

DBA

Bi-directional Replication using Oracle Streams
Sreeni Kurup, Fidelity Investments
Introduction
This paper presents an overview on using Streams technology for implementing replication between multiple databases in a distributed environment. This presentation also provides a synopsis of Streams replication architecture, streams implementation for best performance, streams configuration best practices for bi-directional replication, monitoring, troubleshooting, scripts to capture replication performance status reporting and sample code for building a bi-directional replicated environment.

Streams Overview
Oracle Streams was first introduced in release 9i R2, and enhanced in 10gR2. Oracle Streams enables the propagation and management of data, within a database, or from one database to another. Oracle Streams provides a single and flexible infrastructure that supports deployment of a variety of configurations like replication, data-warehouse loading, events notification and Message queuing.
Streams Architecture

Oracle Streams begins by capturing changes from redo log files or archived log files. The redo logs of database records changes to data, tables and schemas. The Streams capture process extracts these changes from the redo log files and formats each change into a logical change record (LCR). The LCR(s) are then stored in staging area and a subscriber propagates these events to the staging area at the destination database. An apply process at the destination database retrieves these events and apply these changes to the tables involved in replication.

Figure 1 shows the basic flow of the information of Oracle Streams in a bi-directional replication environment

[image: image28.emf]STEP8

START APPLY ON

DB2

Figure 1:-. Oracle Streams flow in a bi-directional replicated environment
Capture
The Capture process is responsible for scanning and extracting database changes from redo log. Capture process uses the LogMnr technology to scan the redo log. If the capture process finds a transaction on any of the tables configured to replicate, it will convert these transactions into Logical Change Records (LCR) and stores them in the capture queue at the source site.

Every redo entry in the redo log has a tag and the default value of the tag is NULL for a transaction made by an application user. The capture process at the source site will capture transactions with NULL tag value. The apply process at destination will reset the tag to a non-null value when it implements the change. In bi-directional replicated environment, capture process at the destination site will ignore the changes made by apply process, there by avoiding sending data back to the originated site.
Propagation

Propagation process transfers messages from capture queue at source database to an apply queue at the destination database. In releases lower than 10gR2, propagation is always queue-to-dblink and all propagations scheduled from a source queue shares the same job queue process. Release 10gR2 introduced the queue-to-queue propagation that utilizes a dedicated job queue process for each of the propagation scheduled from a source queue. Queue-to-queue propagation enables parallel propagation of messages from a single source to multiple destination sites. In RAC environments, propagation is always queue-to-queue.

Apply
The Apply process at the destination database is responsible for applying changes at the target database. If the apply mechanism fails to apply LCR messages to the destination tables, messages are moved to an error queue. An apply process detects conflicts automatically when applying LCRs. Typically, a conflict occurs when the same row in the source database and destination database are changed at approximately the same time. When conflicts occur, you need a mechanism to ensure that the conflict is resolved in accordance with business rules.
There are three main components for an apply process.

Reader server
Coordinator process
One or more apply servers.

Reader server process dequeues messages from the apply queue and computes dependencies between LCR(s) before converting them into transactions. The reader server then returns the assembled transactions to the coordinator process, which assigns them to apply servers. Apply server performs necessary DDL or DML changes to the destination tables.

Streams Replication Configuration
High Availability Architecture

Replication technology is the solution for managing active-active sites in high availability architecture deployments. The most important decision in designing a highly available system is choosing the most appropriate high availability architecture based on service level requirements as needed by a business. Understanding the availability requirements of the business is critical since cost is also associated with the different levels of high availability. To choose the correct high availability architecture, ensure you understand your business' service level requirements first.

Why Replication

Replication is the perfect choice of OLTP applications that does short transactions and nightly batch cycles of transactions with low commit point that requires 24x7 availability.

Following are the benefits of using replication solution
· Oracle replication facilitates applications to run transactions against all replicated sites. All sites can be active to avoid dormant box issues. Solutions like DataGaurd will force you to keep the d/r server idle during normal operation

· Replication improves the availability of applications because it provides them with alternative data access options.

· Replicated environment can provide instant failover of users between sites using various technologies
· Load balancing by geographical distribution of users across sites by using local middle-tier server for each database site to avoid WAN traffic.
· If you have license for Enterprise version of Oracle, there is no additional cost for using Streams.

· Following are some of the drawbacks on using replication

· There are chances of delay on transactions in replication if one site crashes or there are issues with network latency. Application should be able to tolerate these types of delays.
· There are chances of stranded transactions in a replicated environment
· Replication is not an optimal solution for applications with batch oriented transactions, big commits, long-running transactions etc.

· Application must be able to support conflict resolution for enabling multi site update using a timestamp column in each table for tracking last update.

· To minimize site failover, deploy RAC solutions on each site and replication solution between sites. If one of the nodes in RAC is unavailable, applications can continue working on the surviving node at the same site.
Schema Design Requirements for Bi-directional Replication
The following are some of the important steps before considering Streams in one-way or bi-directional active-active replication.
· Verify that your database contains table with streams unsupported data types. In 10g, you can find the details of unsupported objects from the view DBA_STREAMS_UNSUPPORTED. Exclude all tables reported by this view from the streams configuration. Following data types are unsupported
· XML Type (supported in 11g)
· ROWID, UROWID, BFILE ,Unicode CLOBs
· Temp tables, External tables, Simple and nested user-defined data types
· Collections (REFS, nested tables and VARRAYs)

· Tables using Transparent Data Encryption (supported in 11g)
· IOT with Overflow.

· For bi-directional replication with active-active implementation, tables should have a primary key or unique key for streams replication. Otherwise, you need to consider altering those tables to have either a primary or a unique key.

· For bi-directional replication with active-active implementation, you need to configure update conflict resolution using Oracle supplied resolution methods. Common approach is to use the conflict method MAXIMUM on a time stamp column on the table and use triggers to update this column for inserts and updates.

· To handle conflicts related to unique key violation on INSERTS, you need to create error handlers in streams and use packages to log the error transaction details into an error table or discard these errors
· To handle delete conflict resolution to handle “No Data Found” type errors, you need to use an error handler
· By default, triggers on a table at the destination site are not fired when the transaction is from an apply process.

· If you plan to capture DDL changes at a source database and apply these DDL changes at a destination database, avoid using system-generated names. If a DDL statement results in a system-generated name for an object, then the name of the object typically will be different at the source and destination database. Different names for objects can result in apply errors for future DDL changes.

· If you have more than one schema in your environment, consider different deployment options shown in the section for Streams deployment options. Consider using some of these options when there is no cross references between schemas.
Performance Requirements
Replication performance depends on several factors like application design, deployment architecture and streams performance configuration. You need to consider the following major factors in streams deployment.

· Review the hardware environment to make sure that there are enough memory and CPU resources available for streams components. See streams best practices for more details on streams requirements for memory and CPU resources.
· Memory allocation for Streams pool that is required for keeping the queue in memory to avoid spilling messages to the queue on disk and additional memory requirement for LogMnr component of each Capture.
· CPU cycles for streams components. Streams capture process use LogMnr for scanning online redo log and this is CPU intensive process. If you are running more than one capture in an instance, all those captures process requires enough CPU cycles.

· Streams will run into performance issues if commit point of transactions are very high, say above 1000. If your application has batch components, you may need to revisit the size of the transactions.
· If the application generates sustained volume of transactions, streams may run into issues with performance of all components. Please refer to the chart showing performance numbers on LCR replicated/second in each of the version. Using a specific POC application, the best performance I have seen in 10gR1 is 400 LCR/Second during sustained volume, 1600 LCR/sec on 10gR2 and 8000 LCR/sec in version 11.1 (using combined capture and apply feature of 11g)
· If there is high latency on network between source and destination sites, streams replication will run into issues with capture and propagation.

Streams Deployment
If you have more than one schema in your environment, consider different deployment options shown below.
Single Capture, Propagation And Apply
With this configuration, a single capture, propagation and apply will be used for replication of all tables of all schema(s) in an instance.

