Flash with Flex and OpenLaszlo

Add Some Flash to Your Oracle DB Applications: Flex and OpenLaszlo
Dustin Marx, Raytheon Company
William Jackson, Raytheon Company

Michael Martin, Raytheon Company
The Challenges of Web Development
Several key characteristics of the technologies employed by the typical web application have made the development of highly interactive and fluid web applications more difficult than developing similarly interactive non-web applications. In this paper and the associated presentation, we will demonstrate how the Flash runtime environment overcomes many of the limitations that are inherent in the traditional web application technologies.
The Stateless Nature of HTTP

Web applications are generally built on top of the HyperText Transfer Protocol (HTTP). HTTP is a connectionless and stateless protocol and offers some advantages associated with its stateless nature. The web was originally used for scientific and engineering organizations to post large amounts of data on the web that would be centrally available for people needing the information. For this type of use, connectionless HTTP and static HTML were sufficient. However, HTTP’s stateless nature makes it more difficult to build non-static web applications that rely on state and feature user interactivity. Java EE, known at the time as J2EE, introduced the servlet model to help alleviate the problems associated with HTTP’s stateless nature and several other technological approaches deal similarly with HTTP’s stateless nature.

The Static Nature of HTML

Because the original web pages tended to be large amounts of text meant primarily to be read by people in diverse locations with little interest in the readers’ feedback on interaction, static HTML was sufficient for many web sites. Many of the earliest web sites, even for retailers and vendors, simply listed alternative contact information such as an address and telephone number. However, as the web moved from a collection of web sites to a collection of web applications, more dynamic interaction was desired. HTML does not support this type of interaction and JavaScript quickly rose to fill this need. JavaScript and other ECMAScript implementations provide a mechanism for users to interact with the web browser above and beyond simple clicking of HTML buttons and links.

Traditional Web Applications (Before Ajax): Painfully Obvious Request-Response Paradigm

While Java servlets and similar technologies have helped web developers to add state to their web applications, traditional web applications have still suffered from being largely based on a request-response paradigm. Anyone using a traditional web application would fill out a form, click a button, or click on a link to indicate that he or she wanted to do something. That user’s command would trigger a request to the server to implement some appropriate business logic and a response would then be sent back to the web browser and rendered on the browser for the user. As web users, we all became accustomed to clicking on a “Submit” button and waiting for a new page to load on our browser based on whatever data we submitted.

The Rush to Ajax

Many users and developers of web applications got used to the notion of the request-response paradigm in web applications and resigned themselves to the idea that web applications would never come close to the richness and highly interactive nature of non-web applications. However, expectations were changed when Google began delivering highly fluid web applications to users around the world. When Jesse James Garrett of Adaptive Path wrote the article “Ajax: A New Approach to Web Applications” (http://adaptivepath.com/ideas/essays/archives/000385.php), he helped many in the web development world understand the technologies underlying the new level of dynamic behavior in Google’s recently released applications.

The web development community had generally been applying the technologies underlying the Ajax concept for some time when the Garrett article was published. The key new ingredient, however, was the use of a mechanism for web applications to covertly and asynchronously communicate with the server on the back-end. Whereas most web applications had previously made it very obvious to the user when communication with the server was taking place by locking the screen and then refreshing the screen when the server’s response was received, the covert and asynchronous nature of the client-server communication made it possible for communication to occur without it being obvious to the person using the web application.

The asynchronous communication between web browser and server could be accomplished with mechanisms such as the IFRAME, but it was the XMLHttpRequest object that was the darling of early Ajax development. Microsoft first introduced this object in its Internet Explorer web browser and other web browsers soon followed when the usability of this mechanism for asynchronous communication with the server was realized.

The Problem of the Standards Implementation

The coining of the term “Ajax,” coupled with real-world examples of Ajax provided by Google, led a revolution in web application development. Web developers and users of web applications began to expect more from web applications. The ability to have the web browser communicate asynchronously with the server made highly dynamic and fluid web applications possible. The downside to Ajax, however, lies in its underlying technologies. Ajax is not itself a technology. Rather, Ajax applications are typically implemented with a mix of HTML/XTML, Cascading Style Sheets (CSS), HTTP, JavaScript (or other ECMAScript implementation), Document Object Model (DOM), and often XML or JavaScript Object Notation (JSON). While HTML/XHTML, CSS, and ECMAScript are all standard specifications, the problem is that the implementations of these standards are not as standard-compliant as we would like. A standard is really only as good as the degree of standardization across its implementations. Unfortunately, web developers have suffered poor standards compliance among major web browsers for many years and there are still large discrepancies in standards compliance across major browsers for the DOM, CSS, and ECMAScript standards.
The large number of frameworks, libraries, and toolkits available for JavaScript and Ajax development are evidence of the difficulties associated with these browser idiosyncrasies. Other evidence of the difficulty associated with web browser implementation differences is found in the many web sites and applications that still state a certain version of a certain web browser is required to use that site or application. Browser idiosyncrasies mean more time consuming development to ensure that all major browser cases are covered and more time to test developed applications across the different web browsers. Different browser vendors, different versions of a web browser by a different vendor, and versions of the same browser for different operating systems have always been “opportunities” for browser idiosyncrasies to sneak in and bite web developers.
Not only do some of the major web browsers fail to incorporate all requirements in the specifications, but they also contribute to non-standard behavior by supplying and promoting their own significant features beyond what the specification mandates. In fact, key components of many Ajax-based applications (such as XMLHttpRequest and innerHTML) are not even in any of the standard specifications and are browser implementations outside the specifications. The good news is that these tend to be de facto standards implemented by all major browsers.

