve established (also with the CONFIGURE command), everything comes from disk, unless there is space pressure in the Flash Recovery Area, with insufficient FRA allocation. Relieving this space pressure requires tape transfer, with auto delete from disk. Otherwise (outside the retention period), one or more tape channels would be automatically allocated as necessary, depending on PARALLELISM that was specified in channel allocation in the CONFIGURE command.

The Good, The Bad, The Ugly

Many features are well thought out:

· Binary compression is turned on with the CONFIGURE command, so we don’t need to include that in every backup command. Similarly, Block Change Tracking is turned on from the SQL prompt, allowing scripts that are more generic and less cluttered with details.

· The metadata repository tracks a sea of details, everything from what is OBSOLETE, to size and run time for each backup.

· OPTIMIZATION has complex rules that are meant to act in our best interest, and those rules are different for disk and tape.

· With a combination of incrementals plus several types of compression, significant space savings is possible. This allows more flexibility for PIT recovery, with more days of backup on disk with a given amount of hardware.

· Incrementals can recover an object created with the NOLOGGING option, because RMAN reads blocks of changes, which will include the object after it is created.

Articles in the past several years have shown compelling reasons why RMAN is a good choice for doing backups. Rather than repeat those ideas, this paper will focus more on a sampling of areas where there is room for improvement. Since the topic is RMAN in the Trenches, it seems appropriate to take the soldier’s prerogative and complain about what is less than ideal!

The LIST command is used for basic reporting. The good news is that it can avoid the need for RC* and V$* views. However, the disadvantage is that it sometimes appears to be difficult getting to the right information in a reasonably simple and concise way. The LIST command has VERBOSE and SUMMARY, with nothing in between. The following summary clause just gives a one line summary, where BS Key is the unique key identifying the backupset, which can be used as the basis for a query against the catalog RC_BACKUP_SET view:
RMAN> list backupset summary completed between 'sysdate - 4' and 'sysdate - 2';
What if you want to see backupset file names? SUMMARY will not give you that. VERBOSE shows a bit of what you want to see, in the midst of a lot of output, including all datafiles and archivelogs. 10.2 documentation does not seem to include anything allowing a way to just get the backupset name info by itself.
Even LIST BACKUP COMPLETED AFTER 'SYSDATE - 1/24'; can pump out numerous pages of output. What if you only want to see the backupset file name for the most recent level 0? You can limit output to some extent by asking only for datafile 1, which is for the system tablespace, so it will always be available:

RMAN> LIST BACKUP OF DATAFILE 1 COMPLETED AFTER 'SYSDATE - 1/24';

And what if you want to further limit within that list of level 0 backup file names by asking only for what is on tape or on disk? The syntax diagram for the LIST command does not seem to have anything helping in that respect, unless a tag is known. But if you want to LIST based on device type without knowing a tag, using the RC* views in the catalog is apparently the simplest and most direct. An example of this would be for testing purposes where we want older tape content eliminated so we have a clean slate for our next test. Wiping out tape files at our site is done by System Admins, and a list of files must be provided for deletion. We can tailor what we want by using the catalog views rather than the LIST command. The HANDLE column output includes a reference to ${ORACLE_SID} rather than explicitly naming the SID, so a TRANSLATE is included here for display purposes:
select p.backup_type type, p.incremental_level LVL,
 translate(p.handle,'${ORACLE_SID}',d.NAME) handle, p.tag
from rc_backup_piece p, rc_database d
where p.db_key = d.db_key
 and device_type like 'SBT%'
 and d.NAME = 'DB10R2';

The "BY FILE" clause of the LIST command lists a datafile, then its backup sets, and then proxy copies. It gives us checkpoint information, but nothing about the backup file names. The BACKUPPIECE clause of the LIST command is referred to in 10.2 docs, but it is not obvious in the syntax diagram. It does not appear to be helpful in just giving us results based on device_type. It seems that we need to know a tag value or something similar to get results:
RMAN> list backuppiece;
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-00558: error encountered while parsing input commands
RMAN-01009: syntax error: found ";": expecting one of: "double-quoted-string, integer, single-quoted-string, tag"
RMAN-01007: at line 1 column 17 file: standard input
Cover Your Sixes …

[image: image5.jpg]

[image: image6.jpg]

...so you don’t get caught by surprise!

[image: image7.jpg]

[image: image8.jpg]

Twelve o’clock is straight ahead, six o’clock is straight behind. Don’t let anything sneak up at six o’clock. [And watch out for that dinosaur at the Pittsburgh airport!] RMAN has plenty of features to learn, and a misunderstanding will not necessarily reveal a problem as soon as you should know about it. This section covers a sampling of features which may not be obvious or intuitive, especially for those who are new to RMAN.

Watch for commands with similar syntax. In the two commands below, notice that you need to be clear about what you are deleting, originals or backups:
RMAN>DELETE FORCE ARCHIVELOG ALL COMPLETED BEFORE 'SYSDATE-30';

RMAN>DELETE FORCE BACKUP OF ARCHIVELOG ALL COMPLETED BEFORE 'SYSDATE-30';

Physical consistency in blocks is always checked, but CHECK LOGICAL is not the default in the BACKUP command, and that feature can not be turned on with CONFIGURE command. To make use of the recommended CHECK LOGICAL feature, it needs to be explicitly included in the BACKUP command. LOGICAL would include corruption of a row piece or index entry.

