Architecture – Operating Systems

Solaris Performance Diagnostics for Database People
Dallas Deeds, Nationwide

Abstract
A whole lot of performance issues are actually in the database, be it SQL or various configuration issues. There is a wealth of information available in books, on the internet and various other sources for finding and fixing those issues. What do you do when your server has reached capacity? More importantly, how do you know when it has?
In this paper, we will look at some of the available tools that come with your Solaris system (and a couple that are freely available but not included) that can be used to examine the health of the server and what the server is doing. Tools discussed will show data for the major subsystems – CPU, memory, disk, and network. I will look at sar, vmstat, iostat, top, prstat, netstat, uptime, and truss in this paper, provide examples of their use, sample output and things to be aware of when using them.
Groundwork and foundations

The first thing you need to determine is what you are looking at on a server – how many CPUs you have, how fast are they, how much memory do you have, what cards are in the machine, and so forth. This sort of information is especially valuable for occasions when you have developers asking why their code runs fast on one server and slow on another – you need to be able to determine if you are comparing apples to apples. Solaris provides a couple of utilities to accomplish this.
What’s in the box?
The first thing you need to determine is what you are looking at on a server – how many CPUs you have, how fast are they, how much memory do you have, what cards are in the machine, and so forth. Solaris provides some utilities to accomplish this – uname, prtdiag, and psrinfo.
Uname & Prtdiag
Uname provides what type of server you have, the OS version, and patch level. The output is used to determine which prtdiag you use. For example, prtdiag lives in different places on sun4u type machines and sun4v machines. Fortunately, Unix allows you to plug in commands with back ticks to eliminate some steps.

/usr/platform/`uname -m`/sbin/prtdiag –v
Prtdiag provides basic information of what is in your server. For CPUs, it tells you how many CPUs are in the machine (or cores, if you have more than one core per CPU), what board they are on, and their speed. Prtdiag can be found in /usr/platform/[architecture_type]/sbin. The output below shows that this particular server is a four-CPU machine with 8 GB of memory, two Qlogic HBA cards and two Emulex LP1000 HBAs.
> /usr/platform/`uname -m`/sbin/prtdiag –v
System Configuration: Sun Microsystems sun4u Sun Fire 880

System clock frequency: 150 MHz

Memory size: 8192 Megabytes

========================= CPUs ===========================

 Run E$ CPU CPU

Brd CPU MHz MB Impl. Mask

--- ----- ---- ---- ------- ----

 A 0 1200 8.0 US-III+ 11.1

 B 1 1200 8.0 US-III+ 11.1

 A 2 1200 8.0 US-III+ 11.1

 B 3 1200 8.0 US-III+ 11.1

========================= Memory Configuration ==========================

 Logical Logical Logical

 MC Bank Bank Bank DIMM Interleave Interleaved

 Brd ID num size Status Size Factor with

---- --- ---- ------ ----------- ------ ---------- -----------

 A 0 0 512MB no_status 256MB 8-way 0

 A 0 1 512MB no_status 256MB 8-way 0

 A 0 2 512MB no_status 256MB 8-way 0

 A 0 3 512MB no_status 256MB 8-way 0

 B 1 0 512MB no_status 256MB 8-way 1

 B 1 1 512MB no_status 256MB 8-way 1

 B 1 2 512MB no_status 256MB 8-way 1

 B 1 3 512MB no_status 256MB 8-way 1

 A 2 0 512MB no_status 256MB 8-way 0

 A 2 1 512MB no_status 256MB 8-way 0

 A 2 2 512MB no_status 256MB 8-way 0

 A 2 3 512MB no_status 256MB 8-way 0

 B 3 0 512MB no_status 256MB 8-way 1

 B 3 1 512MB no_status 256MB 8-way 1

 B 3 2 512MB no_status 256MB 8-way 1

 B 3 3 512MB no_status 256MB 8-way 1
========================= IO Cards =========================