[image: image2.emf]SITE1

User Changes

SITE2

Capture

Process

Capture

queue Redo

Log

Redo

Log

Propagation

Tables

schema

A1, A2..An

B1,B2..Bn

Apply

queue

Apply

Process

Tables

A1,A2..An

B1,B2..Bn

DB1

DB2

Figure 3:- Single Capture, Propagation, Apply configuration in Oracle Streams replicated environment
Benefits:-

· Single capture and apply will use less CPU and memory resources
· Simple form of streams implementation

· Release 11g uses the new feature combined capture and apply for this configuration.
Drawbacks:-

· Since there is only one capture queue for the entire instance, single job queue process manages propagation to the destination site.
· If many transactions are waiting in the queue due to high volume, there is a potential chance for new transactions spill over from the capture queue in the memory to the queue on the disk. Enqueuing and dequeuing messages from the queue on disk is an expensive operation on CPU and disk I/O.

· Spilled over transaction to disk will generate redo logs. Capture will have to scan these logs and subsequently ignore them, consuming more CPU and resulting in a delay in capturing user transactions.
· If the capture is down for some reason, the entire replication process is impacted.
Multiple Captures
In this configuration, schemas or tables are group into different capture process. Each group has its own capture, propagation and apply. This configuration has better throughput on performance on databases hosting schemas for OLTP and batch applications. You can group OLTP schema into one capture and batch schema into a different capture.

[image: image3.emf]User Changes

User Changes

Schemas

A1, A2..An

Tables

Redo

Log

Redo

Log

Capture

for Schemas

A1, A2..An

Capture

queue

Propagation

For Schemas

A1,A2..An

Capture

for Schemas

B1,B2..Bn

Capture

queue

Propagation

For Schemas

B1,B2..Bn

Schemas

B1,B2..Bn

Tables

Apply

queue

Apply

 for Schemas

A1,A2..An

Schemas

A1, A2..An

Tables

Apply

queue

Apply

 for Schemas

B1,B2..Bn

Schemas

B1,B2..Bn

Tables

SITE1 SITE2

DB1 DB2

Figure 4:- Multiple Capture configurations in Oracle Streams replicated environment

Benefits:-

· Better performance than the single capture, apply and propagation option.

· Related schemas are grouped to use dedicated capture/apply and propagation and the replication process is independent of other schema groups.
· An individual job queue process (ora_jxxx) serves each of the propagation process and all these jobs push transactions to remote site in parallel resulting in great improvement in replication latency.
· Each apply process at the destination site can apply transactions in parallel.
· Failure of a single capture, propagation or apply in a group will not affect entire replication.
Drawbacks:-

· Each capture on source must scan online redo log for all transactions and each capture will consume CPU cycle to handle this process. Therefore, you need to have enough h/w resources to handle this.
· Each capture queue requires memory for the buffer queue and logMnr requires memory. You need to allocate sufficient memory in streams pool and shared pool to handle this requirement.
· Apply process at destination has contention on dequeuing transactions.

· If there are multiple schemas with logical or physical referential integrity constraints, all these schemas must be part of the same capture process.
Multiple Capture with Parallel Apply
In addition to having multiple captures for group of schemas, this option uses dedicated propagation for related schema(s) within a group.
[image: image4.emf]User Changes

User Changes

Schemas

A1, A2..An

Tables

Redo

Log

Redo

Log

Capture for

Schemas

 A1,A2..An

Capture

queue

Propagation

for Schema A1

Schemas

B1,B2..Bn

Tables

Apply

queue

Apply

 for Schema A1

Schemas

A1 Tables

SITE1

SITE2

DB1

Propagation

for Schema A2

Apply

queue

Apply

 for Schema A2

Schemas

A2 Tables

Propagation

for Schema An

Apply

queue

Apply

 for Schema An

Schemas

An Tables

Capture for

Schemas

B1,B2..Bn

Capture

queue

Propagation

for Schema B1

Apply

queue

Apply

 for Schema B1

Schemas

B1 Tables

Propagation

for Schema B2

Apply

queue

Apply

 for Schema B2

Schemas

B2 Tables

Propagation

for Schema Bn

Apply

queue

Apply

 for Schema Bn

Schemas

Bn Tables

Figure 5:- Multiple Captures with Parallel Apply configuration in Oracle Streams replicated environment
Benefits:-

· Best configuration if you are planning to share capture for multiple schema in a shared environment

· Multiple schemas can share same capture.
· Enables parallel propagation using the queue-to-queue propagation feature in 10gR2. Each propagation uses dedicated job queue process.
· Related schema(s) within a capture can have individual apply queue at destination.
· Same benefits as for the multiple capture option.
· This option provides additional flexibility on rolling-upgrade of DDL changes.
Drawbacks:-

· Hardware resource requirement at resource site is same as multiple capture option.

· Destination site requires additional CPU and memory resources to handle multiple queues and apply process.

Streams Implementation Best practices
Capture Configuration at Source Site
· Before you add a table to streams replication, check if the table contains any unsupported data types. You can verify this from the dba_streams_unsupported view. If the logMnr reader process of capture finds an object with unsupported data type, capture aborts and you need to remove the object from replication before starting capture. Implement negative rule set for the capture process to filter out changes to the incompatible object.

· Objects with following data types are unsupported as of 10gR2.

· XML Type (supported in 11g)
· ROWID, UROWID, BFILE ,Unicode CLOBs
· Temp tables, External tables, Simple and nested user-defined data types

· Collections (REFS, nested tables and VARRAYs)

· Tables using Transparent Data Encryption (supported in 11g)
· You need to allocate enough CPU and memory resources for streams components in highly transaction oriented systems. Streams Capture requires CPU cycles to scan the redo or archive logs and convert them into LCR. By default, LogMnr uses 10 MB of shared pool for its memory structure. You can change internal parameter of capture to specify additional memory for LogMnr.

exec DBMS_CAPTURE_ADM.SET_PARAMETER('capture_name','_sga_size','memory');
· When a capture process starts, it scans the archive log files that contain the START_SCN of the capture. Removing the archived log files that contain the START_SCN aborts the capture during the database or capture restart. This normally occurs when there are no DML/DDL activities on replicated tables in the database.
· Implement monitoring to make sure that required archive files are available on disk (see monitoring section for more details)
1. Implement Heart_Beat_Table with replication and schedule a job to update a record in this table every 5 minutes.
2. If transaction volume is very low in the database,
· Modify check point frequency from 10MB to a lower value using the parameter _CHECKPOINT_FREQUENCY
exec DBMS_CAPTURE_ADM.SET_PARAMETER('capture_name','_checkpoint_frequency',1);

· Force capture to run a checkpoint manually by setting the _CHECKPOINT_FORCE parameter couple of times a day. Once the checkpoint is complete, this parameter reset to ‘N’. Run this before you bounce the instance or bounce the capture.
exec DBMS_CAPTURE_ADM.SET_PARAMETER('capture_name','_CHECKPOINT_FORCE','Y');

3. If transaction volume is moderate to high in the database, too many checkpoints by capture can increase data volume in the metadata table SYSTEM.LOGMNR_RESTART_CKPT$. If the HWM of this table is very high, starting the capture takes more time and performance of capture slows down. Replication will be broken if there is not enough space in SYSAUX tablespace. To avoid too many checkpoints, you need to increase the checkpoint frequency to a higher value instead of the default 10MB.
· To avoid too many checkpoints in these types of environments, modify checkpoint frequency from default 10MB to a higher value, close to the size of the redo log.
exec DBMS_CAPTURE_ADM.SET_PARAMETER('capture_name','_checkpoint_frequency',250);

· Take a manual checkpoint before you bounce the database or bounce capture process.
exec DBMS_CAPTURE_ADM.SET_PARAMETER('capture_name','_CHECKPOINT_FORCE','Y');

· Perform periodic maintenance to move the FIRST_SCN of the capture. This is the lowest SCN available for capture, so that metadata in logmnr_restart_ckpt$ can be purged and space can be reclaimed.
· In pre 10gR2 releases, use the oracle supplied package find_first_scn to find FIRST_SCN that is older than certain number of days and use the DBMS_CAPTURE_ADM.ALTER_CAPTURE to reset the FIRST_SCN. Implement this process to run once per day.
· In pre 10gR2 releases, use the following steps to reduce the HWM of LOGMNR_RESTART_CKPT$ once per week.
i. Find all captures :- Select capture_name from dba_capture

ii. Stop each capture

iii. Collect the total records in system.logmnr_restart_ckpt$; :- Select count(*) from system.logmnr_restart_ckpt$; -

iv. Backup system.logmnr_restart_ckpt$; :- create table LOGMNR_TEMP parallel 8 tablespace SYSAUX as select /*+ parallel */ * from system.logmnr_restart_ckpt$;

v. Count the total records in LOGMNR_TEMP; :- Select count(*) from LOGMNR_TEMP

vi. If the records match on both tables, proceed to next step.

vii. Reduce HWM:- truncate table system.logmnr_restart_ckpt$;

viii. Reload records back:- insert into system.logmnr_restart_ckpt$ select /*+ parallel */ * from LOGMNR_TEMP; commit;

ix. Drop table LOGMNR_TEMP;

x. Start all captures.

