
RDBMS - Connectivity 

 1�        Paper # 

LLIISSTTEENNIINNGG  IINN::  

PPAASSSSIIVVEE  CCAAPPTTUURREE  AANNDD  AANNAALLYYSSIISS  OOFF  OORRAACCLLEE  NNEETTWWOORRKK  TTRRAAFFFFIICC  

Jonah H. Harris, EnterpriseDB Corporation 
 

OVERVIEW 

In this presentation we will discuss the Oracle wire-level protocol and demonstrate the methods for passively capturing, 
analyzing, and reporting the details of Oracle network traffic in real-time for use in end-to-end Oracle tuning and 
troubleshooting scenarios. 

In cases where very short response time requirements must be met, or where sporadic spikes in response time occur, the most 
reliable way to tune and troubleshoot them is by capturing Oracle's Ethernet traffic, analyzing it, and reporting on various 
aspects of it. Throughout this session we will demonstrate the passive capture of SQL statements, their frequency, time spent 
in execution, number of roundtrips, and all relevant response times. 

Using the data from these reports can not only assist DBAs in diagnosing network-related issues and in tuning Oracle's 
network settings, but also ensure that application developers are writing performant, network-friendly database access code.  

INTRODUCTION 

This paper introduces the concepts behind Oracle’s Network Architecture as well as protocol descriptions, an example wire-
level application, and an introduction to the SCAPE4O network monitoring utility. 

As I’ve never been an Oracle insider, the material in this paper has been based on years of researching Oracle internals as well 
as analyzing network traffic and trace files.  Likewise, in addition to similar research from Ian Redfern, the majority of this 
paper is based primarily on my own personal research and discussions with Tanel Põder; without their insight, this would’ve 
taken me significantly longer to rationalize. 

THE ORACLE NETWORK ARCHITECTURE 

Like several other databases, the Oracle network architecture is based on the Open Systems Interconnection (OSI) Basic 
Reference Model.  The OSI model is a layered, abstract communications and computer network protocol architecture which 
consists of communications between separate systems being performed in a stack-like fashion; information passing from 
node-to-node through several distinct layers of code. 

THE OSI MODEL 

The OSI layers consist of the following: 

 

1. Physical Layer 

2. Data Link Layer 

3. Network Layer 

4. Transport Layer  

5. Session Layer 

6. Presentation Layer 

7. Application Layer 

 



RDBMS - Connectivity 

 2�        Paper # 

THE OSI PHYSICAL LAYER (LAYER 1) 

The physical layer defines all the electrical and physical specifications for devices. In particular, it defines the relationship 
between a device and a physical medium. This includes the layout of pins, voltages, cable specifications, Hubs, repeaters, 
network adapters, Host Bus Adapters (HBAs used in Storage Area Networks) and more. 

 

To understand the function of the physical layer in contrast to the functions of the data link layer, think of the physical layer 
as concerned primarily with the interaction of a single device with a medium, where the data link layer is concerned more with 
the interactions of multiple devices (i.e., at least two) with a shared medium. The physical layer will tell one device how to 
transmit to the medium, and another device how to receive from it (in most cases it does not tell the device how to connect to 
the medium). Obsolescent physical layer standards such as RS-232 do use physical wires to control access to the medium. 

THE OSI DATA LINK LAYER (LAYER 2) 

The data link layer provides the functional and procedural means to transfer data between network entities and to detect and 
possibly correct errors that may occur in the physical layer. Originally, this layer was intended for point-to-point and point-to-
multipoint media, characteristic of wide area media in the telephone system. Local area network architecture, which included 
broadcast-capable multiaccess media, was developed independently of the ISO work, in IEEE Project 802. IEEE work 
assumed sublayering and management functions not required for WAN use. In modern practice, only error detection, not 
flow control using sliding window, is present in modern data link protocols such as Point-to-Point Protocol (PPP), and, on 
local area networks, the IEEE 802.2 LLC layer is not used for most protocols on Ethernet, and, on other local area networks, 
its flow control and acknowledgment mechanisms are rarely used. Sliding window flow control and acknowledgment is used at 
the transport layers by protocols such as TCP, but is still used in niches where X.25 offers performance advantages. 