While the Ajax concept brought badly needed “richness” and interactivity to web application development, it did not free the web developer from the browser implementation idiosyncrasies. In fact, it could be argued that Ajax revived interest in using JavaScript and other web technologies and thus actually made the problem of browser inconsistencies even more apparent to web developers.

Flash to the Rescue

Because the most difficult part of web development continues to be the presence of significant differences in the major browsers’ implementations of web-related “standards,” one of the most obvious ways to make the typical web developer’s life easier is to simply remove the need to deal with the browsers and their idiosyncrasies directly. This is exactly what Adobe’s Flash web runtime does. The Adobe Flash runtime can be thought of as an abstraction layer on top of the modern web browsers that “hides” browser idiosyncrasies from the web developer. The Adobe developers working on Flash get to worry about making their runtime run the same across different browsers, different versions of the same browser, and browsers running on different operating systems. The rest of us can then concentrate on developing to a single web runtime environment and spend far less time worried about handling browser differences. While it is still a wise idea to test against the major browsers, there will be generally be far fewer issues discovered in this testing because the Flash environment will have already handled the common issues that surprise web developers.
The Flash Player provides support for easy state management in the web application and also provides easy asynchronous communication with the server. In other words, Flash provides the advantages of modern web development environments and of Ajax, but at much less effort than using those technologies directly. Frameworks and libraries make Ajax development easier, but it still our experience and opinion that Flash development with Flex or OpenLaszlo tends to be easier than Ajax development, even with a framework. This seems to be especially true for developers more familiar with Java than with JavaScript.
The Ubiquity of the Flash Player

Because the goal of most web applications is to support as many diverse and scattered users as possible, any useful web runtime would need to be available on most users’ computers. Flash is a highly ubiquitous web runtime environment that is freely available to web users and is present on the vast majority of web users’ machines. The Adobe Flash web site lists the market penetration of its Flash Player at http://www.adobe.com/products/player_census/flashplayer/. Even the newest version of the Flash Player (Flash Player 9) had over 95% market penetration on internet-connected desktops in “mature markets” as of December 2007 (http://www.adobe.com/products/player_census/flashplayer/version_penetration.html).
Flash Player’s Support of Interactivity and Rich Internet Applications

Because the Flash Player has been traditionally used for executing moving imagery, it should not be surprising that one of its key strengths is its support for highly fluid, rich internet applications. The Flash Player is well positioned for the rising popularity of Rich Internet Applications (RIAs).
The Flash Player is so well-known for its movies and visual effects that many of us did not even consider it for enterprise web applications of a “serious” nature. Other obstacles preventing web developers from adopting Flash as a target runtime environment included licensing costs of products used to generate Flash content and concern about the proprietary nature of Flash. However, several recent developments have mitigated these obstacles. Adobe has made Flex available as a freely available SDK for developing Flash applications and Laszlo Systems released OpenLaszlo at no cost for the same purpose. As its name implies, OpenLaszlo is open source and Adobe announced the open sourcing of Flex as well. Both Flex and OpenLaszlo employ syntax and concepts that are targeted at more traditional “programmers,” especially those familiar with Java and similar languages. Most of the remainder of this paper will focus on how Flex and OpenLaszlo make development to the Flash runtime easier for developers not familiar with Flash development.

Flash and Oracle

Flash is a particularly attractive option for users of Oracle products because Oracle Corporation itself has started employing Flash in many of its applications. James Ward, a self-proclaimed “RIA Cowboy” (http://www.jamesward.org/wordpress/), has a seven-part series on Oracle’s use of Flash as seen at OracleWorld 2007. All seven blog entries on Oracle’s use of Flash have titles beginning with the phrase “Oracle Chooses Flex.”

