Track: Database

A Guide to Troubleshooting
Peter C. Smith, NBS Consulting Solutions

Introduction

Having worked as a Development and Production DBA, I’ve seen a lot of problems pop up and witnessed the corresponding finger pointing. I felt inspired to do a presentation on troubleshooting, as it is not always a skill a person calling themselves a DBA might possess.
A bigger problem kicked in when I tried to start typing this document and the presentation. How does one relay a skill which is based upon how a person thinks? We’ll start off by gathering tools to monitor the database as you have to know when there is a problem. I will try and relay some troubleshooting skills via the word and from examples.
Blame Game

Whenever there is a problem in Production, what gets blamed first? The database, of course! To properly troubleshoot, the DBA needs to have knowledge of the database, data, server, middle tier, application and client configuration. Is that enough? This is not to say the DBA needs to be a Server Administrator, Application Server Administrator, Java Programmer and Desktop Support, but rather you need to have a general knowledge base. A ‘good’ DBA could be considered to be more like a handyman; a jack-of-all-trades; knowledgeable in many and expert in a few or one.
When a problem ticket comes in, of course, it goes to DBA support first. Your job is then to prove is it not the database. There are some basic steps you can quickly work through to shift the blame and focus off of the database.
· is the database up and running

· is the listener up

· can you connect to the Production database via a non-privileged account

· check alert log for errors
At this point you’ve proven the database is accessible and doesn’t have any basic issues. Now you’re at the point of having to draw upon your application and data knowledge to narrow down the focus and find the problem. Having a good relationship with the application developers, application server administrators and system administrators will help in making the next steps easier. First let’s discuss monitoring and tools.

Danger of Tools

When I go shopping, I really don’t want to walk out with a tonne of coins in my pocket. Say your bill is $15.24; I hand over $20.25 so my change is $5.01 ($5 bill and a penny). If I’d handed over a $20, then I would have gotten 2 toonies, 3 quarters and a penny. Yes, I am Canadian. If the power was out and the cashier had to do it by hand, what type of look do you think I would have gotten? Take away the calculator/cash register and how many people can remember their grade 5 arithmetic? Are you smarter than a 5th grader?
The parallel to the story is where a DBA only uses Enterprise Manager or other ‘GUI tools’ where they don’t understand or know the underlying SQL. I prefer using the raw SQL for monitoring and getting information out of the database. You can use whatever tool you find the best for yourself; however, the key is to know what is occurring behind the scenes. Know your SQL commands as you never know when a software upgrade, firewall change or X Window failure will render the GUI tools useless.
I’m not completely against GUI tools. I personally use a tool called Golden by Benthic. It is not free, but it is cheap ($35US/seat). No, I don’t have any stock in the company. SQL Developer closely resembles Golden, so there’s a free tool which could provide SQL based queries with tabular/XL result windows. I like Golden as it provides a window for entering SQL or PL/SQL and the results are returned in a tabular format underneath. If you use SQL Developer, you’ll say it’s got those features too, but Golden has been around for a lot longer. Use what is best for you.
Monitoring

Getting a phone call or a problem ticket is not the best way to know you’ve got a problem. It is far better to be proactive than reactive. Fighting fires all day will wear you down.

Reach into the database every night, hour, minute to know that everything is okay. The frequency will depend upon the nature and cost of downtime and that number is set by the business people.

‘What’ to monitor is the question. I’ve used Patrol, Oracle Enterprise Manager and a variety of custom tools. Patrol and OEM come with their standard suite of monitoring scripts. Both come with generic monitoring out of the box; thankfully, both are customizable to cover all the bases that a knowledgeable and skilled DBA would like to monitor.

e.g. Alert log. A corruption error is not always accompanied by an ORA- error. Search the alert log for ‘corrupt’.
e.g. Monitor specific processes for your application. Anything from jobs to connection pooling to custom space requirements.
So what things should be monitored? Forgive me if some or many of these are obvious, but for some DBAs they will be new.

	Things to Monitor
	What?
	Why?

	Alert log
	ORA- errors

corrupt
	Having ORA- errors is usually a bad thing and can point you to a database which is having severe problems. In many cases an ORA-600 or ORA-7445 are red herrings and may point the wrong direction. However, they should not be ignored.

Data corruption is a major problem and should be corrected as soon as possible. Corruption in SYSTEM or UNDO can make a database useless while index blocks can be rebuilt with minimal impact.