 Bus Max

 IO Port Bus Freq Bus Dev,

Brd Type ID Side Slot MHz Freq Func State Name Model

---- ---- ---- ---- ---- ---- ---- ---- ----- -------------------------------- ----------------------

I/O PCI 8 B 3 33 33 2,0 ok network-pci108e,abba.20 SUNW,pci-ce

I/O PCI 8 B 2 33 33 3,0 ok pci-pci8086,b154.0/scsi (scsi) PCI-BRIDGE

I/O PCI 8 B 2 33 33 4,0 ok scsi-pci1077,1016/sd (block) QLGC,ISP10160/pci-brid+

I/O PCI 8 B 2 33 33 5,0 ok scsi-pci1077,1016/sd (block) QLGC,ISP10160/pci-brid+

I/O PCI 8 B 1 33 33 4,0 ok pci-pci8086,b154.0/pci108e,1000 PCI-BRIDGE

I/O PCI 8 B 1 33 33 0,0 ok pci108e,1000-pci108e,1000.1 device on pci-bridge

I/O PCI 8 B 1 33 33 0,1 ok SUNW,qfe-pci108e,1001 SUNW,pci-qfe/pci-bridg+

I/O PCI 9 A 8 66 66 1,0 ok lpfc-pci10df,fa00/sd (block) LP10000

I/O PCI 9 A 7 66 66 2,0 ok lpfc-pci10df,fa00/sd (block) LP10000

Tools

Now that you know a bit about the machine, you can look at the various performance metrics. There also is quite a selection of commercial add-on utilities and tools that monitor server health and performance. I have experience with a couple, but I have found that there are issues with polling frequency and aggregation. Low polling frequency can hide detail, especially when looking at I/O.
The various free tools we will look at are sar, vmstat, iostat, top, prstat, netstat, uptime, and truss.
CPU

When looking at CPU metrics we want to primarily be aware of two things – CPU utilization and run queue. Utilization shows how busy the CPU resource is. It is broken down into user time, system time, idle time and (until recently) wait for I/O. Wait for I/O has been described in various ways, including the amount of time waiting for I/O to complete, the amount of CPU that could have been used if you weren’t waiting for I/O requests to complete, and others. Wait for I/O statistic has been deliberately set to zero in Solaris 10 [McDougall 2006].
User time is time spent processing user code. System time is time spent processing system calls for user mode processes plus kernel processes. Idle time is time where the CPUs are waiting for work to process. The ratios of user to system time are very system- and application-dependent. CPU utilization is determined by subtracting the idle time from 100, e.g. a server that has idle time = 20 is 80% utilized.
A bit of headroom in utilization is generally a good thing, and is considered a padding zone for increases in activity (expected or not). However, a server that is 100% utilized (or 0% idle) is not a reason for immediate panic. The concern is that with 100% utilization, you may have processes that have to wait to get on CPU. You need to look at the run queue to determine if this is a bad condition. People responsible for budget codes often like to see near fully-utilized servers, they feel they are getting their money’s worth.
Run queue (or load average) shows CPU saturation, showing the average number of processes running on CPU plus the number of processes waiting to get on CPU. This is one of the reasons that you need the data about how many CPUs you have on a machine - I usually see performance degrade when the run queue gets more than two to three times the number of CPUs on a server, e.g., a run queue of 8 – 12 on a four CPU server.
Sar

The sar command (system activity reporter) is quite handy for giving a quick overview of CPU statistics. The –u (depict utilization) is default and may be omitted. Sar shows the percentage of CPU utilization divided into user (%usr), system (%sys), wait for I/O (%wio), and idle (%idle) time.
Sar on a server that has quite a bit of headroom:
> sar -u 5 5

SunOS nessus 5.8 Generic_117350-39 sun4u 05/05/07

23:18:47 %usr %sys %wio %idle

23:18:52 10 2 12 76

23:18:57 10 2 21 67

23:19:02 10 5 8 77

23:19:07 10 3 3 84

23:19:12 10 6 2 82

Average 10 4 9 77

Sar on a server that is heavily utilized. The %idle is zero across all intervals.
> sar 1 5