· From Oracle 10.2 onwards, the purging of logmnr_restart_ckpt$ is done automatically by Oracle using the checkpoint_retention_time parameter to determine how frequently the purge occurs by moving the FIRST_SCN.
i. exec dbms_capture_adm.alter_capture(capture_name =>'<name> ',CHECKPOINT_RETENTION_TIME=><days>);

· In 10gR2, use the following procedure to reduce the HWM
i. alter table system.LOGMNR_RESTART_CKPT$ enable row movement;

ii. alter table system.LOGMNR_RESTART_CKPT$ shrink space ;

iii. alter table system.LOGMNR_RESTART_CKPT$ disable row movement;

iv. The index associated with the table can be shrunk using
alter index <index name> shrink space;

· Streams queues need enough memory for buffered queue and if there is not enough memory, streams will spill over messages from the queue in memory to the queue on disk. The amount of memory for the buffered queue depends on the transaction volume. You need to monitor streams queue from spilling over to disk. In release 10g, you can allocate memory using the parameter streams_pool_size. You can query the dynamic performance view, V$STREAMS_POOL_ADVICE, to provide information that you can use to determine the best size for Streams pool.

· In a bi-directional replicated environment, use a different set of queues on each site for capture and apply.
· In a bi-directional replicated environment, implement update conflict resolution using timestamp column and use a trigger to update this column for updates and insert. By default the trigger will not fire when the DML is from an apply process. Use ‘TIMESTAMP WITH LOCAL TIME ZONE’ if databases servers are located in different time zone in a replicated environment.

· In bi-directional replication, create supplemental logging for all columns in the tables to handle the update conflict resolution.
· In RAC environment, bind the capture queue a specific node in the cluster so that you have better control on managing and monitoring capture. If the node that runs Capture crashes, capture will fail over to secondary node in cluster. Once the crashed node come online, capture will fail-back automatically.

· In RAC environment, comment out the aq_tm_process parameter to enable successful fail-over and fail-back of capture or apply services in the event of a node crash.

· In RAC environment, archive log threads from all instances must be available to any instance running a capture process.

Propagation Configuration at Source Site

· Set the init.ora parameter _job_queue_interval=1 so that propagation process checks for new messages to be propagated more frequently. By default, propagation will wake-up every 3 seconds for checking new messages in the queue.
· Modify SDU/TDU/MDU/ SEND_BUF_SIZE/ RECV_BUF_SIZE parameters in tnsnames.ora, listener.ora and sqlnet.ora on source and destination sites to improve performance of propagation sender and receiver.
· (SDU = 32676) – Session data unit
· (MDU = 32676)

· (TDU = 32676)

· (SEND_BUF_SIZE= 9375000) – Determines the size of buffer used to send the propagated messages. You need to determine this parameter value based on network bandwidth.
· (RECV_BUF_SIZE= 9375000) – Determines the size of buffer used to receive the propagated messages.

· Create propagation using the queue-to-queue option in 10gR2.

· In RAC environment, use service name in the db-link.
· Set this event to reduce the acknowledge time/frequency: on each running instance. This event increases the acknowledgement interval for propagation from 2 to 20 second when queue_to_queue propagation is configured.
· alter system set events '26749 trace name context forever, level 2';

· On RAC instance:
· alter system set event='26749 trace name context forever, level 2' scope=spfile sid='*';

Apply Configuration at Destination Site

· Use separate APPLY and APPLY queue at destination.
· To reduce contention on APPLY SERVERS, implement partitioning on user tables. Use HASH sub-partitions for each of the main partition. HASH will help to create multiple endpoints within a MAIN partition and avoid block level contention. Also use high value for INITTRANS (16 or 32) for TABLES and indexes.

· Some of the APPLY parameters you need to keep an eye

· PARALLELISM :- Start with setting this to 3 and increase this if you see any improvements in performance.

· _HASH_TABLE_SIZE - 10000000 :- This will help to reduce transaction dependency checks between apply servers within an apply

· _TXN_BUFFER_SIZE - 500 or above:- This will help to allocate enough memory for transaction
· TXN_LCR_SPILL_THRESHOLD :- Set this to be max value of biggest TXN. Default value 10000 is sufficient in most of the cases. Change to INFINITY if you experience heavy PAUSE state of capture because of low memory at destination site.
· COMMIT_SERIALIZATION – NONE:- allows non-dependent transactions to be applied in any order, rather than in commit SCN order. This can frequently improve the apply performance.
· _DYNAMIC_STMTS=Y. This is useful only if you have wide tables (ie, lots of columns) but only a few columns are updated. Do use if all columns are enabled for supplemental logging.
· On RAC implementation, assign the apply queue a specific node in the cluster.

· Change the INITRANS of streams$_apply_progress

· alter table sys.streams$_apply_progress initrans 16 pctfree 10
Monitoring the Source And Destination Sites
Implement the following basic level of monitoring on a streams replicated environment to ensure health of the environment.

· Check the status of capture from dba_capture and alert if the capture is not in ENABLED status. Also check the STATE column from dynamic performance view v$streams_capture to make sure that the state of capture is CAPTURING CHANGES.
· Periodically check latency in redo log scanning of each capture from v$streams_capture view. The redo log scanning latency, which specifies the number of seconds between the creation time of the most recent redo log event scanned by a capture process and the current time
SELECTCAPTURE_NAME,
((SYSDATE - CAPTURE_MESSAGE_CREATE_TIME)*86400) LATENCY_SECONDS FROM V$STREAMS_CAPTURE;

· Monitor the archive log files location to make sure that archive log files required for capture process restart is available on disk. Also, modify your RMAN backup scripts to check the streams requirement and do not remove those required files from disk.
DECLARE
lScn number := 0;
alog varchar2(1000);
begin
select min(required_checkpoint_scn)into lScn from dba_capture ;
DBMS_OUTPUT.ENABLE(2000);
dbms_output.put_line('Capture will restart from SCN ' || lScn ||' in the following file:');
for cr in (select a.name,a.first_time,a.sequence#,a.thread#
 from DBA_REGISTERED_ARCHIVED_LOG a
 where lScn between a.first_scn and a.next_scn
 order by a.thread#,a.sequence#)
loop
dbms_output.put_line(cr.name||' ('||cr.first_time);
end loop;
end;
· Check the status of the propagation to make sure that the propagation is in enabled status
select P.propagation_name, decode(S.schedule_disabled,'Y', 'DISABLED', 'N', 'ENABLED') STATUS
S.failures from dba_queue_schedules S, dba_propagation P
where P.destination_dblink = S.destination and S.schema = P.source_queue_owner
and S.qname = P.source_queue_name;
· Check if there are messages spilled-over from memory queue to disk queue. This info is available in v$BUFFERED_QUEUES (in 10g).
· In 10gR2, use the new view V$STREAMS_TRANSACTION to check for any long running or large transactions. You can find this from the alert log file also.
· By default Flow Control is enabled in 10g when the buffered queue is usage is above certain percentage and you can find that from v$streams_capture. You need to avoid this situation by allocating enough memory for queue, and by checking performance of propagation and apply.
· Check the status of the apply process at the destination from DBA_APPLY and check if there are any apply errors. Apply errors are staged in DBA_APPLY_ERROR and you can use oracle provided packages to review the contents of the LCR stored in error queue table.
· Check latency of apply process. This is the amount of time between when the event was created at a source database and when the event was applied by the apply process
SELECT ((HWM_TIME-HWM_MESSAGE_CREATE_TIME)*86400) Lt ,
TO_CHAR(HWM_MESSAGE_CREATE_TIME,'HH24:MI:SS MM/DD/YY'), TO_CHAR(HWM_TIME,'HH24:MI:SS MM/DD/YY')
FROM V$STREAMS_APPLY_COORDINATOR order by APPLY_NAME;
· In 10gR2, you can monitor the number of transactions spilled from memory to disk queue from the view v$streams_apply_reader. New apply parameter txn_lcr_spill_threshold enables you to specify that an apply process begins to spill messages for a transaction from memory to disk.
Monitoring Performance of Streams Components