I've drawn the alert log into the database by declaring it as an external table. Helpful when you don't get OS access in Production.

	Disk space
	ORACLE_HOME

ARCHIVE_LOG_DEST
	If Oracle can’t write to the alert log or the archived redo logs, then your database will stop dead in its tracks. You’d think the SysAdmin would have this covered, but don’t count on it.

	Tablespace freespace
	All tablespaces
	You need to take into account ‘autoallocate’ before reacting, but having the client receive a ‘cannot allocate 128 bytes’ is just poor show.

	DBA_JOBS
	Failures
Broken
	A database job can have 16 failures before it becomes ‘broken’. Considering the exponential increase of ‘next date’ settings it can take days before a job will become ‘broken’. Failing jobs will write errors to the Alert log, but monitor DBA_JOBS to make sure all is well.

	DBA_JOBS_RUNNING
	Length of a run
	If a job is running past its NEXT_DATE, then it is either hung or the INTERVAL needs to be adjusted.

	Number of Sessions
	V$SESSIONS
	The number of sessions connected to the database will result in a corresponding number of processes (assuming direct connect listener). If #sessions approaches PROCESSES, then clients can get ‘cannot connect’ errors. Connection pooling might be set too high or there could be other application server issues, but it’s the database that says you can’t come in.

	DBA_EXTENTS
	Object growth
	Predict tablespace requirements by monitoring the growth pattern of the tables/indexes

	RMAN
	RC_BACKUPS
	Using an RMAN Catalog database, query it to get the daily status of the database backups.

	Data Processing
	ETL
	Extract/Transform/Load processes bring data into the database.

	
	ETL - Bad Data
	Referential Integrity (foreign keys) will prevent some data from moving into Production. Report on data quality issues.

	
	Other data batch processes
	An application can have many other data manipulation programs, keep an eye on them.

	
	Auditing
	Ensure Auditing processing is running

Troubleshooting Skills

This is probably the hardest part of composing this session.
How do you approach investigating a problem? First, understand the problem, then systematically prove what is not wrong. Eventually, when all possible components are proven to be working correctly, then the remainder must be where the problem lays. That is a paraphrase of Sherlock Holmes, but still applicable.

It will take more than being friendly with your peers on other teams. You need to have knowledge of how Oracle works, the application, network, operating system and middle tier. Only with a foundation of knowledge (not mastery) can a DBA truly troubleshoot an issue.

After trying to document this section, it has been almost impossible to define what personality traits are needed to be a good troubleshooter. So, we move on to Examples where the problem gets defined and the thought processes used to eventually solve the problem will be detailed.

Examples

These are the stories to help drive home the need to have knowledge of all areas and mastery of one or a few.
DBMS_JOB job is failing

The monitoring tool should have informed you that a job had > 0 FAILURES in the DBA_JOBS. When a job has 16 failures it is automatically set to BROKEN=Y. A job can be manually set to broken, but that should still show up on the radar.
Errors encountered during the running of a job are written to the alert log. They are not written anywhere else, so it’s one stop shopping to find the errors. The alert log will show the PL/SQL package/procedure/function name with the corresponding line number. It’s like a neon road sign pointing right to the source of the problem; it doesn’t get much simpler than this.

After examining the code, check the logic. If the logic looks good, then data is the next option.
· monitoring tool flags job has failures or it is broken

· alert log will list the name of the code and the line number where the error occurred

· confirm the code logic

· check the data

· the line of code will provide the exact SQL which is failing. Depending how the data is being loaded and run you may be able to manually rerun the line of code. Running the code manually will show the exact error and eventually reveal the record which caused the failure.

· Column by column analysis of the failing record will reveal the coding logic error

· Development data can only test so much, so don’t be surprised if Production data throws a few curves.

· 11g introduces the ability to provide a copy of Production data for Development testing. That is something to take advantage of.