SunOS pepperjack 5.8 Generic_117350-27 sun4u 02/11/08

15:26:38 %usr %sys %wio %idle

15:26:39 71 28 1 0

15:26:40 77 23 0 0

15:26:41 77 23 0 0

15:26:42 81 19 0 0

15:26:43 75 25 0 0

Average 76 24 0 0

Top

The top utility shows utilization, run queue, total & available memory. It is a very handy dashboard-type utility for providing a quick view into what is going on with your system. It is freely available from www.unixtop.org, and simple to compile and install. The –c switch shows the full command line for a process.
top –c on a busy system. This output shows that Oracle is not the primary cause of CPU utilization on this server.
load averages: 5.67, 6.29, 6.41; up 71+13:41:53 16:06:21

1378 processes: 1374 sleeping, 4 on cpu

CPU states: 5.3% idle, 69.7% user, 14.1% kernel, 10.9% iowait, 0.0% swap

Memory: 16G phys mem, 3734M free mem, 7172M total swap, 7172M free swap

 PID USERNAME LWP PRI NICE SIZE RES STATE TIME CPU COMMAND

 3491 pcmadm 5 0 0 312M 300M cpu/3 102.7H 8.77% scenter scheduler problem 60 0 -bg

 24006 pcmadm 4 30 0 314M 304M sleep 2:33 8.61% scenter -listener -xsocket:17,5

 24769 pcmadm 4 11 0 344M 335M cpu/4 32:39 6.89% scenter -listener -xsocket:17,5

 3689 pcmadm 5 0 1 310M 298M sleep 389.4H 6.79% scenter scheduler event.bridge 5 1 -bg

 11757 best1 1 0 0 14M 9904K sleep 88.3H 4.84% bgscollect -I noInstance -B /usr/adm/best1_7.

 22044 pcmadm 4 30 0 314M 304M sleep 2:04 3.83% scenter -listener -xsocket:17,5

 4022 oracle 14 60 0 926M 891M sleep 0:49 3.77% oraclescprod (LOCAL=NO)

 5696 oracle 1 59 0 926M 891M sleep 2:44 3.51% oraclescprod (LOCAL=NO)

 355 pcmadm 4 28 0 312M 302M sleep 0:08 3.38% scenter -listener -xsocket:17,5

 28191 oracle 1 1 0 925M 884M sleep 583:52 2.63% oraclescprod (LOCAL=NO)

 24771 oracle 11 60 0 929M 895M sleep 17:29 2.57% oraclescprod (LOCAL=NO)

 24008 oracle 1 20 0 926M 891M sleep 2:58 2.47% oraclescprod (LOCAL=NO)

Using top and SQL*Plus to find CPU hogging SQL statements
One handy thing you can use top for is using two terminal windows for tracking down CPU-intensive queries. On a server that is experiencing high CPU utilization, run top –c in one terminal window and query v$sql in another window, mapping the OS process back through v$process, then through v$session to v$sql.

In the example below, we target process 315 and see that it is doing 6456 LIOs per execution (33,269,567 LIOs / 5133 executions), for a total of over 33 million LIOs.

 ============== Terminal #1 =================
load averages: 15.66, 15.73, 15.61 newton 12:59:09