In Oracle release 10gR2, Oracle has couple of performance history views populated as part of AWR snapshots. Performance statistics in AWR report shows averaged out values and this does not provide an accurate picture of performance numbers.
1. DBA_HIST_BUFFERED_QUEUES

2. DBA_HIST_BUFFERED_SUBSCRIBERS

3. DBA_HIST_RULE_SET

4. DBA_HIST_STREAMS_APPLY_SUM

5. DBA_HIST_STREAMS_CAPTURE

6. DBA_HIST_POOL_ADVISE

Release 11g introduced a new set of utilities for checking online monitoring of Streams topology. The ANALYZE_CURRENT_PERFORMANCE procedure in the package DBMS_STREAMS_ADVISOR_ADM gathers information about the Streams topology and performance of the Streams components. This procedure takes snapshots of Streams to gather information and calculates statistics. You need a minimum of two snapshots to report most of the performance statistics. Performance stats collected are active only for the session that runs the snapshots and all reporting must be done in the same session. Following are the queries you can run in the same session for different statistics
For viewing Component-Level Statistics, run the following query from the same session.
SELECT COMPONENT_ID, COMPONENT_NAME, COMPONENT_TYPE, STATISTIC_NAME,

 CASE WHEN cs.STATISTIC_UNIT='BYTES' THEN cs.STATISTIC_VALUE/1048576

 ELSE cs.STATISTIC_VALUE END STATISTIC_VALUE,

 CASE WHEN cs.STATISTIC_UNIT='BYTES' THEN 'MEGABYTES'

 ELSE cs.STATISTIC_UNIT END STATISTIC_UNIT

FROM DBA_STREAMS_TP_COMPONENT_STAT cs

WHERE ADVISOR_RUN_ID=&&adv_id AND SESSION_ID IS NULL AND SESSION_SERIAL# IS NULL

ORDER BY COMPONENT_ID, COMPONENT_NAME, COMPONENT_TYPE, STATISTIC_NAME;

For viewing Session-Level statistics, run the following query from the same session.
SELECT COMPONENT_ID, COMPONENT_NAME, COMPONENT_TYPE, SUB_COMPONENT_TYPE,

STATISTIC_NAME,STATISTIC_VALUE, STATISTIC_UNIT

FROM DBA_STREAMS_TP_COMPONENT_STAT

WHERE ADVISOR_RUN_ID=&&adv_id AND SESSION_ID IS NOT NULL AND SESSION_SERIAL# IS NOT NULL ORDER BY COMPONENT_ID, COMPONENT_NAME, COMPONENT_TYPE, STATISTIC_NAME;
For viewing Statistics for the Stream Path, run the following query from the same session.
SELECT PATH_ID, STATISTIC_NAME, STATISTIC_VALUE, STATISTIC_UNIT

FROM DBA_STREAMS_TP_PATH_STAT WHERE ADVISOR_RUN_ID=&&adv_id

ORDER BY PATH_ID, STATISTIC_NAME;

There are several dynamic performance views available with status of each of the Streams components. These views store the cumulative value of each of the performance matrices. Performance history reporting of Streams components requires your own history tables for these views and take snapshot from these views to populate history tables every couple of seconds.

In 10gR1 and 10gR2, create your own history and collect the status every couple of seconds. Then generate reports for delta of each collection period.
· Create your own history tables for following views.
· V$streams_capture

· V$streams_transaction

· V$PROPAGATION_SENDER

· V$PROPAGATION_RECEIVER

· v$buffered_queues

· v$buffered_subscribers

· v$buffered_publishers

· V$STREAMS_APPLY_COORDINATOR

· v$streams_apply_server

· Schedule dbms_job to select from these views and insert into these history.
· Run reports using queries to select the delta of each sample collected to view performance of each component
--###
-- Query to list the capture latency and volume
-- This query will list the delta of the following stats between collection interval
-- latency on scanning redo or archive log
-- messages captured between sample
-- messages enqueued between sample
-- total time capture went to pause between sample

-- Numbers LCR captured/second
--##
SELECT run_time,CAPTURE_NAME,
(round(extract(HOUR from (run_time-lag(run_time) over (order by run_time))),2)*60*60)+
(round(extract(MINUTE from (run_time-lag(run_time) over (order by run_time))),2)*60)+
(round(extract(SECOND from (run_time-lag(run_time) over (order by run_time))),2)) "Delta Seconds",
 ROUND(((CAPTURE_TIME - CAPTURE_MESSAGE_CREATE_TIME)*86400),3) "REDO SCAN LATENCY IN SEC",
 TO_CHAR(CAPTURE_MESSAGE_CREATE_TIME, 'MM/DD/YYYY HH24:MI:SS') MESSAGE_CREATION_TIME,
 TOTAL_MESSAGES_CAPTURED-lag(TOTAL_MESSAGES_CAPTURED) over (order by run_time) MESSAGES_CAPTURED,
 TOTAL_MESSAGES_ENQUEUED-lag(TOTAL_MESSAGES_ENQUEUED) over (order by run_time) MESSAGES_ENQUEUED,
 ELAPSED_PAUSE_TIME-lag(ELAPSED_PAUSE_TIME) over (order by run_time) CAPTURE_PAUSE_TIME,
 round(((TOTAL_MESSAGES_ENQUEUED-lag(TOTAL_MESSAGES_ENQUEUED) over (order by run_time)))/
((round(extract(HOUR from (run_time-lag(run_time) over (order by run_time))),2)*60*60)+
(round(extract(MINUTE from (run_time-lag(run_time) over (order by run_time))),2)*60)+
(round(extract(SECOND from (run_time-lag(run_time) over (order by run_time))),2))),0) "DML Per Sec"
FROM FID_CAPTURE_LATENCY_HIST

where CAPTURE_NAME='CPON_FBCTD10_FCAPHSDBO_G1' -- CHANGE CAPTURE NAME
and run_time >= to_date('2008-01-29 15:10:00','yyyy-mm-dd hh24:mi:ss')
and run_time <= to_date('2008-01-29 23:00:00','yyyy-mm-dd hh24:mi:ss')
order by capture_name,run_time;

Following is the sample output of the query. In this example, sample interval is 15 seconds and each row of this query results shows the redo scanning latency between each sample period, total messages captured/enqueued in 15 seconds, total capture pause time in 15 seconds, DML captured/second.

	RUN_TIME
	Delta Seconds
	REDO SCAN LATENCY IN SEC
	MESSAGE
CREATION
TIME
	MESSAGES

CAPTURED
	MESSAGES

ENQUEUED
	CAPTURE

PAUSE

TIME
	DML Per Sec

	3:13:19 PM
	15
	1
	01/29/2008 15:13
	37315
	30697
	168
	2046

	3:13:34 PM
	15
	0
	01/29/2008 15:13
	78259
	66694
	430
	4446

	3:13:49 PM
	15
	0
	01/29/2008 15:13
	39360
	33604
	140
	2231

	3:14:04 PM
	15
	0
	01/29/2008 15:14
	40505
	34614
	154
	2308

	3:14:19 PM
	15
	0
	01/29/2008 15:14
	38984
	33300
	138
	2220

	3:14:34 PM
	15
	0
	01/29/2008 15:14
	39220
	33515
	126
	2234

	3:14:49 PM
	15
	0
	01/29/2008 15:14
	37030
	31626
	156
	2108

	3:15:04 PM
	15
	0
	01/29/2008 15:15
	38437
	32844
	128
	2177

 At the Destination site, run the following to check the apply performance.