When you use the CONFIGURE command to turn on auto backup of the controlfile, the spfile will come along for the ride. However, the pfile is not included. If you are not using the spfile method, the pfile must be specially handled with your own scripting.

The ALL keyword has somewhat different meaning, depending on context:

· BACKUP ARCHIVELOG ALL gives one copy of distinct log sequence from multiplexed archive locations

· DELETE ALL refers to every log, including multiplexed

PARALLELISM in the CONFIGURE command refers to the number of automatic channels, not the number of server processes per channel, as I had originally assumed.
 When configured, a channel will automatically be allocated when necessary. For example, if a RESTORE is done and the disk backup is not available but a tape backup was done via the MML, tape channel(s) will be allocated with no intervention. A DBA at our site found diminishing returns on more tape channels, and 2 was good. The choice depends on the number of tape drives and the I/O subsystem at your site.
11g
As of the time of this writing, the 11g release is relatively recent, so I have not dabbled in the pond of new features. However, there are some intriguing points in documentation:

· There is improved integration with Data Guard, including Block Change Tracking support for standby.
· A physical standby or duplicate can be created without a pre-existing backup

· IMPORT CATALOG allows merging into another catalog. Prior to this, importing into a new schema was possible, but merging multiple catalogs into one was not an option.
· Substitution variables can be used in scripts. This might be helpful for something like tags, and presumably this would have value when stored scripts are used. Unix shell script variables are offering comparable functionality, so this feature is not likely to benefit my situation. It would be grand to see a quantum leap in language functionality. Since RMAN is directly tied into the Oracle engine, imagine the potential if RMAN could use the PL/SQL language that is already present.
· Oracle Flashback Transaction Backout seems to offer a nice level of granularity.
· Flashback Data Archive with Flashback Query will allow accessing data from far in the past.
Conclusion

Doing backups is not glamorous, but essential. A good understanding of retention periods, compression, optimization and disk/tape use will help with a soft landing when recovery becomes necessary.

Acknowledgements:
I appreciate the excellent support from Timothy Chien, Oracle RMAN Senior Product Manager, who has clarified many points during preparation of this material. Thanks to Bill Wagman at UC Davis, who acted as a reviewer prior to presentations at NoCOUG in 2007, used as the basis for this paper.

References:
� � HYPERLINK "http://download.oracle.com/docs/cd/B19306_01/server.102/b14196/backrest003.htm#sthref662" ��http://download.oracle.com/docs/cd/B19306_01/server.102/b14196/backrest003.htm#sthref662�

� � HYPERLINK "http://download.oracle.com/docs/cd/B19306_01/backup.102/b14194/rcmsynta009.htm#sthref141" ��http://download.oracle.com/docs/cd/B19306_01/backup.102/b14194/rcmsynta009.htm#sthref141�: "By default, RMAN creates all backups as backup sets, on tape or on disk."

� � HYPERLINK "http://download.oracle.com/docs/cd/B10501_01/server.920/a96566/rcmconc1.htm#459101" ��http://download.oracle.com/docs/cd/B10501_01/server.920/a96566/rcmconc1.htm#459101�

� � HYPERLINK "http://download.oracle.com/docs/cd/B28359_01/backup.111/b28270/rcmbckba.htm" \l "sthref829" �http://download.oracle.com/docs/cd/B28359_01/backup.111/b28270/rcmbckba.htm#sthref829�

� � HYPERLINK "http://download.oracle.com/docs/cd/B28359_01/backup.111/b28270/rcmconfa.htm#BRADV89466" ��http://download.oracle.com/docs/cd/B28359_01/backup.111/b28270/rcmconfa.htm#BRADV89466�

� � HYPERLINK "http://download.oracle.com/docs/cd/B28359_01/backup.111/b28273/rcmsynta010.htm#i1017487" ��http://download.oracle.com/docs/cd/B28359_01/backup.111/b28273/rcmsynta010.htm#i1017487�

� � HYPERLINK "http://download.oracle.com/docs/cd/B19306_01/backup.102/b14191/rcmconc1008.htm#BRADV113" ��http://download.oracle.com/docs/cd/B19306_01/backup.102/b14191/rcmconc1008.htm#BRADV113� explains the algorithm.

� � HYPERLINK "http://download.oracle.com/docs/cd/B28359_01/server.111/b28279/chapter1.htm#FEATURENO07015" ��http://download.oracle.com/docs/cd/B28359_01/server.111/b28279/chapter1.htm#FEATURENO07015�

� � HYPERLINK "http://download.oracle.com/docs/cd/B19306_01/backup.102/b14191/rcmconc1005.htm#sthref243" ��http://download.oracle.com/docs/cd/B19306_01/backup.102/b14191/rcmconc1005.htm#sthref243�

� � HYPERLINK "http://download.oracle.com/docs/cd/B19306_01/backup.102/b14191/rcmconc1012.htm#sthref363" ��http://download.oracle.com/docs/cd/B19306_01/backup.102/b14191/rcmconc1012.htm#sthref363�

� � HYPERLINK "http://download.oracle.com/docs/cd/B19306_01/backup.102/b14191/rcmconc1001.htm#sthref110" ��http://download.oracle.com/docs/cd/B19306_01/backup.102/b14191/rcmconc1001.htm#sthref110�

11

Paper #315

_1134568925.xls

_1134570363.xls

_1134570873.xls

_1134568582.xls