265 processes: 248 sleeping, 9 running, 1 zombie, 1 stopped, 6 on cpu

CPU states: % idle, % user, % kernel, % iowait, % swap

Memory: 16.0G real, 11.8G free, 1.3G swap in use, 13.5G swap free

 PID USERNAME THR PR NCE SIZE RES STATE TIME FLTS CPU COMMAND

 139 oracle 11 10 0 384M 347M run 28:57 0 4.53% oracle

(315 oracle 11 21 0 385M 350M run 28:15 0 4.51% oracle

 29600 oracle 11 21 0 385M 349M run 28:34 0 4.50% oracle

 29438 oracle 11 21 0 386M 349M run 27:59 0 4.41% oracle

 29838 oracle 11 21 0 386M 349M run 28:07 0 4.35% oracle

 29656 oracle 11 21 0 385M 347M sleep 27:44 0 4.33% oracle

 29381 oracle 11 11 0 385M 352M cpu18 28:10 0 4.29% oracle

 251 oracle 11 60 0 387M 349M sleep 27:54 0 4.24% oracle

 275 oracle 11 21 0 387M 350M cpu17 27:51 0 4.24% oracle

 29546 oracle 11 60 0 386M 349M sleep 27:32 0 4.22% oracle

 29922 oracle 11 21 0 386M 349M cpu19 27:20 0 4.21% oracle

 29717 oracle 11 60 0 387M 349M sleep 27:36 0 4.20% oracle

 29775 oracle 11 21 0 386M 349M sleep 27:59 0 4.18% oracle

 29492 oracle 11 12 0 386M 349M run 28:10 0 4.17% oracle

 322 oracle 11 12 0 384M 347M cpu02 28:00 0 4.14% oracle

 ============ Terminal #2 =============
select sql_text,executions,disk_reads,buffer_gets,address,hash_value

from v$sql

where address in (select sql_address

 from v$session

 where paddr = (select addr from v$process where spid = &1)

);

SQL> /

Enter value for 1: 315 (
old 6: where spid = &1))

new 6: where spid = 315))

SQL_TEXT

--

EXECUTIONS DISK_READS BUFFER_GETS ADDRESS HASH_VALUE

---------- ---------- ----------- ---------------- ----------

select rowidtochar(rowid) ,varuvdef_seq_id ,fee_seq_id ,start_date ,end_date ,bu

siness_area ,msmtperd_type ,period ,frequency from perf_calculation_queue where

 ((queue_id=:b1 and completion_datetime is null) and calc_code is null) order

by calc_priority,queue_datetime

 5153 25533219 33269567 00000003864AA258 688574372

Prstat
The prstat command allows for monitoring the status of active processes. By default, prstat shows processes in descending order of CPU utilization. It shows process memory footprints, state (on/off CPU, which CPU it is on), and load averages (over 1, 5, and 15 minute intervals). Prstat does a nice job of exposing anomalies – in this case, one wonders why the vxsvc process is consuming so much CPU – it normally consumes less than 1%. It turned out to be a configuration issue.
PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP

 934 root 862M 702M sleep 59 0 57:18:36 8.7% vxsvc/53
 22263 oracle 783M 778M cpu3 43 0 5:14:16 7.2% oracle/30

 25106 oracle 6085M 6078M sleep 59 0 4:45:30 0.9% oracle/1

 9173 oracle 6085M 6077M sleep 59 0 8:59:30 0.6% oracle/1

 12725 root 20M 15M cpu0 18 0 0:00:00 0.5% symdisk/1

 56 root 12M 5440K sleep 49 0 0:39:53 0.3% vxconfigd/1

 2293 root 5200K 2848K sleep 59 0 1:46:53 0.2% MountAgent/13

 12663 oracle 6480K 6008K cpu2 59 0 0:00:00 0.2% prstat/1

 9175 oracle 773M 765M sleep 59 0 1:41:51 0.1% oracle/1

Total: 467 processes, 2778 lwps, load averages: 2.39, 2.07, 1.90

Prstat with the -mL switches shows the amount of time a process has been queuing for CPU resources on a busy system (the LAT column). In this example we can see that several processes are spending more than 40% of their time waiting to get on CPU. Note the load averages. This is a 4-CPU, dual core machine. The run queue is not quite greater than two times the number of CPUs, but we already have many processes showing significant queuing for CPU resources.
 > prstat -mL