Flash and Java EE

Many traditional Java developers are recognizing the advantages of using Flash on the client side with Java EE on the back end. These people include Bruce Eckel (http://www.artima.com/weblogs/viewpost.jsp?thread=193593), Yakov Fain (http://java.sys-con.com/read/299251.htm), and the authors of this paper and associated presentation (http://marxsoftware.blogspot.com/2007/11/flash-web-environment-continues-to-look.html). Mark Eagle wrote about the usefulness of Flash+Enterprise Java back in late 2004 (when it was Macromedia Flex rather than Adobe Flex and J2EE rather than JEE) in the article “Integrating Macromedia Flex with Java” (http://www.onjava.com/pub/a/onjava/2004/12/01/flexjava.html). See Adobe’s “Flex and Java” site for other valuable resources on using Flex (and by extension, Flash) with Java EE.
Flex 2 and Flex 3
Adobe’s Flex 2 and Flex 3 (http://www.adobe.com/products/flex/) are versions of a development framework for development of Rich Internet Applications (RIAs) hosted on a Flash Player runtime in the major web browsers on major operating systems. The basic Flex 2 SDK and Flex 3 SDK are both available free of charge and additional optional components are available for a licensing fee. Flex 3 is also open source. FlexBuilder is an Eclipse-based IDE that can also be purchased for Flex development, but is not required to develop with Flex. However, FlexBuilder 3 includes advanced charting, data integration beyond BlazeDS, and additional components not included in the freely available Flex 3 SDK. This paper’s sections on Flex will primarily focus on building Flex-based Flash applications with the freely available Flex components, though there will be brief mention of some of the optional products available for a fee. Likewise, the associated presentation will similarly focus on the freely available Flex SDK and components. Applications built with Flex 2 or Flex 3 require Flash Player 9 to run the generated Flash application.
Note that this document and the associated presentation discuss both Flex 2 and Flex 3 because Flex 3 was only relatively recently released (on 25 February 2008). However, code samples and other examples built on Flex 2 will typically work on Flex 3 as well. In fact, a large portion of the Flex 3 advancements are to FlexBuilder 3 rather than to the SDK itself. Perhaps the most significant advancements in Flex 3 for users of the free SDK are its open source nature, the supported Flash Player caching, support for Adobe AIR (Adobe Integrated Runtime), and the included Flex Ajax Bridge Library.
MXML
The view portion of a Flex-based application is typically written in a specific Flex XML flavor called MXML (probably originally named for “Macromedia XML”). An MXML file consists of well-formed XML with certain XML tags expected by the Flex compiler. There is no W3C XML Schema for MXML files. Instead, Flex developers learn which tags are available or else use FlexBuilder to automatically make tags available. The Flex 2 Language Reference (http://livedocs.adobe.com/flex/201/langref/index.html) and Flex 3 Language Reference (http://livedocs.adobe.com/labs/flex3/langref/) are especially useful for determining supplied MXML tags. In addition, custom MXML tags can be created (this is a primary reason that there is no XML Schema validation for MXML) and used.

Each MXML tag has a corresponding ActionScript class associated with that MXML tag. In addition, ActionScript can be embedded directly within an MXML document in several different ways. ActionScript is discussed in greater detail in the next section of this paper.

MXML Example

The next code listing shows an example of MXML. Note that it is 100% well-formed XML.

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

 width="750" height="500">
 <mx:Resize id="enlarge" target="{mainLabel}" widthTo="450" heightTo="200"/>
 <mx:Resize id="shrink" target="{mainLabel}" widthTo="250" heightTo="100"/>
 <mx:Panel id="MainPanel" title="Collaborate08 Paper Flex MXML Example"

 backgroundColor="{colorPickerPanelBG.selectedColor}">
 <mx:Label id="mainLabel"

 text="This is a very simple example."

 width="200" height="25"

 color="{colorPickerLabelColor.selectedColor}"

 rollOverEffect="enlarge"

 rollOutEffect="shrink" />
 <mx:Label text="Welcome to Denver, Colorado!"

 color="{colorPickerLabelColor.selectedColor}" />

 <mx:Label text="Dimensions of Main Label: {mainLabel.width}x{mainLabel.height}"

 color="{colorPickerLabelColor.selectedColor}" />
 <mx:VDividedBox>

 <mx:HBox>

 <mx:ColorPicker id="colorPickerPanelBG"

 showTextField="true"

 selectedColor="0xFFFFFF" />

 <mx:Label text="Panel Background Color"

 color="{colorPickerLabelColor.selectedColor}" />
 </mx:HBox>

 <mx:HBox>

 <mx:ColorPicker id="colorPickerLabelColor"

 showTextField="false"

 selectedColor="0x000000" />

 <mx:Label text="Label Text Font Color"

 color="{colorPickerLabelColor.selectedColor}" />
 </mx:HBox>

 </mx:VDividedBox>

 </mx:Panel>

</mx:Application>

When the above example (called Paper1.mxml) is compiled using the “mxmlc” compiler, the result is a Flash-ready .swf file with the same name (Paper1.swf). The next two screen shots show what the resulting application looks like in the web browser. Two images are employed to show the application because it is a dynamic application that takes advantage of Flash’s dynamic environment. Even this simple application is more impressive in a real application rather than in screen shots because of the fluid states between the two end states shown in these images.

[image: image1.png]
Figure 1 – Paper1.swf on Initial Loading in Flash Player Within Web Browser

[image: image2.png]
Figure 2 – Paper1.swf Application after Mouse Cursor Placed Over Main Label and Different Background/Text Colors Selected

The very small amount of code shown in the MXML listing demonstrated several key features of Flex and specifically of MXML. One of Flex’s provided components, ColorPicker, is demonstrated in this code. A Flash effect made available via Flex and MXML, the Resize effect, is also demonstrated in this code example. The resize effect is used twice in the code, both times in response to event handling. The MXML example demonstrates use of several containers and layout mechanisms such as Panel, HBox (horizontal box), and VDividedBox.