-- ##

-- Query to list the volume and latency of apply from the history
-- This query will list the delta of following stats between the stats collection interval
-- apply latency between stats interval
-- transaction applied between stats interval

-- lcr applied between stats interval
-- number of DML applied between stats interval
-- ###

select run_time, (round(extract(HOUR from (run_time-lag(run_time) over (order by run_time))),2)*60*60)+
(round(extract(MINUTE from (run_time-lag(run_time) over (order by run_time))),2)*60)+
(round(extract(SECOND from (run_time-lag(run_time) over (order by run_time))),2)) "Delta Seconds",
apply_latency_sec "LATENCY IN SECONDS", total_applied-lag(total_applied) over (order by run_time) "TXN APPLIED",
(TOTAL_MESSAGES_APPLIED-lag(TOTAL_MESSAGES_APPLIED) over (order by run_time)) - (total_applied-lag(total_applied) over (order by run_time)) "DML APPLIED",
round(((TOTAL_MESSAGES_APPLIED-lag(TOTAL_MESSAGES_APPLIED) over (order by run_time)) - (total_applied-lag(total_applied) over (order by run_time)))/
((round(extract(HOUR from (run_time-lag(run_time) over (order by run_time))),2)*60*60)+
(round(extract(MINUTE from (run_time-lag(run_time) over (order by run_time))),2)*60)+
(round(extract(SECOND from (run_time-lag(run_time) over (order by run_time))),2))),0) "DML Per Sec"
from FID_APPLY_LATENCY_HIST
where apply_name='APFRM_FBCTD10_FCAPHSDBO_G1' -- REPLACE APPLY NAME
and run_time >= to_date('2008-01-25 15:20:00','yyyy-mm-dd hh24:mi:ss')
and run_time <= to_date('2008-01-25 16:00:00','yyyy-mm-dd hh24:mi:ss')
order by apply_name,run_time;

Following is the sample output of the query. Each row of this query results shows the apply latency between these sampling time, total transactions and total DML or DDL statements applied in 5 seconds, and DML applied /second.

	RUN_TIME
	Delta Seconds
	LATENCY IN SECONDS
	TXN APPLIED
	DML APPLIED
	DML Per Sec

	3:21:39 PM
	5.01
	1
	1245
	12453
	2486

	3:21:44 PM
	5.02
	2
	928
	9283
	1849

	3:21:49 PM
	5.02
	2
	1180
	11793
	2349

	3:21:54 PM
	5.02
	1
	1230
	12306
	2451

Troubleshooting

· When there is an issue with Streams replication, the following are some of the initial checks that can identify the details.
· Check for any trace files in bdump location for capture, apply or propagation

· Check for any errors in alert log file

· Enable trace for streams components for detail analysis. Make sure you have enough space in the udump location to hold these logs and max_dump_size parameter is set to a higher value. The following are the trace levels

Level 2 for capture

Level 4 for queue

Level 6 for both capture and queue

Level 8 for Apply

Level 16 for DDL

Level 64 for tracing error creation/execution and should be used when it is required to get detailed trace along with other trace numbers.

You can combine these traces numbers to generate high-level tracing. Trace 70 (2+4+64) to capture.

· Propagation will be in DISABLED status if it encounters 16 failures. Most of the time propagation fails when the destination site is not reachable. Once the error condition is fixed, you need to enable propagation manually using dbms_aqadm.enable_propagation.
· If this does not work, you need to unschedule and schedule propagation using dbms_aqadm.unschedule_propagation and dbms_aqadm.schedule_propagation.
· Use oracle supplied packages to find details of apply errors reported at the destination site. Make sure that the apply user at destination has privileges for making DDL and DML changes.
Enhancements in 11g

· Reader process of Capture component mines from the in-memory redo log buffers whenever possible to minimize disk I/O and reduce latency on capture

· Combined Capture and Apply. Capture process can send logical change records (LCRs) directly to an apply process f you want to use single capture and single apply. This is feature is good with 2-way replication configurations and Streams will automatically detect if capture qualifies for combined capture and apply configuration. If there are additional propagation configured for the capture queue, Streams will switch to the default configuration to use the propagation.
· Apply process employs an internal mechanism to execute change records and thus reduced CPU consumption. In addition, extensive caching minimizes latch contention and other wait events.

· 11g supports additional data types like XML and tables enabled with Transparent Data Encryption

· Synchronous Capture to capture DML changes made to tables immediately after the changes are committed.
· The Oracle Streams Performance Advisor reports performance measurements for an Oracle Streams topology
· Oracle Streams uses Oracle Scheduler to perform these jobs. Oracle Scheduler automatically tunes the number of slave process for these jobs based on the load on the computer system

· Compare and Converge shared database objects between sites.
Performance Comparison of Streams in 10gr1, 10gR2 and 11g
· Hardware at the source site:- HP ProLiant 585 G1 with 4 CPU each 1.8GHz speed and 8GB RAM. OS version on this server was LINUX 2.6.9-55.ELsmp and database were created on EMC NAS storage
· Hardware at the destination site:- Sun-Fire-T2000 with 1 CPU with 8 cores 1.2GHz speed and 32GB RAM. Operating System on this server was Solaris 10 and database were created on EMC SAN storage

· Network:- Corporate network between two datacenters approximately 70 miles apart.
· Software:- Oracle databases 10.1.0.5, 10.2.0.3 with Streams patches, 11.1.0.6. SGA of each database set to 6GB
· Oracle Streams Setup:- One single table with maximum row size 2K and all possible parameters for Streams components for performance improvement. Workload on the tables generated using our POC application that inserts 1.3K size record to this table followed by updating three different columns.

· Streams performance on 10gR1 was limited to a peak of 300 LCR/second with less than 2 seconds latency. Once we cross limit on transaction volume, capture started showing latency and it took a while to catch-up with destination.

· Streams performance on 10gR2 has reported consistent 1600 LCR/second with less than 4 seconds latency during 90% of run time. Latency started growing once we increase the transaction volume to generate more than 1600 DML/second.
· Streams performance on 11g has shown a great improvement in performance and we got a peak of 8000 LCR/second with less than two seconds latency during 90% of run time. In this configuration, Streams used the new combined capture and apply configuration of 11g.
· Release 11g, without combined capture and apply, reported a peak of 2300 LCR/second without any latency.

Streams Configuration Steps for bi-directional replication
The following diagram illustrates different steps on setting Streams one-way replication between two nodes.

[image: image5]
The following diagram illustrates different steps on setting Streams two-way replication between two nodes.

[image: image1.emf]SITE1

User Changes

User Changes

Capture

Process

Capture

queue

Tables

Redo

Log

Redo

Log

Apply

queue

Propagation

Apply

Process

DB1

Apply

queue

Apply

Process

Tables

Capture

Process

Capture

queue Redo

Log

Redo

Log

Propagation

SITE2

DB2

[image: image6]
Initial setup on both Sites
Set the init.ora parameters

· Job_queue_process – Specified number of job queue process. Depends on the number of capture queues you are planning to have in your system.
· Streams_pool_size – Streams buffer queue memory. Start with 300MB. You need to allocate additional memory depending on transaction volume and number of queues.
· Global_names – Set this to TRUE.
· Compatible – This parameter specifies release of the software and uses new features introduced in the release.
· Shared_pool – Additional memory to handle capture

· Logmnr_max_persistent_sessions – This parameter specified the maximum number of persistent LogMnining sessions. Capture uses LogMnr and if you plan to run multiple capture process, set this parameter accordingly.
· Parallel_max_server:- Set this parameter to a higher number if you are planning to have multiple apply or apply parallelism higher than the default value 1.
1. Create tablespace for streams queues and allocate additional space to SYSAUX tablespace.

2. Create strmadmin user and grant streams related privileges

3. Create database links on both sites for strmadmin

On Site1 and Site 2

1. Create Capture and Apply Queues
2. Create supplemental logging for tables
On Site 1

Step 1 :- Create capture process
Step 2 :- Create apply process to apply changes from Site 2

Step 3 :- Set apply user for applying changes from Site 2

Step 4 :- Set conflict resolution for applying changes from Site 2

Step 5:- Create propagation for sending captured messages to Site 1

Step 6:- Instantiate tables at Site 2 by setting the SCN value for the table.

On Site 2

Step 1 :- Create capture process
Step 2 :- Create apply process to apply changes from Site 1

Step 3 :- Set apply user for applying changes from Site 1

Step 4 :- Set conflict resolution for applying changes from Site 1

Step 5:- Create propagation for sending captured messages to Site 2

Step 6:- Instantiate tables at Site 1 by setting the SCN value for the table.