 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID

 28122 oracle 35 26 0.0 0.0 0.0 0.0 44 0.0 174 1K 20K 0 oracle/1

 19525 oracle 47 6.2 0.2 0.0 0.0 0.0 4.5 42 51 1K 827 0 oracle/1

 28116 oracle 38 15 0.0 0.0 0.0 0.0 48 0.0 261 3K 15K 0 oracle/1

 28090 oracle 38 13 0.0 0.0 0.0 0.0 49 0.0 190 1K 5K 0 oracle/1

 23202 oracle 44 5.7 0.2 0.0 0.0 0.0 4.8 46 29 2K 635 0 oracle/1

 25176 oracle 38 9.6 0.2 0.0 0.0 0.0 6.0 46 38 1K 19K 0 oracle/1

 28080 oracle 41 6.1 0.1 0.0 0.0 0.0 4.1 48 64 1K 31K 0 oracle/1

 28020 oracle 38 7.1 0.1 0.0 0.0 0.0 12 43 366 1K 12K 0 oracle/1

 28004 oracle 37 7.5 0.2 0.0 0.0 0.0 9.4 46 418 1K 1K 0 oracle/1

 27671 oracle 42 1.7 0.2 0.0 0.0 0.0 26 30 256 1K 4K 0 oracle/1

 27567 oracle 33 8.8 0.1 0.0 0.0 0.0 6.4 51 68 1K 17K 0 oracle/1

 23390 oracle 36 6.0 0.1 0.0 0.0 0.0 11 47 104 1K 19K 0 oracle/1

 27048 oracle 35 4.4 0.1 0.0 0.0 0.0 25 36 196 1K 32K 0 oracle/1

 27861 oracle 33 6.9 0.2 0.0 0.0 0.0 18 42 181 1K 13K 0 oracle/1

 28086 oracle 18 4.8 0.0 0.0 0.0 0.0 78 0.0 329 375 3K 0 oracle/1

 27739 oracle 19 2.7 0.1 0.0 0.0 0.0 71 7.2 1K 858 12K 0 oracle/1

 28024 oracle 4.8 4.4 0.0 0.0 0.0 0.0 88 2.3 765 242 1K 0 oracle/1

 2041 oracle 4.8 0.5 0.0 0.0 0.0 0.0 93 2.2 1K 219 1K 0 oracle/1

 27811 oracle 3.3 1.6 0.0 0.0 0.0 0.0 94 1.1 739 63 4K 0 oracle/1

 2043 oracle 2.3 0.6 0.0 0.0 0.0 0.0 95 1.9 1K 119 2K 0 oracle/1

 3304 best1 0.4 1.6 - - - - 0.0 - 3 233 5K 0 bgscollect/1

Total: 165 processes, 1507 lwps, load averages: 14.32, 14.74, 14.71
Memory

Memory is very important to Oracle servers. It’s where data lives while it is actively worked on, be it read or modified. It’s where the SGA lives. It’s where data is sorted. Oracle simply doesn’t work well when it is short on memory. It is important in this presentation because you have to know when your database servers are running low and how to determine this condition.
Until recently, my team recommended two gigabytes of memory per CPU on database servers. Moving to 64-bit Oracle, growing databases and other factors have caused increasing that recommendation to four gigabytes per CPU for database servers.

You need a certain amount of free memory – memory shortages cause scanning and “bad” forms of paging, which can seriously impact performance. Filesystem paging is normal and not considered “bad’, although on database servers we would just as soon not see any datafile filesystems in the OS filesystem cache at all – that’s what the Oracle buffer cache and caching algorithms are for. Anonymous paging is “bad” paging – when a shortage of physical memory occurs, the page scanner starts moving pages out to the physical swap device [McDougall 2006]. This can cause severe performance issues.
Vmstat