THE OSI NETWORK LAYER (LAYER 3) 

The network layer provides the functional and procedural means of transferring variable length data sequences from a source 
to a destination via one or more networks while maintaining the quality of service requested by the Transport layer. The 
Network layer performs network routing functions, and might also perform fragmentation and reassembly, and report 
delivery errors. Routers operate at this layer—sending data throughout the extended network and making the Internet 
possible. This is a logical addressing scheme – values are chosen by the network engineer. The addressing scheme is 
hierarchical. 

THE OSI TRANSPORT LAYER (LAYER 4) 

The transport layer provides transparent transfer of data between end users, providing reliable data transfer services to the 
upper layers. The transport layer controls the reliability of a given link through flow control, segmentation/desegmentation, 
and error control. Some protocols are state and connection oriented. This means that the transport layer can keep track of the 
segments and retransmit those that fail. 

THE OSI SESSION LAYER (LAYER 5) 

The session layer controls the dialogues/connections (sessions) between computers. It establishes, manages and terminates 
the connections between the local and remote application. It provides for full-duplex, half-duplex, or simplex operation, and 
establishes checkpointing, adjournment, termination, and restart procedures. The OSI model made this layer responsible for 
"graceful close" of sessions, which is a property of TCP, and also for session checkpointing and recovery, which is not usually 
used in the Internet protocols suite. Session layers are commonly used in application environments that make use of remote 
procedure calls (RPCs). 

THE OSI PRESENTATION LAYER (LAYER 6) 

The presentation layer establishes a context between application layer entities, in which the higher-layer entities can use 
different syntax and semantics, as long as the Presentation Service understands both and the mapping between them. The 
presentation service data units are then encapsulated into Session Protocol Data Units, and moved down the stack. 

THE OSI APPLICATION LAYER (LAYER 7) 

The application layer interfaces directly to and performs application services for the application processes; it also issues 
requests to the presentation layer. Note carefully that this layer provides services to user-defined application processes, and 



RDBMS - Connectivity 

 3�        Paper # 

not to the end user. For example, it defines a file transfer protocol, but the end user must go through an application process 
to invoke file transfer. The OSI model does not include human interfaces. The common application services sublayer 
provides functional elements including the Remote Operations Service Element (comparable to Internet Remote Procedure 
Call), Association Control, and Transaction Processing (according to the ACID requirements). 

MAPPING OSI LAYERS TO ORACLE 

Oracle Net Services starts at the OSI Session Layer. 

 
Oracle to OSI Mapping 

 

ORACLE PROTOCOL SUPPORT (LAYER 5) 

While Oracle Protocol Support sounds like it would map to Layer 4, it does not actually provide the network transport stack; 
making it Layer 5.  Oracle Protocol Support is designed to map Transparent Network Substrate to industry-standard transport 
protocols using an existing protocol stack.  More about this layer can be found below under Network Transport (NT). 

ORACLE NET FOUNDATION LAYER (LAYER 5) 

The Oracle Net foundation layer is responsible for establishing and maintaining the connection between the client application 
and database server, as well as exchanging messages between them.  The Oracle Net foundation layer is able to perform these 
tasks because of a technology called Transparent Network Substrate (TNS). TNS provides a single, common interface 
functioning over all industry-standard protocols. In other words, TNS enables peer-to-peer application connectivity. In a 
peer-to-peer architecture, two or more computers (called nodes when they are employed in a networking environment) can 
communicate with each other directly, without the need for any intermediary devices. 

TWO TASK COMMON LAYER (LAYER 6) 

Character set differences can occur if the client and database server are running on different operating systems. The 
presentation layer resolves any differences. It is optimized for each connection to perform conversion only when required. 

The presentation layer used by client/server applications is Two-Task Common (TTC). TTC provides character set and data 
type conversion between different character sets or formats on the client and database server. 

At the time of initial connection, TTC is responsible for evaluating differences in internal data and character set 
representations and determining whether conversions are required for the two computers to communicate. 