At Site 1 and Site 2
Start Capture and Apply
Sample Scripts
The following is the sample code to configure streams bi-directional replication between two databases located in the same time zone.
Site 1 :- DB_SITE1
Site 2 :- DB_SITE2
Table:-
CREATE TABLE BOSDBO.CUSTOMER
(
 CUST_ID VARCHAR2(10) NOT NULL,
 CUST_ADDR VARCHAR2(10) NULL,
 CUST_ACT_DATE TIMESTAMP(6) NOT NULL,
 REPCONFLICT_TMSTP TIMESTAMP(6) NOT NULL
)
 /
ALTER TABLE BOSDBO.CUSTOMER
 ADD CONSTRAINT CUSTOMER_PK
PRIMARY KEY (CUST_ID)
USING INDEX

/
CREATE OR REPLACE TRIGGER BOSDBO.TRG_CUSTOMER
BEFORE INSERT OR UPDATE
ON BOSDBO.CUSTOMER
REFERENCING OLD AS OLD NEW AS NEW
FOR EACH ROW
###

Assuming all DB SITES are located in same Time Zone

###
BEGIN
:NEW.REPCONFLICT_TMSTP := systimestamp;
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;/

Initial setup
Following four tasks need to be made on both sites DB_SITE1 and DB_SITE2 very first time when you setup streams.
set init.ora parameters on db_site1 & db_site2
· Job_queue_process = 15 (current value + 10)

· Streams_pool_size >= 800M

· Global_names = TRUE

· Compatible = 10.2.0

· Shared_pool >= 800M

· Logmnr_max_persistent_sessions = 5

· Parallel_max_server = 150
Create Tablespace for streams queues on db_site1 & db_site2
CREATE TABLESPACE STREAMS_TS001 DATAFILE ‘/directory/file_name_001.dbf’
Size 1000M

Create strmadmin user and grant streams related privileges on db_site1 & db_site2
CREATE USER STRMADMIN IDENTIFIED BY password

DEFAULT TABLESPACE STREAMS_TS001

TEMPORARY TABLESPACE TEMP;
exec dbms_streams_auth.grant_admin_privilege ('strmadmin',true);
Create database links on both sites for strmadmin on db_site1
connect strmadmin/password@DB_SITE1
CREATE DATABASE LINK DB_SITE2 CONNECT TO STRMADMIN IDENTIFIED BY password USING ' DB_SITE2'

/

Create database links on both sites for strmadmin on db_site2
connect strmadmin/password@DB_SITE2
CREATE DATABASE LINK DB_SITE1 CONNECT TO STRMADMIN IDENTIFIED BY password USING ' DB_SITE1'

/

Configure tables for streams replication
Following tasks are repeated every time you want to configure replication for tables in an environment already setup with streams initial configuration.
Create supplemental logging for tables on db_site1 & db_site2
Connect strmadmin/password

ALTER TABLE BOSDBO.SALES ADD SUPPLEMENTAL LOG GROUP SALES_SL1
(CUST_ID,CUST_ADDR,CUST_ACT_DATE,REPCONFLICT_TMSTP) ALWAYS ;
Create Capture and Apply Queues on both sites on db_site1 & db_site2
###

Create Capture CP_Q_BOSDBO_G1 FOR CAPTURE PROCESS
###
set heading off;

set serveroutput on;
DECLARE

 pool_count number;

BEGIN

select count(*) INTO pool_count from dba_queues where name = 'CP_Q_BOSDBO_G1' ;

IF (pool_count > 0) THEN

BEGIN

 DBMS_OUTPUT.PUT_LINE('Queue Exists');

END;

ELSE

BEGIN

DBMS_STREAMS_ADM.SET_UP_QUEUE(

 queue_table => 'CP_Q_BOSDBO_G1_T',

 queue_name => 'CP_Q_BOSDBO_G1',

 queue_user => 'STRMADMIN');

END;

END IF;

END;

/
###

Create Apply queue AP_Q_BOSDBO_G1 FOR messages from

remote site

###
DECLARE

 pool_count number;

BEGIN

select count(*) INTO pool_count from dba_queues where name = 'AP_Q_BOSDBO_G1' ;

IF (pool_count > 0) THEN

BEGIN

 DBMS_OUTPUT.PUT_LINE('Queue Exists');
END;

ELSE

BEGIN

DBMS_STREAMS_ADM.SET_UP_QUEUE(

 queue_table => 'AP_Q_BOSDBO_G1_T',

 queue_name => 'AP_Q_BOSDBO_G1',

 queue_user => 'STRMADMIN');

END;

END IF;

END;

/

On Site 1

Step 1 :- Create capture process
-- ##

-- DDL for Adding tables to the STREAMS CAPTURE process on DB_SITE1

-- ##

BEGIN

 DBMS_STREAMS_ADM.ADD_TABLE_RULES(

 table_name => 'BOSDBO.SALES',

 streams_type => 'CAPTURE',

 streams_name => 'CP_BOSDBO_G1',

 queue_name => 'STRMADMIN.CP_Q_BOSDBO_G1',

 include_dml => true,

 include_ddl => true,

 source_database => 'DB_SITE1');

END;

/

Step 2 :- Create apply process for applying changes from Site 2

-- ##

-- DDL for Adding tables to the STREAMS APPLY process on DB_SITE1

-- ##

BEGIN

 DBMS_STREAMS_ADM.ADD_TABLE_RULES(

 table_name => 'BOSDBO.SALES',

 streams_type => 'APPLY',

 streams_name => 'AP_FROM_DB_SITE2_BOSDBO_G1',

 queue_name => 'STRMADMIN.AP_Q_BOSDBO_G1',

 include_dml => true,

 include_ddl => true,

 source_database => 'DB_SITE2');

END;

/

Step 3 :- Set apply user for applying changes from Site 2

-- ##

-- DDL for Granting permission to STRMADMIN user as apply user on DB_SITE1

-- ##

BEGIN

 DBMS_APPLY_ADM.ALTER_APPLY(

 apply_name => 'AP_FROM_DB_SITE2_BOSDBO_G1',

 apply_user => 'STRMADMIN');

END;

/

Step 4 :- Set conflict resolution for applying changes from Site 2

-- ###

-- DDL for creating Conflict resolution for table with

-- REPCONFLICT_TMSTP column. Primary Key is not part of the column list

--- with the assumption that no updates are made on Primary key columns

-- ###

DECLARE

cols DBMS_UTILITY.NAME_ARRAY;

BEGIN

cols(1) := 'CUST_ADDR';

cols(2) := 'CUST_ACT_DATE';

cols(3) := 'REPCONFLICT_TMSTP';

DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(

object_name
 => 'BOSDBO.SALES',

method_name
 => 'MAXIMUM',

resolution_column => 'REPCONFLICT_TMSTP',

column_list
 => cols);

END;

/

Step 5:- Create propagation for sending captured messages to Site 1

-- ###

-- DDL for Adding tables to the STREAMS PROPAGATION process on DB_SITE1

-- ###

BEGIN

 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(

 table_name => 'BOSDBO.SALES',

 streams_name => 'PR_DB_SITE1_DB_SITE2_BOSDBO_G1',

 source_queue_name => 'STRMADMIN.CP_Q_BOSDBO_G1',

 destination_queue_name => 'STRMADMIN.AP_Q_BOSDBO_G1@DB_SITE2',

 include_dml => true,

 include_ddl => true,

 source_database => 'DB_SITE1',

 queue_to_queue => true);

END;

/

Step 6:- Instantiate tables at Site 2 by setting the SCN value for the table.

-- ###

-- DDL for INSTANTIATING tables on DB_SITE2 from DB_SITE1

-- ###

exec dbms_output.put_line('Table:- BOSDBO.SALES');

DECLARE iscn NUMBER;

BEGIN

 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();

 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@DB_SITE2(

 source_object_name => 'BOSDBO.SALES',

 source_database_name => 'DB_SITE1',

 instantiation_scn => iscn);

END;

/

commit;

-- /**/

-- /* DDL for INSTANTIATION of tables */

-- /* This needs to run on the source site if you notice */

-- /* following error at the Destination alertlog */

-- /* MISSING Streams multi-version data dictionary */

-- /** */

exec dbms_output.put_line('Table:- BOSDBO.SALES');

BEGIN

DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(table_name => 'BOSDBO.SALES');

END;

/

On Site 2
Step 1 :- Create capture process
-- ##

-- DDL for Adding tables to the STREAMS CAPTURE process on DB_SITE2

-- ##

BEGIN

 DBMS_STREAMS_ADM.ADD_TABLE_RULES(

 table_name => 'BOSDBO.SALES',

 streams_type => 'CAPTURE',

 streams_name => 'CP_BOSDBO_G1',

 queue_name => 'STRMADMIN.CP_Q_BOSDBO_G1',

 include_dml => true,

 include_ddl => true,

 source_database => 'DB_SITE2');

END;