Finally, the MXML example also demonstrates the power of property binding in Flex. The color of the text of each label is tied to the color selected with the bottom color picker and the color of the panel’s background is tied to the color selected in the top color picker. The automatic updating of the text color or background color whenever a color is selected from the appropriate color picker is easily handled by using the curly brace syntax to designate such binding. Similar property binding is employed to display the dimensions of the changing main label’s size. This binding is such a powerful technique that there is a Java Specification Request (JSR) for adding similar functionality to Java (JSR 295 – Beans Binding).
ActionScript

ActionScript 3.0 is an implementation of ECMAScript. Because JavaScript is the ECMAScript implementation commonly associated with non-Microsoft web browsers and JScript is the ECMAScript implementation associated with Microsoft Internet Explorer, ActionScript has many similarities to the JavaScript used by web developers directly targeting these browsers. That being stated, it is important to realize that ActionScript 3.0 is an implementation of the work-in-progress ECMAScript Edition 4 while the JavaScript and Jscript implementations are targeted at Edition 3 of ECMAScript.

The primary disadvantage of ActionScript 3.0’s ECMAScript Edition 4 implementation is that this particular version of the specification is not finalized. There are many advantages associated with ActionScript 3.0’s implementation of Edition 4. These advantages include the addition of static type checking and true class-based object orientation. While ActionScript 3.0 maintains support for its dynamic typing and prototype-based object orientation for those who prefer them, the addition of class-based object orientation and static type checking is a huge benefit for large projects with many developers experienced in Java, C++, C#, or other class-based and statically typed object-oriented languages.

Every MXML tag can be traced to an underlying ActionScript class. However, not every ActionScript class has an MXML tag equivalent. For example, ActionScript predates Flex and MXML, so there are many ActionScript classes in the Flash library (flash.* packages) and none of them have MXML tag equivalents. Even some of the ActionScript classes in the Flex library (mx.* packages) do not have MXML tag counterparts.

There are situations when it is more appropriate to include ActionScript in the Flex application rather than MXML code. One of the easiest differentiators is use of the code. For presentation or view oriented code, MXML syntax is often preferred for easy HMI layout structure. For business logic and event handling, ActionScript is usually the preferred type of code. Also, as explained previously, there is some functionality in the Flash and even in the Flex libraries that is available only in ActionScript classes.

ActionScript Example
ActionScript is often used in Flex in conjunction with MXML code. The ActionScript might be used in association with MXML code for event handling or for other supportive roles that add additional dynamic logic to the application. The next code listing is a simple MXML file (Paper2.mxml) that includes an ActionScript function that is used as an event handler. This example also demonstrates building a form with MXML and demonstrates use of global ActionScript functions parseInt() and String(). The <mx:Script></mx:Script> tags enclose the ActionScript code.
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

 width="750" height="500">
 <mx:Script>

 public function calculateProduct():void

 {

 const product:int = parseInt(firstNumber.text) * parseInt(secondNumber.text);

 resultProduct.text = String(product);

 }

 </mx:Script>

 <mx:Panel id="MainPanel" title="Collaborate08 Flex MXML/ActionScript Example">

 <mx:Form width="100%" height="100%">
 <mx:FormItem label="First Number">
 <mx:TextInput id="firstNumber" change="calculateProduct();" />
 </mx:FormItem>

 <mx:FormItem label="Second Number">
 <mx:TextInput id="secondNumber" change="calculateProduct();" />
 </mx:FormItem>

 <mx:FormItem label="result">
 <mx:Label id="resultProduct" text="Product to Go Here!" />
 </mx:FormItem>

 </mx:Form>

 </mx:Panel>

</mx:Application>

Two screen snapshots showing this compiled application (Paper2.swf) running in a Flash Player within a web browser are shown next. They indicate the starting point and a later point in the application’s lifecycle.

[image: image3.png]
Figure 3 – Initial Loading of Paper2.swf in Flash Player in Web Browser

[image: image4.png]
Figure 4 – Paper2.swf Flash Application Showing Product Calculation Performed
Flex Components

One of Flex’s most compelling advantages is its rich set of pre-built components. In fact, the standard Flex components provide a glimpse of what many alternative and competing technologies want to provide in the future. The easiest way to both learn which Flex components are available and how to use them is to use the Flash-based Flex Component Explorer (http://examples.adobe.com/flex2/inproduct/sdk/explorer/explorer.html). The Flash-based application renders the various standard available components along with sample MXML text using the components. What makes these examples particularly interesting and useful is that the example code generates the very components displayed in the application and allows real time dynamic use of the adjustable components. If you wish to convince yourself or others of the value of Flex, try out this Component Explorer and look at the accompanying code to see how simple it is to apply Flex’s standard components.

There are too many Flex components to list, but some of the most useful components include the containers (TabNavigator, Panel, HBox, VBox, Accordion, etc.); a wide variety of text controls; multiple styles of menu controls and buttons controls; and general components such as ComboBox, DataGrid, and Alert. In the MXML example above, the ColorPicker component was demonstrated.
One of the most popular Flex components is the DataGrid and an example of using a DataGrid in Flex code (note it is all MXML) is shown next.

 <mx:DataGrid id="employeesGrid"

 dataProvider="{requestEmployees.lastResult.Employees.Employee}"

 toolTip="Employees Information">
 <mx:columns>

 <mx:DataGridColumn dataField="employee_id" headerText="ID" />
 <mx:DataGridColumn dataField="last_name" headerText="Last Name" />
 <mx:DataGridColumn dataField="first_name" headerText="First Name" />
 </mx:columns>

 </mx:DataGrid>

The code above is rendered in Flash in the web browser as shown in the next screen snapshot.