APPLICATION AND RDBMS LAYER (LAYER 7) 

Information passed from a client application across a network protocol is received by a similar communications stack on the 
database server side. The process flow on the database server side is the reverse of the process flow on the client side, with 
information ascending through the communication layers. 

Instead of OCI, the database server uses Oracle Program Interface (OPI). For each statement sent from OCI, OPI provides a 
response. For example, an OCI request to fetch 25 rows would elicit an OPI response to return the 25 rows once they have 
been fetched. 

 



RDBMS - Connectivity 

 4�        Paper # 

 
Mapping Example 

 

ORACLE NET COMPONENTS 

The Oracle Net implementation stack is comprised of the following components: 

 
Oracle Network Layer Components 

 

NETWORK INTERFACE (NI) 

This layer provides a generic interface for Oracle clients, servers, or external processes to access Oracle Net functions. The NI 
layer handles the "break" and "reset" requests for a connection. 

NETWORK ROUTING (NR) 

This layer routes the network session to the destination. 

NETWORK NAMING (NN) 

This layer resolves connect identifiers to connect descriptors. 

NETWORK SESSION (NS) 

The NS layer, which concists of the NR and NA layers, receives requests from NI, and settles all generic computer-level 
connectivity issues, such as: the location of the server or destination (open, close functions); whether one or more protocols 
will be involved in the connection (open, close functions); and how to handle interrupts between client and server based on 
the capabilities of each (send, receive functions). 



RDBMS - Connectivity 

 5�        Paper # 

NETWORK AUTHENTICATION (NA) 

This layer negotiates authentication and encryption requirements. 

NETWORK TRANSPORT (NT) 

This layer maps the Oracle Net Foundation Layer functionality to industry-standard protocols. 

THE ORACLE NETWORK PROTOCOL 

The Oracle network protocol is comprised of the following components: 

TRANSPARENT NETWORK SUBSTRATE (TNS) 

A foundation technology, built into the Oracle Net foundation layer that works with any standard network transport protocol. 

TWO TASK INTERFACE (TTI) 

Encapsulated by TNS are Oracle's Two Task Interface sub-packets.  TTI is the network-level interface to Oracle Database 
functionality. 

TWO TASK COMMON (TTC) 

A presentation layer type that is used in a typical Oracle Net connection to provide character set and data type conversion 
between different character sets or formats on the client and server. 

ORACLE PROGRAMMATIC INTERFACE (OPI) 

The Oracle Program Interface (OPI) is a server-side networking layer responsible for responding to each of the possible 
messages sent by the client interface.  Interaction with OPI is handled through TTI functions. 

TNS PACKET OVERVIEW 

TNS consists of several packets which are described in the following sections. 

TNS PACKET TYPES 

TNS packets have distinct types. 

• Connection Packet—The initial request packet used to connect to a database. 

• Accept Packet—A response packet from the server accepting the connection. 

• Acknowledge Packet—An acknowledgement packet. 

• Refuse Packet—A response packet from the server refusing connection. 

• Redirect Packet—A response packet from the server redirecting the client to connect to another host/port. 

• Data Packet—The most commonly used packet which encapsulates 

• NULL Packet—An empty packet generally used as a keepalive. 

• Abort Packet—An abort packet. 

• Resend Packet—A request for resend packet. 

• Marker Packet—A packet used to indicate that multiple packets were required to transmit a single message. 

• Attention Packet—A special type of marker packet. 

• Control Packet—A packet used to send control (trace) information. 

TNS PACKET HEADER (NSPHD) 

All Oracle network packets are encapsulated by a TNS packet.  The header of the TNS packet declares its type and 
information required to access the sub-packet (if any). 

 

1 2 3 4 



RDBMS - Connectivity 

 6�        Paper # 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

NSPHDLEN NSPHDPSM 

NSPHDTYP Reserved NSPHDHSM 

 

Offset Bytes Type Name Description 

00 2 UB2 NSPHDLEN Packet length - number of bytes in the entire packet. 