/

Step 2 :- Create apply process for applying changes from Site 1

-- ##

-- DDL for Adding tables to the STREAMS APPLY process on DB_SITE2

-- ##

BEGIN

 DBMS_STREAMS_ADM.ADD_TABLE_RULES(

 table_name => 'BOSDBO.SALES',

 streams_type => 'APPLY',

 streams_name => 'AP_FROM_DB_SITE1_BOSDBO_G1',

 queue_name => 'STRMADMIN.AP_Q_BOSDBO_G1',

 include_dml => true,

 include_ddl => true,

 source_database => 'DB_SITE1');

END;

/

Step 3 :- Set apply user for applying changes from Site 1

-- ##

-- DDL for Granting permission to STRMADMIN user as apply user on DB_SITE2

-- ##

BEGIN

 DBMS_APPLY_ADM.ALTER_APPLY(

 apply_name => 'AP_FROM_DB_SITE1_BOSDBO_G1',

 apply_user => 'STRMADMIN');

END;

/

Step 4 :- Set conflict resolution for applying changes from Site 1

-- ###

-- DDL for creating Conflict resolution for table with

-- REPCONFLICT_TMSTP column. Primary Key is not part of the column list

--- with the assumption that no updates are made on Primary key columns

-- ###

DECLARE

cols DBMS_UTILITY.NAME_ARRAY;

BEGIN

cols(1) := 'CUST_ADDR';

cols(2) := 'CUST_ACT_DATE';

cols(3) := 'REPCONFLICT_TMSTP';

DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(

object_name
 => 'BOSDBO.SALES',

method_name
 => 'MAXIMUM',

resolution_column => 'REPCONFLICT_TMSTP',

column_list
 => cols);

END;

/

Step 5:- Create propagation for sending captured messages to Site 2

-- ###

-- DDL for Adding tables to the STREAMS PROPAGATION process on DB_SITE2

-- ###

BEGIN

 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(

 table_name => 'BOSDBO.SALES',

 streams_name => 'PR_DB_SITE2_DB_SITE1_BOSDBO_G1',

 source_queue_name => 'STRMADMIN.CP_Q_BOSDBO_G1',

 destination_queue_name => 'STRMADMIN.AP_Q_BOSDBO_G1@DB_SITE1',

 include_dml => true,

 include_ddl => true,

 source_database => 'DB_SITE2');

END;

/

Step 6:- Instantiate tables at Site 1 by setting the SCN value for the table.

-- ###

-- DDL for INSTANTIATING tables on DB_SITE1 from DB_SITE2

-- ###

DECLARE iscn NUMBER;

BEGIN

 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();

 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@DB_SITE1(

 source_object_name => 'BOSDBO.SALES',

 source_database_name => 'DB_SITE2',

 instantiation_scn => iscn);

END;

/

commit;

-- /**/

-- /* DDL for INSTANTIATION of tables */

-- /* This needs to run on the source site if you notice */

-- /* following error at the Destination alertlog */

-- /* MISSING Streams multi-version data dictionary */

-- /** */

exec dbms_output.put_line('Table:- BOSDBO.SALES');

BEGIN

DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(table_name => 'BOSDBO.SALES');

END;

/

At Site 1

Start Capture and Apply

-- ***

-- Script for Starting Capture process on DB_SITE1

-- ***

set heading off;

set serveroutput on;

DECLARE

 capt_stat varchar2(20);

BEGIN

 select status INTO capt_stat from dba_capture where capture_name = 'CP_BOSDBO_G1';

 IF (capt_stat != 'ENABLED') THEN

 BEGIN

 DBMS_CAPTURE_ADM.START_CAPTURE (capture_name => 'CP_BOSDBO_G1');

 END;

 ELSE

 BEGIN

 DBMS_OUTPUT.PUT_LINE('Capture Status is :- '||capt_stat);

 END;

 END IF;

END;

/

begin

DBMS_APPLY_ADM.SET_PARAMETER(

apply_name => 'AP_FROM_DB_SITE2_BOSDBO_G1',

parameter => 'disable_on_error',

value => 'N');

END;

/

DECLARE

 apply_stat varchar2(20);

BEGIN

 select status INTO apply_stat from dba_apply where apply_name='AP_FROM_DB_SITE2_BOSDBO_G1';

 IF (apply_stat != 'ENABLED') THEN
 BEGIN

 DBMS_APPLY_ADM.START_APPLY(apply_name => 'AP_FROM_DB_SITE2_BOSDBO_G1');

 END;

 ELSE

 BEGIN

 DBMS_OUTPUT.PUT_LINE('Apply Status is :- '||apply_stat);

 END;

 END IF;

END;

/

At Site 2

Start Capture and Apply

-- ***

-- Script for Starting Capture process on DB_SITE2

-- ***

set heading off;

set serveroutput on;

DECLARE

 capt_stat varchar2(20);

BEGIN

 select status INTO capt_stat from dba_capture where capture_name = 'CP_BOSDBO_G1';

 IF (capt_stat != 'ENABLED') THEN

 BEGIN

 DBMS_CAPTURE_ADM.START_CAPTURE (capture_name => 'CP_BOSDBO_G1');

 END;

 ELSE

 BEGIN

 DBMS_OUTPUT.PUT_LINE('Capture Status is :- '||capt_stat);

 END;

 END IF;

END;

/

begin

DBMS_APPLY_ADM.SET_PARAMETER(

apply_name => 'AP_FROM_DB_SITE1_BOSDBO_G1',

parameter => 'disable_on_error',

value => 'N');

END;

/

DECLARE

 apply_stat varchar2(20);

BEGIN

 select status INTO apply_stat from dba_apply where apply_name='AP_FROM_DB_SITE1_BOSDBO_G1';

 IF (apply_stat != 'ENABLED') THEN

 BEGIN

 DBMS_APPLY_ADM.START_APPLY(apply_name => 'AP_FROM_DB_SITE1_BOSDBO_G1');

 END;

 ELSE

 BEGIN

 DBMS_OUTPUT.PUT_LINE('Apply Status is :- '||apply_stat);

 END;

 END IF;

END;

/
Modify Capture and Apply parameters on both sites

Connect strmadmin/password

exec DBMS_CAPTURE_ADM.SET_PARAMETER('CP_BOSDBO_G1'','_CHECKPOINT_FREQUENCY’,1);

exec DBMS_CAPTURE_ADM.SET_PARAMETER('CP_BOSDBO_G1'','_SGA_SIZE’,30);

Connect strmadmin/password@DB_SITE1
exec DBMS_APPLY_ADM.SET_PARAMETER('AP_FROM_DB_SITE2_BOSDBO_G1','disable_on_error','N');

Connect strmadmin/password@DB_SITE2

exec DBMS_APPLY_ADM.SET_PARAMETER('AP_FROM_DB_SITE1_BOSDBO_G1','disable_on_error','N');

Verify Streams Replication

Select * from dba_capture, dba_apply, dba_propagation and make sure that status is ENABLED.

Check if there are any errors reported in alert log file or any trace files for capture, apply or propagation. Test replication by applying DDL or DML changes to the table on both sites. Create a new table called ‘REP_HEART_BEAT’ and add to replication using same procedure. Implement a dbms_job to update heart beat table every 2 minutes

Create Heart beat Table on both sites

CREATE TABLE BOSDBO.REP_HEART_BEAT_G1 (REP_SITE_ID VARCHAR2(10) NOT NULL,

 REP_DATE TIMESTAMP(6) NOT NULL,

 REPCONFLICT_TMSTP TIMESTAMP(6) NULL)

/

ALTER TABLE BOSDBO.REP_HEART_BEAT_G1 ADD CONSTRAINT REP_HEART_PK PRIMARY KEY (REP_SITE_ID) USING INDEX;

CREATE OR REPLACE TRIGGER BOSDBO.TRG_REP_HEART_BEAT_G1

BEFORE INSERT OR UPDATE ON BOSDBO.REP_HEART_BEAT_G1

REFERENCING OLD AS OLD NEW AS NEW FOR EACH ROW

BEGIN

:NEW.REPCONFLICT_TMSTP := systimestamp;

EXCEPTION

 WHEN OTHERS THEN

 RAISE;

END;

Configure bi-directional replication for heart beat table

Verify Streams configuration and insert a record

INSERT INTO BOSDBO.REP_HEART_BEAT_G1 (REP_SITE_ID, REP_DATE) VALUES (‘DB_SITE1’,systimestamp);

INSERT INTO BOSDBO.REP_HEART_BEAT_G1 (REP_SITE_ID, REP_DATE) VALUES (‘DB_SITE2’,systimestamp);

commit;