[image: image5.png]
Figure 5 – Flex DataGrid Rendered in Flash Player
Flex Data Binding

An addictive feature of Flex is its powerful data binding. This feature allows values throughout the Flex application to be tied to a single variable or event. When the associated variable is changed or an associated event is encountered, all portions of the applications bound to that variable are updated appropriately. This removes the need for a large number of callbacks because events can lead to the changing of a single variable’s values and everything bound to that changed variable will update automatically.

In several of the above code examples, curly braces are used within attributes of MXML elements. These curly braces indicate that variables are tied to other properties within the Flex application.
Flex Event Handling

As with most modern dynamic HMI technologies, event handling is a significant component of the Flex-based application. Flex supports event handling in several ways. A commonly used Flex approach for event handling is to add an attribute to an MXML tag with an attribute name matching the expected event for that tag. For example, a click=”<<eventHandlerGoesHere>>” attribute can be added to the <mx:Button> tag in MXML to associate an event handler with the “click” event on that particular button. The <<eventHandlerGoesHere>> would be replaced in real code by either be a line of ActionScript that directly performs the handling or would be a call to a separate ActionScript function that performs event handling.
If event handling needs to be added in ActionScript rather than in MXML code, the addEventListener() method can be used by any class that extends the EventDispatcher class. The classes HTTPService and WebService will be discussed in more detail in a later section, but it is worth noting here that they feature special event handlers called result and fault for respectively handing remote successful or fault returns from called services.
All program execution in a Flash application is asynchronous. The implication of this is that event handling is very important in ensuring that operations are performed in the appropriate order. The Flex developer cannot assume that a call to an external service such as an HTTP servlet or web service will necessarily return before the next line in the calling code is executed. Instead, if the next line in Flex code depends on the results of a previous line’s external service call, then the dependent line should be added to the event handling for that external call. The gist of this is that the Flex developer needs to keep in mind the inherent asynchronous nature of Flex and Flash as he or she develops Flex code. Some assumptions made in a more synchronous environment do not apply in Flex.
Flex Communication with Java EE Back-end

Flex provides several approaches for enabling the Flash-based web client to communicate with the back-end logic. Many of these mechanisms are not dependent upon the technology on the back-end and could be used with Java EE or any other server-side technology that can communicate via HTTP. However, Flex also provides some Java-specific communication mechanisms that might be used for performance improvements or easier development experience. In this paper and the associated presentation, we will focus more on the standard web service and HTTP support that will work with any back-end, but will also briefly cover alternative communication approaches.
The Flex WebService class enables very easy Flex communication with available web services via standard web services protocols. The Flex code required to connect to a web service is refreshingly simple, even for the SOAP-based web service calls. In fact, calling a web service from Flex is easier than calling a web service from Java, even with the JAX-WS improvements associated with JSR (Java Specification Request) 224 (“Java API for XML-Based Web Services 2.0”).

Flex’s HTTPService class enables simple Flex communication with Java servlets or other back-end technology support HTTP post or get operations. The minimal HTTPService configuration only requires an ID by which to later access the service and a URL to be accessed when that HTTPService’s send() method is explicitly called or when the service is access implicitly by a Flex component such as the DataGrid’s dataProvider.

Both the HTTPService and the WebService allow the Flex developer to specify event handlers for successful operations (result event/attribute) or faulty operations (fault event/attribute). These are not required, but are often very useful. The successful result event handler is a good mechanism for executing code only once a necessary service has been completely performed. The fault event handler is useful for providing logging and debugging information and possibly communicating the error condition and how to handle it to the user.

Prior to Adobe’s release of BlazeDS, the HTTPService and WebService were the primary mechanisms available to a Flex developer without paying licensing fees to acquire other methods of server communication. There were some limited situations in which these alternatives were freely available (single CPU), but these were not very realistic situations. However, with the release of BlaseDS, Adobe has made much of this alternate server-side communication functionality available free of charge to all Flex developers.
BlazeDS gives Flex developers free access to AMF3, Adobe’s binary format for data transfer. Adobe is releasing this specification so that open source alternatives can be built around it as well. BlazeDS also allows Flex developers to interact with their Java EE server-side via Java Message Service (JMS).

The advantage of using HTTPService or WebService to communicate with the back-end is that these are highly decoupled approaches and are heavily standards-based (HTTP, XML, etc). The advantages of some of the alternative approaches available with BlazeDS include better performance and easier development.