A high-level memory inspection is easily done with vmstat. Like top, it can provide a good high-level overview of what is currently happening on your system. Vmstat shows the free memory and swap, paging rates and scan rate, which shows non-zero when memory is under pressure.
When free memory is scarce, the page scanner starts looking for memory to reclaim. A scan rate greater than zero usually indicates that there is a memory shortage on the machine. The page scanner starts running when free memory is below the lotsfree parameter (which defaults to 1/64th of memory on the machine) plus a small buffer factor, deficit. Until this threshold is met, the page scanner does not run (in Solaris 9 and above) [McDougall 2006].
Examining memory with vmstat. Note that the first line of output is a summary since server startup, so we are (usually) not interested in it.
chinook:/u01/home/oracle> vmstat 5 5

 kthr memory page disk faults cpu

 r b w swap free re mf pi po fr de sr m0 m1 m2 m3 in sy cs us sy id

 1 0 0 16187312 15266736 745 1290 1958 396 394 0 0 4 4 0 0 9017 14560 6071 50 16 34

 0 0 0 15473896 14815736 487 1524 0 5 5 0 0 0 0 0 0 2351 6074 2978 30 21 49

 2 0 0 15737728 14802160 876 6434 2 0 0 0 0 0 0 0 0 2619 27248 2942 52 27 21

 0 0 0 15489176 14803744 543 2141 3 3 3 0 0 23 23 0 0 2708 8974 3131 36 23 41

Output of top showing low amount of free memory. In this case, the Oracle instances’ memory structures on the server had been configured without paying attention to their combined size versus the amount of total physical memory available. Eight gigabytes was available and the combined SGAs and PGAs totaled nine gigabytes. Also note there is a significant amount of swap in use. With physical and virtual memory combined, this server was using fifteen of sixteen gigabytes of total available memory.
load averages: 4.16, 3.84, 3.66 bmw2 09:30:59

89 processes: 83 sleeping, 1 running, 1 stopped, 4 on cpu

CPU states: 1.1% idle, 76.1% user, 8.5% kernel, 14.2% iowait, 0.0% swap

Memory: 8.0G real, 115M free, 7.3G swap in use, 847M swap free
 PID USERNAME THR PR NCE SIZE RES STATE TIME FLTS CPU COMMAND

 17734 oracle 11 0 0 2.3G 2.3G cpu02 143:56 10 23.59% oracle

 17742 oracle 11 0 0 1.3G 884M cpu00 122:06 62 21.76% oracle

 17731 oracle 11 1 0 2.3G 2.2G cpu03 127:15 906 16.05% oracle

 17738 oracle 11 1 0 1.3G 927M run 131:56 1170 14.71% oracle

 3167 root 12 58 0 24.5M 9432K sleep 583:07 0 2.14% msragent

 24 root 1 48 0 10.7M 2288K sleep 451:26 0 0.25% vxconfigd

 26381 oracle 1 58 0 3168K 2240K cpu01 0:00 0 0.15% top

 4433 oracle 1 58 0 2.2G 174M sleep 10:20 4 0.07% oracle

 1422 root 17 59 0 4880K 3152K sleep 105:30 2 0.04% MountAgent

 29795 oracle 1 58 0 1.3G 34.5M sleep 2:30 0 0.02% oracle

 804 root 5 58 0 10.5M 2920K sleep 36:39 0 0.02% automountd

 838 root 12 52 0 3856K 2256K sleep 12:08 0 0.01% nscd

 630 root 15 41 0 8960K 2296K sleep 117:25 0 0.01% picld

 684 root 22 60 0 147M 11.7M sleep 14:28 4 0.01% vxsvc

 1424 root 17 59 0 4504K 2832K sleep 1:49 0 0.01% MultiNICAAgent

Here we see a system going from busy to stressed. There was a total of 8 GB of physical memory on this machine, with 8 GB of swap allocated. Enough memory-consuming processes were started to reduce the free memory to below 125 MB (1/64th of 8 GB), causing the page scanner to start freeing up memory. Note the anonymous page ins, page outs, and faults, and how the scan rate increases as memory pressure gets worse.
 memory page executable anonymous filesystem