02 2 UB2 NSPHDPSM Packet checksum - the 16-bit ones complement of the 16-bit ones 
complement sum of the entire packet.   

04 1 UB1 NSPHDTYP Packet type (see below) 

05 1 UB1 RESERVED  

06 2 UB2 NSPHDHSM Header checksum - the 16-bit ones complement of the 16-bit ones 
complement sum of the packet header. 

 

TWO TASK INTERFACE PACKET OVERVIEW 

Encapsulated by a standard TNS data packet, there are several TTI sub-packets which are often used. 

TTI PROTOCOL NEGOTIATION 

The TTI protocol version sub-packet informs the server of the protocol versions it is compatible with, and requests similar 
information back from the server. 

TTI DATA TYPES 

The TTI data type sub-packet informs the server of the character set and data type representations it is using, and requests 
similar information back from the server. 

TTI VERSION 

This function requests a textual representation of the server version information; the result of which, is the text from 
V$VERSION. 

TTI FUNCTION CALL 

TTI function call sub-packets are commonly used to request data from the server. 

ORACLE NETWORK TRACING & ANALYSIS METHODS 

The following methods can be used to analyze, monitor, trace, and detect Oracle networking issues. 

SQLNET.ORA TRACING 

Inherently, Oracle provides the ability to trace the client and server Oracle Net stack.  The weakness of this method is that, 
because it is very verbose, and because it is not passive, if it is enabled, it can greatly affect network performance.  While not 
especially good at network monitoring, it is quite good at detecting issues related to network naming. 

GENERIC NETWORK MONITORING 

Using utilities such as Wireshark, or operating system utilities like tcpdump, you can passively capture and analyze Oracle 
Ethernet traffic.  The downside here is that these utilities are fairly generalized and are not able to dissect the most important 
Oracle TTI packets. 

ORACLE-SPECIFIC NETWORK MONITORING 

Using utilities designed specifically to monitor and analyze Oracle network traffic provides the best and most detailed data.  
The downside in this case is that, because Oracle's network protocol is proprietary, very few people have spent the time 
researching it enough to write useful utilities.  As such, there are very few of these utilities available. 



RDBMS - Connectivity 

 7�        Paper # 

ORACLE NETWORK CONVERSATIONS 

The following are basic examples of Oracle network conversations. 

CONNECTION CONVERSATION 

The connection process consists of: 

• Client requests an OCI connection to TNS entry ORCL. 

• Network Naming finds ORCL in TNSNAMES.ORA. 

• Client builds and sends a TNS Connect Packet (NSPTCN) to the listener. 

• The Listener responds with a TNS Resend (NSPTRS) or Redirect [to another port] (NSPTRD) packet. 

• Client acts accordingly. 

• Server responds with an Accept (NSPTAC) or Refuse (NSPTRF) packet 

• Client requests additional services (ANO) 

• Authentication 

• Encryption 

• Data Integrity 

• Supervisor 

 

 

 

AUTHENTICATION CONVERSATION 

After connection, the client requests authentication from the server using the following process: 

• Client & server negotiate protocol version 

• Client & server negotiate data types 

• Client sends server basic information 

• User Name 

• Terminal Name 

• Machine Name 

• Program Name 

• … 

• Server responds with challenge/response… 



RDBMS - Connectivity 

 8�        Paper # 

QUERY & FETCH CONVERSATION 

After being authenticated, the client (generally) requests data as follows: 

• Open a cursor 

• Parse the query 

• Execute the query 

• Fetch the data 

• Cancel the cursor 

• Close the cursor 

SCAPE4O 

SCAPE4O, SQL Capture and Analysis by Passive Evaluation for Oracle, is a utility which passively captures Oracle TCP/IP 
packets and provides the user with a detailed analysis of Oracle connections, statistics, query activity, and relevant response 
times. 

ARCHITECTURE 

SCAPE4O is a multi-threaded application based on libpcap which can capture and analyze data directly from the network or 
from a stored packet capture. 