Configure DBMS job on both sites to run every 1 minute

Var jobnum number; begin

 DBMS_JOB.SUBMIT(:jobnum,'update BOSDBO.REP_HEART_BEAT_G1 set REP_DATE=systimestamp where REP_SITE_ID='‘DB_SITE1'';commit;',

 sysdate,'/*1 Mts*/ sysdate + 1/(60*24)');

 commit;

end;

Var jobnum number;

begin

 DBMS_JOB.SUBMIT(:jobnum,'update BOSDBO.REP_HEART_BEAT_G1 set REP_DATE=systimestamp where REP_SITE_ID='‘DB_SITE2'';commit;',

 sysdate,'/*1 Mts*/ sysdate + 1/(60*24)');

 commit;

end;

Recommended patches on top of 10.2.0.3

	Bug Number
	Description
	Comment

	6081550
	Tracking Bug for Inventory of Data Guard Logminer/Logical Standby for 10.2.0.3
	Includes fixes for Streams capture also

	6081547
	Tracking Bug for Inventory of Data Guard Physical Standby for 10.2.0.3
	Includes bug 5399901 (archived logs can take a long time to search [control file])

	6267873
	MLR for Streams/Logmnr bugs 6017440, 6067600,6064864
	Install 6081550 first, then remove patch for 6067600 and apply patch 6267873

	6043052
	Leak in Perm Allocations with library cache comments ora-4031 generated
	

	5093060
	Streams: 5000 LCR Limit is causing unnecessary flow control at apply site
	

	5623403
	INVALID DATA TYPE FOR COLUMN MALFORMED REDO IN STREAMS CAPTURE
	

	5640593
	STREAMS ORA-00600 [KWQBMCRCPTS101] WHILE SPILLING MESSAGES (RECREATE PROP)
	Merge patch 6164764 has this fix

	5857313
	ORA-600 [KWQBMCRCPTS101] AFTER DROP PROPAGATION
	

	6375952
	MERGE LABEL REQUEST ON TOP OF 10.2.0.3 FOR BUGS 6163622 6067611 (SQL APPLY DEGRADES WITH LARGER TRANSACTIONS)
	

	5584105
	ORA-00001 UNIQUE CONSTRAINT (SYS.I_STREAMS_APPLY_SPILL_TXN)
	

	5575674
	CAPTURE _IGNORE_TRANSACTION PARAMETER HANDLES ROLLED BACK TXN INCORRECTLY
	

	5370578
	CAPTURE PROCESS SLOW ON STARTUP ON 'CONTROL FILE SEQUENTIAL READ'
	

	5602452
	STREAMS RECOVERY WITH RMAN/ASM - CAPTURE STUCK IN 'DICTIONARY INITIALIZATION'
	

	4719848
	DELETE_ERROR DOES NOT MAINTAIN AQ$_QTABLE_I
	

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

Step 8 – Start APPLY

Step 7 – Start CAPTURE

INITIAL SETUP on DB2

Step 8 – Start APPLY

Step 7 – Start CAPTURE

Step 6 – INSTANTIATE table

Step 5 – Create PROPAGATION/add table

Step 4 – Set Conflict resolution for table

Step 3 – Set APPLY User

Step 2 – Create APPLY/add table

Step1 – Create CAPTURE/add table

Create CAPTURE QUEUE and APPLY QUEUE

Step 6 – INSTANTIATE table

Step 5 – Create PROPAGATION/add table

Step 4 – Set Conflict resolution for table

Step 3 – Set APPLY User

Step 2 – Create APPLY/add table

Step1 – Create CAPTURE/add table

Create CAPTURE QUEUE and APPLY QUEUE

INITIAL SETUP on DB1

1

 Paper 326

[image: image7.emf]STEP8

START APPLY ON

DB2

[image: image8.emf]STEP7

START CAPTURE

ON DB1

[image: image9.emf]STEP5/6

INSTANTIATE

OBJECT AT DB1

[image: image10.emf]STEP4

CREATE

PROPAGATION ON

DB1

[image: image11.emf]STEP3_1

CREATE CONFLICT

RESOLUTION ON

DB2

[image: image12.emf]STEP3

SET APPLY USER

AT

DB2

[image: image13.emf]STEP2

CREATE APPLY AT

DB2

[image: image14.emf]STEP1

CREATE CAPTURE

ON DB1

[image: image15.emf]CREATE APPLY

QUEUE ON DB2

[image: image16.emf]CREATE CAPTURE

QUEUE ON DB1

[image: image17.emf]INITIAL SETUP

ON DB1 & DB2

[image: image18.emf]INITIAL SETUP

ON DB1 & DB2

[image: image19.emf]CREATE CAPTURE

QUEUE ON DB1

[image: image20.emf]CREATE APPLY

QUEUE ON DB2

[image: image21.emf]STEP1

CREATE CAPTURE

ON DB1

[image: image22.emf]STEP2

CREATE APPLY AT

DB2

[image: image23.emf]STEP3

SET APPLY USER

AT

DB2

[image: image24.emf]STEP3_1

CREATE CONFLICT

RESOLUTION ON

DB2

[image: image25.emf]STEP4

CREATE

PROPAGATION ON

DB1

[image: image26.emf]STEP5/6

INSTANTIATE

OBJECT AT DB1

[image: image27.emf]STEP7

START CAPTURE

ON DB1

_1202827400.vsd
User Changes

User Changes

Schemas
A1, A2..An
Tables

Redo Log

Capture for Schemas
 A1,A2..An

Capture
queue

Propagation
for Schema A1

Capture for Schemas
B1,B2..Bn

Capture
queue

Schemas B1,B2..Bn
Tables

Apply
queue

Apply
 for Schema A1

Schemas
A1 Tables

Propagation
for Schema B1

Apply
queue

Apply
 for Schema B1

Schemas
B1 Tables

SITE1

SITE2

DB1

Propagation
for Schema A2

Apply
queue

Apply
 for Schema A2

Schemas
A2 Tables

Propagation
for Schema An

Apply
queue

Apply
 for Schema An

Schemas
An Tables

Propagation
for Schema B2

Apply
queue

Apply
 for Schema B2

Schemas
B2 Tables

Propagation
for Schema Bn

Apply
queue

Apply
 for Schema Bn

Schemas
Bn Tables

_1264934387.vsd
STEP4

CREATE PROPAGATION ON DB1

_1264934389.vsd
STEP7

START CAPTURE ON DB1

_1264934390.vsd
STEP8

START APPLY ON
DB2

_1264934388.vsd
STEP5/6

INSTANTIATE OBJECT AT DB1

_1264934385.vsd
STEP3

SET APPLY USER AT
DB2

_1264934386.vsd
STEP3_1

CREATE CONFLICT RESOLUTION ON
DB2

_1264934383.vsd
STEP1

CREATE CAPTURE ON DB1

_1264934384.vsd
STEP2

CREATE APPLY AT DB2

_1264934381.vsd
CREATE CAPTURE QUEUE ON DB1

_1264934382.vsd
CREATE APPLY QUEUE ON DB2

_1264934380.vsd
INITIAL SETUP
ON DB1 & DB2

_1202821531.vsd
Capture Process

Capture
queue

Apply
queue

Apply Process

Tables
A1,A2..An
B1,B2..Bn

SITE1

Tables
schema
A1, A2..An
B1,B2..Bn

Redo Log

Propagation

DB1

DB2

User Changes

SITE2

_1202821565.vsd
Capture
for Schemas
B1,B2..Bn

Capture
for Schemas
A1, A2..An

Capture
queue

Apply
queue

Apply
 for Schemas
A1,A2..An

Schemas
A1, A2..An
Tables

Propagation
For Schemas
A1,A2..An

Capture
queue

Apply
queue

Apply
 for Schemas
B1,B2..Bn

Schemas
B1,B2..Bn
Tables

Schemas B1,B2..Bn
Tables

User Changes

Propagation
For Schemas
B1,B2..Bn

SITE1

Schemas
A1, A2..An
Tables

Redo Log

SITE2

DB1

DB2

User Changes

_1202815270.vsd
Capture Process

Capture
queue

Propagation

Apply Process

Propagation

Apply
queue

Apply Process

Tables

Redo Log

SITE1

Capture Process

Capture
queue

Apply
queue

Tables

Redo Log

User Changes

User Changes

SITE2

DB2

DB1