 swap free re mf fr de sr epi epo epf api apo apf fpi fpo fpf

 1187936 128032 31 355 0 0 0 0 0 0 0 0 0 0 0 0

 1187888 127944 45 391 29 0 0 0 0 0 0 0 0 0 29 29

 1187976 127936 26 298 0 0 0 0 0 0 0 0 0 0 0 0

 1187864 127912 29 291 0 0 0 0 0 0 0 0 0 0 0 0

 1188096 128016 14 64 13 0 0 0 0 0 0 0 0 0 13 13

 1188088 128152 13 118 69 0 0 0 0 0 0 0 0 0 69 69

 1188080 128208 0 0 18 0 0 0 0 0 0 0 0 0 18 18

 1288928 228920 57 374 50 0 0 13 0 0 0 0 0 16 50 50

 1339352 279160 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1339352 279160 0 4 0 0 0 0 0 0 0 0 0 0 0 0

 1086376 47904 116 10749 4077 0 5082 0 0 2 216 3029 3000 0 0 1074

 1086264 39328 831 898 7866 0 5697 0 0 24 458 7338 7085 37 21 757

 1086264 47104 694 718 10370 0 5418 0 0 32 165 8448 8344 0 0 1994

 1086264 50704 1047 1056 8133 0 4988 0 0 29 16 7637 7485 0 2 618

 1086280 57832 1227 3037 10040 40864 6840 0 0 1154 8 9088 8282 13 24 602

 1086216 67400 877 2181 10229 52680 7902 34 0 2714 2 7040 6168 0 0 1346

 1085976 80288 471 1299 9994 74888 7786 0 0 1933 0 7040 6562 0 32 1498

 1085904 91792 993 1592 9133 91048 8968 24 0 2557 34 6314 5893 5 42 682

 1085848 111960 581 1087 12984 82704 9812 0 0 3856 8 8149 8112 0 2 1016
Disk

Before saying anything else – you need to benchmark your disks and determine what is normal for your configurations. You will have to determine if 40 ms reads are normal and tolerable for your systems.
I/O activity has many layers to consider – OS filesystem cache, volume management layer, controller, fibre to the array, SAN cache, back-end disks, etc. All of those layers have some latency. It can be difficult to determine which layer is the primary contributor to your observed latency issues on the server. It may even be more than one layer. With all of the different layers, just one piece that is not configured correctly can cause major problems.
Iostat

As with the vmstat commands, the first line produced from iostat is a summary since system boot, so we don’t want it. I usually use small polling intervals (typically 1 second) so I don’t lose peaks to aggregation.
iostat provides quite a bit of detail, the most interesting columns being r/s, w/s, kr/s, kw/s, wait, asvc_t, %w, and %b.
r/s

number of reads per second

w/s

number of writes per second

kr/s

number of kilobytes read per second

kw/s

number of kilobytes written per second

wait

number of transactions waiting for service (wait queue)
asvc_t

average service time of active transactions, in milliseconds
%w

percentage of time there are transactions waiting for service

%b

percentage of time the device is active for the observed interval; utilization

Some of the detail is of lesser value for servers that use storage arrays, particularly %b. The %b statistic tells you that Solaris thinks there was I/O directed to a device for x% of the measured interval, but Solaris doesn’t really have the data for the devices on a SAN. For a SAN, the relevant measurements are service times and throughput. kr/s + kw/s is the measure of throughput.
Asvc_t is the time from when a disk accepted a request to when it sends a completion interrupt. Faster is better.