ANALYSIS 

In addition to dissecting TNS, SCAPE4O is able to collect the following data for each SQL query found over the wire:  

• Top 10 Queries (By Time/Transfers/etc) 

• Counters for 

• INSERT 

• UPDATE 

• DELETE 

• SELECT 

• COMMIT 

• ROLLBACK 

• PL/SQL (Anonymous Blocks) 

• DDL 

• Response Time 

ADVICE 

In addition to helping identify network-related issues, SCAPE4O can recommend whether a more optimal SDU could be set 
or whether the application fetching method could be improved. 

REFERENCE MATERIAL 

• OSI Text—Significant portions of the OSI model description was taken from Wikipedia under the terms of the GNU 
Free Documentation License. 

• TNS Packet Structures—The TNS packet header and structure definitions can be found in Note:1007807.6, SQL*NET 
PACKET STRUCTURE: NS PACKET HEADER. 

SIMILAR ORACLE-SPECIFIC NETWORK MONITORING UTILITIES 

The following are utilities I know of which are similar to SCAPE4O: 



RDBMS - Connectivity 

 9�        Paper # 

• WireCache (http://www.wirecache.com/)— Transparent Database Accelerator and SQL Query Analyzer 

GENERIC NETWORK PROTOCOL ANALYZERS 

The following are good generic protocol analyzers: 

• Wireshark (http://www.wireshark.org/)—Transparent Database Accelerator and SQL Query Analyzer 

• Microsoft Network Monitor (http://support.microsoft.com/kb/933741/en-us)—Transparent Database Accelerator and 
SQL Query Analyzer 

OTHER ORACLE WIRE-LEVEL SOFTWARE 

If you’re looking for other software which uses Oracle’s wire-level protocol directly, the following is a list of ones I’m aware 
of: 

• DataDirect (http://www.datadirect.com/)—Well-known wire-level ODBC, JDBC, .NET drivers. 

• CoreLab (http://www.crlab.com/)—Wire-level OraDirect .NET driver and Oracle Class Library for C++. 

• OraCmd (http://www.withdata.com/)—A Windows-only alternative to SQL*Plus written in Delphi by Shiji Pan. 

 



RDBMS - Connectivity 

 10�        Paper # 

APPENDIX A:  SOURCE CODE EXCERPTS 

 
/* ------------------------------------------------------------------------- */ 
 
/* -------------------- Network Substrate Packet Types --------------------- */ 
 
/* 
 * Network Substrate Packet Header 
 */ 
struct nsphd 
{ 
    ub2     nsphdlen;                            /* Packet Length (in bytes) */ 
    ub2     nsphdpsm;                                     /* Packet Checksum */ 
    ub1     nsphdtyp;                                         /* Packet Type */ 
    ub1     nsphdrsv;                            /* Reserved for Future Use? */ 
    ub2     nsphdhsm;                              /* Packet Header Checksum */ 
}; 
typedef struct nsphd nsphd; 
 
/* 
 * Network Substrate Connection Packet 
 */ 
struct nspcn 
{ 
    ub2     nspcnvsn;                                      /* Packet Version */ 
    ub2     nspcnlov;                           /* Lowest Compatible Version */ 
    ub2     nspcnopt;                     /* Supports Global Service Options */ 
    ub2     nspcnsdu;                   /* Session Data Unit Size (in bytes) */ 
    ub2     nspcntdu;                 /* Transport Data Unit Size (in bytes) */ 
    ub2     nspcnntc;                         /* NT Protocol Characteristics */ 
    ub2     nspcntna;                               /* Line Turnaround Value */ 
    ub2     nspcnone;                     /* The number 1 in Host Byte Order */ 
    ub2     nspcnlen;                   /* Length of Connect Data (in bytes) */ 
    ub2     nspcnoff;                         /* Byte Offset to Connect Data */ 
    ub2     nspcnmxc;                                /* Maximum Connect Data */ 
    ub2     nspcnfl0;                                     /* Connect Flags 0 */ 
    ub2     nspcnfl1;                                     /* Connect Flags 1 */ 
    ub2     nspcndat;                                        /* Connect Data */ 
}; 
typedef struct nspcn nspcn; 
 