OpenLaszlo 4

Laszlo Systems’s OpenLaszlo (http://www.openlaszlo.org/) is similar to Flex in that it is an open source framework that allows for generation of Flash-based web applications using an XML grammar and ECMAScript implementation. OpenLaszlo has started supporting building of DHTML-compliant applications in addition to the Flash-compliant applications it has always built. This provides an alternative for the small number of browsers that do not have Flash installed. Perhaps more significantly, OpenLaszlo applications can be compiled to run on Flash 7, Flash 8, or Flash 9. Flash 9 offers by far the best performance, but the ability to compile to Flash 7 or 8 might be useful in environments where the users are not expected to have access to Flash Player 9. As with Flex, the basic SDK and most significant functionality required to build an RIA is freely available with OpenLaszlo and additional services can be purchased for a licensing fee.
LZX

OpenLaszlo’s LZX (Laszlo XML) is the XML grammar that OpenLaszlo uses to specify view or presentation layout. LZX documents are well-formed XML. JavaScript code included in an LZX document must be included within appropriate script-oriented tags and is often enclosed in CDATA tags to ensure that characters in the script such as the less than operator will not be parsed as XML.
An invaluable resource regarding LZX is the LZX Reference Manual (http://www.openlaszlo.org/lps/docs/reference/). This essential resource is similar to the general Java SE and EE API documentation created with Javadoc, but in many ways is more sophisticated and useful. Like the Javadoc documentation for Java EE and Java SE, the LZX Reference Manual includes details of the class APIs for classes and tags used in OpenLaszlo. However, this manual goes beyond that and includes examples of how to use the classes or tags in LZX code. More recent Java documentation seems to be doing the same thing, but Open Laszlo has the advantage of a Flash runtime that allows this manual to display its components and other visual features within the documentation on a Flash-enabled machine.
LZX Example

OpenLaszlo’s LZX is similar in many ways to Flex’s MXML. As this simple example code shows, LZX source code is XML. Here is a simple code example.

<canvas bgcolor="#FFFFFF" width="750" height="500">
 <view>

 <tabs x="3">
 <tabpane selected="true">Colorado Cities

 <simplelayout spacing="5"/>
 <radiogroup>

 <radiobutton>Boulder</radiobutton>
 <radiobutton>Denver</radiobutton>
 <radiobutton>Fort Collins</radiobutton>
 <radiobutton>Thornton</radiobutton>
 </radiogroup>

 <button>Submit Colorado City</button>
 </tabpane>

 <tabpane>Oracle Conferences</tabpane>
 <tabpane>Java Conferences</tabpane>
 </tabs>

 </view>

</canvas>

The code listing above demonstrates that LZX is XML and it also demonstrates use of an OpenLaszlo component. The OpenLaszlo component used in this example is the Tab. As shown in the next screenshot of this, this simple code results in an aesthetically pleasing tab. In addition to the OpenLaszlo Tab component, an example of a Button component and of RadioGroup and RadioButton components are also included.

[image: image6.png]
Figure 6 – OpenLaszlo Simple Example Rendered in Flash (SWF8)

The snapshot above demonstrates a useful feature of OpenLaszlo. At the bottom, you can see that the particular web application shown in the snapshot was compiled to SWF8 format (for FlashPlayer 8). Note that it could have been easily compiled to SWF7 and DHTML. In fact, the next screenshot shows this same rendered application, but with the DHTML runtime instead of the Flash runtime.

[image: image7.png]
Figure 7 – OpenLaszlo Simple Example Rendered in DHTML
It is important to emphasize again that the LZX source code is the same for both snapshots shown above. The only difference was that the LZX code was compiled to the SWF8 format for the first snapshot and then compiled to DHTML for the second snapshot.
OpenLaszlo JavaScript

OpenLaszlo supports a subset of ECMAScript for handling events and performing other business logic. While Flex’s ActionScript 3.0 is an implementation of ECMAScript Edition 4, OpenLaszlo’s JavaScript is a subset of the JavaScript used by Mozilla-based and other web browsers, which is an implementation of ECMAScript Edition 3. OpenLaszlo implements the portions of JavaScript that tend to be compliant across major browsers and does not implement portions of JavaScript that are know for browser differences and idiosyncrasies. This frees the OpenLaszlo developer to focus on one flavor of JavaScript and DOM implementation without worry about which browser is being used.

OpenLaszlo JavaScript is integrated with LZX code in several different ways. OpenLaszlo JavaScript can be included in an LZX file with the include tag. JavaScript can also be associated with an event handler and can be embedded between LZX tags explicitly available for scripting (<script> and <method>).
One of the advantages of OpenLaszlo’s use of a JavaScript subset is that any IDE supporting JavaScript can be used with external OpenLaszlo JavaScript files. For example, NetBeans 6.1 provides enhanced JavaScript support (http://marxsoftware.blogspot.com/2008/03/netbeans-61-javascript-ide.html) that can be used to write and maintain OpenLaszlo script files. Additional details on OpenLaszlo’s ECMAScript implementation can be found at http://www.openlaszlo.org/lps/docs/guide/ecmascript-and-lzx.html.

OpenLaszlo JavaScript Example

The next code listing demonstrates a minor use of OpenLaszlo JavaScript added to the previous code listing.
<canvas bgcolor="#FFFFFF" width="750" height="500">
 <script>

 Debug.write("This is a Collaborate08 example.");

 function selectCity()

 {

 Debug.write("City Selected: " + cities.value);

 }

 </script>

 <view>

 <tabs x="3">
 <tabpane selected="true">Colorado Cities

 <simplelayout spacing="5"/>
 <radiogroup id="cities">

 <radiobutton id="boulder">Boulder</radiobutton>
 <radiobutton id="denver">Denver</radiobutton>
 <radiobutton id="fortCollins">Fort Collins</radiobutton>
 <radiobutton id="thornton">Thornton</radiobutton>
 </radiogroup>

 <button onclick="selectCity();">Submit Colorado City</button>
 </tabpane>

 <tabpane>Oracle Conferences</tabpane>
 <tabpane>Java Conferences</tabpane>
 </tabs>

 </view>

</canvas>

Even the very simple code shown in the listing above demonstrates several key things about OpenLaszlo’s support for JavaScript. First, the <script></script> tags demarcate an area for this JavaScript within the XML file. Second, the example above demonstrates the addition of an event handler (onclick in this case) that calls JavaScript code (the selectCity() method in this case). Third, this simple example demonstrates the OpenLaszlo Debug.write() capability. This last feature, the Debug.write(), is especially useful when used in conjunction with the Debug window in OpenLaszlo. The next screenshot shows the new OpenLaszlo application with this new dynamic JavaScript functionality (event handling) and with the Debug window.