ORA-04062: timestamp of package “X" has been changed 2043 ORA-06512: at line 1

This error might show up in the alert log and be part of the issue with DBA_JOBS.
How this happens is PL/SQL Package A in database 1 calls PL/SQL Package B in database 2. There is a database link which joins database 1 to database 2. During normal maintenance, Package B is updated. Package A remains VALID, as it does not see the new version of Package B over the database link. The next time Package A is run, Oracle sees that the timestamp on Package B is newer and demands that Package A be recompiled.
By the time you see this error, everything is back to normal. No further action is required. Oracle has automatically recompiled Package A.
Prevention has to be built into the release process. A thorough knowledge of the interdependency of the PL/SQL code is the only way around the situation. Essentially, perform the maintenance release, then got back into each database in reverse order and run $ORACLE_HOME/rdbms/admin/utlrp or DBMS_UTILITY.COMPILE_SCHEMA(‘schemaname’,true,false);
Missing Data

This one is so basic that it is embarrassing, but I’ll include it anyway.
Copying data from Table 1 to Table 2. Connect to the database but Table 2 is empty! Commit;, would have been nice!
· session 1

· create table two as select * from one;

· session 2

· select * from two;

· 0 rows returned!!!

· But it can see the table TWO exists.

Correction (also known as give your head a shake):

· session 1

· select * from two;

· get all the rows!!!

· commit;

· Duh!!!

· session 2

· select * from two;

· get all the rows!!!

Database not started by automated process (Windows)
The Services Control Panel has been configured to start the Listener and Database as part of the Windows startup processes. Both services show they are ‘Started’, but the database is not accessible.
· connect to server (remote administrator or some other tool)

· Administrative Tools – Services

· Confirm TNSListener service Started

· Confirm database service Started

· Check the alert log
· Ctrl – End will take you to the bottom

· Startup command is there, but not the usual SGA information and no error

· Start – Run – CMD
· set ORACLE_SID=instancename
· sqlplus “/ as sysdba”

· connected to idle instance

· startup

· now we’ll get the real error which is causing the problem

When I encountered this problem, actually got an error relating to LOG_ARCHIVE_DEST not existing. The database was in ARCHIVELOG mode and was trying to write an archived redo log to LOG_ARCHIVE_DEST; however, the directory did not exist. It had been erroneously deleted. Recreated the directory tree.

· recreated the directory tree

· $ORACLE_HOME/database/initdatabase.ora or the corresponding SPFILE

· Got the value of LOG_ARCHIVE_DEST

· mkdir X
· sqlplus “/ as sysdba”

· connected to idle instance

· startup

· alter system switch logfile;

· host dir X
View/Procedure/Package/Trigger just won't compile

The monitoring tool should have informed you that a PL/SQL object is in an invalid state.

· connect as SYS

· run $ORACLE_HOME/rdbms/admin/utlrp

· object is still invalid

· show errors objecttype objectname
· I got "table or view does not exist"

· exec DBMS_UTILITY.COMPILE_SCHEMA(‘schemaname’,true,false);
· object is still invalid
· show errors objecttype objectname
· I got "table or view does not exist"

· alter objecttype objectname recompile;
· object is still invalid
· show errors objecttype objectname
· I got "table or view does not exist"

· now look into the code

· the 'missing' view is VIEWA (could be a table too)

· VIEWA has a STATUS of VALID

· select * from VIEWA;

· get lots of rows and no error

· check DBA_TAB_PRIVS, DBA_SYNONYMS

· everything looks good

· connect as Owner of the object

· alter objecttype objectname recompile;
· no errors, STATUS = VALID
Why? Not 100% sure, but sometimes you need to compile the objects as the object owner and explicitly compile the object rather than through the utilities.
Summary

When a problem arises with an application, the database is always the first to be blamed. As a DBA, you need a general knowledge of all components of the application infrastructure to troubleshoot the problem. Systematically work through the database and other components to narrow down the source of the problem. The majority of the time, the database will not be the problem.

GUI tools and the latest versions are always fun to play with. However, as a DBA you must maintain your SQL skills to understand how things work within the database engine. Your tool set of SQL scripts will reach into the bowels of the database and confirm that all is well. Where the patient is sick, other tools are used to diagnose the problems and narrow the focus down to specific components of the database or infrastructure.
Using your knowledge of the application, data, middle tier and network; you’ll be able to point to the source of a problem. Pointed and succinct questions posed to your peers (Application Server Administrator, System Administrator, Network Administrator and Developers) will find the source of the problem.

Troubleshooting is a mindset. Remain calm and work through the problem to narrow down where it can reside. Utilize resources on other teams to gather further information. Eventually the source will be found and a solution provided. The end result might only be a pat on the back, but knowing you’ve saved the day (again) feels really good.

6

Paper #343