[image: image8.png]
Figure 8 – OpenLaszlo Example with JavaScript Rendered to Flash 8 (SWF8)
In the above screenshot, there are two ways to confirm that this application is being run in debug mode. First, the URL has debug=true as one of the HTTP parameters. Second, the Debug checkbox on the bottom is checked. As the screenshot demonstrates, the Debug window is included with the application and this is a particularly useful feature in development of OpenLaszlo applications. It is difficult to overstate how frequently the debugging information provided in this window speeds up OpenLaszlo development.

OpenLaszlo Components

OpenLaszlo offers wide set of attractive components for developers to apply in either a Flash environment or in a DHTML environment. The LZX Reference Manual (http://www.openlaszlo.org/lps/docs/reference/) includes examples of the “out of the box” components available with OpenLaszlo. These components include text controls, buttons, menu controls, check boxes, radio buttons, comboboxes, and many more components.

Just as the DataGrid is a very popular and useful Flex component, OpenLaszlo’s Grid component is similarly popular and works similarly to the Flex DataGrid. Source code using OpenLaszlo’s Grid component is shown next.

 <grid datapath="allEmployees:/Employees">
 <gridcolumn>Employee ID

 <text datapath="employee_id/text()"/>
 </gridcolumn>

 <gridcolumn>Last Name

 <text datapath="last_name/text()"/>
 </gridcolumn>

 <gridcolumn>First Name

 <text datapath="first_name/text()"/>
 </gridcolumn>

 </grid>
The output from this code rendered in Flash8 and DHTML is shown in Figures 9 and 10 respectively.

[image: image9.png]
Figure 9 – OpenLaszlo Grid Component Rendered in Flash 8 (SWF8)

[image: image10.png]
Figure 10 – OpenLaszlo Grid Component Rendered in DHTML
OpenLaszlo Data Binding

OpenLaszlo’s data binding is very similar to that in Flex and allows for the OpenLaszlo developer to easily tie multiple portions of an OpenLaszlo application to a single bindable property. When that bindable property is changed, all pieces associated with it get automatically updated. This reduces the need for explicit callbacks in the code.

OpenLaszlo Event Handling

Like Flex and most other HMI technologies, OpenLaszlo depends heavily on event handling. OpenLaszlo supports two approaches to specify event handlers. The first method is similar to that of Flex and involves associating an appropriately attribute of an LZX XML tag with the script code for handling that event. For example, if the onmouseover() event is desired to be caught and handled, an attribute named onmouseover would be associated with the LZX tag for which this event should be captured and handled. A second approach for OpenLaszlo event handling is to use the LXZ handler tag and embed that handler tag within the tags for the LZX component to which the event handing should apply.

OpenLaszlo Communication with Java EE Back-end

OpenLaszlo strongly encourages use of XML as the data format for transmitting data back and forth between the OpenLaszlo-based web browser client and the server. Two common approaches the OpenLaszlo developer can use to communicate with the Java EE back-end is use of the XML-RPC (XML over HTTP communication) and the soap tag (for SOAP-based web service calls). Both are part of OpenLaszloRPC.
A third piece of OpenLaszloRPC can be used for working directly with Java objects over HTTP if the XML data format is not desired. This piece, called Java-RPC, may be desirable for performance improvements and to avoid the need to marshall and unmarshall XML on each end.

Because OpenLaszlo supports a DHTML runtime, it is not too surprising that OpenLaszlo makes an XMLHttpRequest (implements functionality similar to Ajax’s XMLHttpRequest) available to OpenLaszlo developers. This is often not as essential for a developer to directly use in a fluid OpenLaszlo application as it would be in a direct DHTML-based Ajax application, but it is sometimes useful to have available to the developer. OpenLaszlo’s XMLHttpRequest object is especially useful for developers who wish to use a format other than XML to pass data between the browser and the server.
OpenLaszlo provides the LzProject (http://labs.openlaszlo.org/lzproject/) as a simple application that integrates OpenLaszlo-based clients with Java EE back-ends. This example can be downloaded and used for training and learning purposes.

OpenLaszlo and Flex: Many Similarities and Some Differences

OpenLaszlo and Flex share many characteristics and it is fairly easy to move from one to the other because of their many similarities. The table below compares many of the characteristics across these two frameworks.
	FRAMEWORK CHARACTERISTIC
	OPENLASZLO 4
	FLEX 2 / FLEX 3

	Framework Sponsor
	Laszlo Systems
	Adobe

	Basic Framework License
	Open Source Initiative (OSI) Common Public License (CPL) 1.0
	Mozilla Pubic License (MPL)

	Runtime Deployment Environment
	Flash Players 7, 8, 9

DHTML support in beta until v4.1
	Flash Player 9

	Main XML Grammar
	LZX
	MXML

	Main Scripting Language
	OpenLaszlo JavaScript (ECMA 3)
	ActionScript 3 (ECMA 4)

	Supports Property Binding
	Yes
	Yes

	Charting Components
	Still in Work
	Not included with free SDK

	Freely Available Supplied Documentation
	Excellent
	Excellent

	Examples Built on Framework1
	Laszlo WebTop, Pandora, Snapfish
	Pikeo, Park City Resort, Picnik

	Books Listed on Amazon.com2
	2
	10+

1Lists of applications based on OpenLaszlo and on Flex are found, respectively, at http://wiki.openlaszlo.org/OpenLaszlo_Applications and http://flex.org/showcase/.
2Search performed on Amazon.com on 5 January 2008 with search terms “Laszlo” and “OpenLaszlo” for OpenLaszlo and “Flex” and “ActionScript 3” for Flex.
The Future for Flex and OpenLaszlo

With work on Flex 3 recently released and significant buzz on the web regarding the advantages of Flex, the future of Flex looks very bright. OpenLaszlo, while around longer, seems to be lesser known than Flex, but OpenLaszlo’s “write once run anywhere” mantra could really pay off in the future, especially if OpenLaszlo begins to support Microsoft Silverlight and/or JavaFX.
Conclusion and Summary
Flash offers many advantages to developers of Rich Internet Applications (RIAs). Flash allows developers to build rich web applications with significant interactivity and richness more commonly associated with non-web applications. Flash-based applications can meet and even surpass Ajax-based applications with the developer needing to worry about idiosyncrasies of the different web browsers.
Adobe Flex and LasloSystems’s OpenLaszlo provide similar frameworks for rapid development of Flash-based RIAs. Both use specific XML grammars and embedded ECMAScript implementations to specifying the Flash-based application. OpenLaszlo also has begun to offer a still-in-work feature that allows OpenLaszlo code to be compiled into DHTML/Ajax rather than into Flash.
Additional References and Resources
Several references were highlighted in the text of this paper. Some of these are included in this list of useful resources and references on Flash, Flex, OpenLaslzo, and integration of Java EE with OpenLaszlo and Flex.
· Adobe Flash Player – http://www.adobe.com/products/flashplayer/
· Adobe Flex – http://www.adobe.com/products/flex/
· Adobe Flex 3 Language Reference – http://livedocs.adobe.com/flex/3/html/index.html
· Adobe Flex 2 Language Reference – http://livedocs.adobe.com/flex/201/langref/index.html
· Adobe Flex 3 Component Explorer – http://examples.adobe.com/flex3/componentexplorer/explorer.html
· Adobe Flex 2 Component Explorer – http://examples.adobe.com/flex2/inproduct/sdk/explorer/explorer.html
· Adobe Technology Platform ActionScript Reference: Rich Internet Application Development – http://www.adobe.com/devnet/actionscript/articles/atp_ria_guide/atp_ria_guide.pdf
· Flex 3 Developer Guide – http://livedocs.adobe.com/flex/3/devguide_flex3.pdf
· Flex 3 Getting Started – http://www.adobe.com/devnet/flex/?navID=gettingstarted
· Programming ActionScript 3 – http://livedocs.adobe.com/flex/3/progAS_flex3.pdf
· LaszloSystems OpenLaszlo 4 – http://www.openlaszlo.org/
· OpenLaszlo LZX Reference Manual – http://www.openlaszlo.org/lps/docs/reference/
· OpenLaszlo 4.0 Reference Manual – http://www.openlaszlo.org/lps4/docs/reference/
· How [OpenLaszlo Developers] Deal with Browser Quirks – http://weblog.openlaszlo.org/archives/2007/03/how-we-deal-with-browser-quirks-with-a-compendium-of-ie-7-issues/
· Web Clients Fatten Up with OpenLaszlo – http://www-128.ibm.com/developerworks/web/library/wa-openlaszlo/
· Learn Laszlo in Ten Minutes – http://www.openlaszlo.org/lps4/laszlo-explorer/index.jsp?navset=nav10.xml&bookmark=Introduction
· Build Web Applications Once, Run Everywhere with OpenLaszlo – http://blogs.techrepublic.com.com/programming-and-development/?p=592
· Adobe Flex and Java – http://www.adobe.com/devnet/flex/flex_java.html
· Thirty-Minute Flex Test Drive for Java Developers – http://www.adobe.com/devnet/flex/articles/java_testdrive.html
· Bruce Eckel’s “Hybridizing Java” – http://www.artima.com/weblogs/viewpost.jsp?thread=193593
· Comparing the Syntax of Java 5 and ActionScript 3 – http://flexblog.faratasystems.com/?p=115
· Dustin Marx’s blog entries on Flex – http://marxsoftware.blogspot.com/search/label/Flex
· Dustin Marx’s blog entries on OpenLaszlo – http://marxsoftware.blogspot.com/search/label/OpenLaszlo

20

Paper #402