Iostat switches I commonly use are

-x

extended device statistics

-C

when –x is used, report controllers and segregate by controller

-n
display descriptive names; when used with –x, shows names more easily associated with physical hardware – default is sd or md, -n gives names like cXtYdZsN (controller, target, disk, slice)
-z
don’t print all-zero lines

-E
show device error statistics

Here we have iostat output showing SAN devices well below throughput limits, but exhibiting horrible service times.
Note that iostat reports no queuing or waiting.
iostat –xnCz 1 | grep c

 extended device statistics

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device

 0.0 1.0 0.0 8.0 0.0 0.0 0.0 5.5 0 1 c0

 0.0 1.0 0.0 8.0 0.0 0.0 0.0 5.5 0 1 c0t8d0

 0.0 1.0 0.0 8.0 0.0 0.0 0.0 2.5 0 0 c2

 0.0 1.0 0.0 8.0 0.0 0.0 0.0 2.5 0 0 c2t0d0

 0.0 5.0 0.0 48.0 0.0 0.3 0.0 50.3 0 24 c4

 0.0 1.0 0.0 8.0 0.0 0.1 0.0 83.7 0 8 c4t50060482D52D2596d6

 0.0 1.0 0.0 8.0 0.0 0.0 0.0 21.8 0 2 c4t50060482D52D2596d3
 0.0 2.0 0.0 16.0 0.0 0.1 0.0 49.3 0 9 c4t50060482D52D2596d28

 0.0 1.0 0.0 16.0 0.0 0.0 0.0 47.4 0 5 c4t50060482D52D2596d96

 0.0 10.0 0.0 103.9 0.0 1.2 0.0 123.0 0 94 c5

 0.0 1.0 0.0 8.0 0.0 0.0 0.0 41.2 0 4 c5t50060482D52D2599d9

 0.0 4.0 0.0 40.0 0.0 0.5 0.0 123.3 0 49 c5t50060482D52D2599d6

 0.0 1.0 0.0 8.0 0.0 0.0 0.0 2.5 0 0 c5t50060482D52D2599d3

 0.0 3.0 0.0 32.0 0.0 0.6 0.0 215.1 0 36 c5t50060482D52D2599d28

 0.0 1.0 0.0 16.0 0.0 0.0 0.0 47.5 0 5 c5t50060482D52D2599d97

Output from iostat depicting a serious wait condition. The device in this case was on the verge of failing.

extended device statistics

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device

 6.0 8.0 48.0 88.0 13.0 0.1 928.6 6.4 50 4 c2

 19.0 8.0 152.0 88.0 0.0 0.1 0.0 4.5 0 5 c3

 93.0 5.0 1616.0 17.5 0.0 1.1 0.0 10.8 0 11 c6

 83.0 5.0 696.0 33.0 0.0 0.8 0.0 9.0 0 8 c7

 0.0 4.0 0.0 56.0 13.0 0.0 3250.0 9.6 100 3 c2t0d0 (
 6.0 4.0 48.0 32.0 0.0 0.1 0.0 5.0 0 4 c2t1d0

 0.0 4.0 0.0 56.0 0.0 0.0 0.0 11.1 0 4 c3t0d0

 19.0 4.0 152.0 32.0 0.0 0.1 0.0 3.4 0 7 c3t1d0

 16.0 0.0 128.0 0.0 0.0 0.2 0.0 13.4 0 21 c6t24d2

 19.0 0.0 152.0 0.0 0.0 0.2 0.0 11.6 0 22 c6t24d3

Output from iostat on a very busy system (one-second polls). Note that %b for the controllers is greater than 100%, but is not the sum of all devices on a controller. This appears to be a bug. Since these are storage array devices, the %b statistics are irrelevant anyway. Sometimes two HBAs are just not sufficient….. Devices that are not very active have been removed for clarity.
 extended device statistics

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device

 1.0 181.5 7.9 563.3 0.1 2.8 0.5 15.3 1 82 c0

 1.0 181.5 7.9 563.3 0.1 2.8 0.5 15.3 3 82 c0t0d0

 82.4 0.0 27226.5 0.0 0.0 2.5 0.0 29.9 0 197 c1

 2.9 0.0 1012.7 0.0 0.0 0.1 0.0 31.4 0 6 c1t50060482CC369DD8d217

 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 4 c1t50060482CC369DD8d204

 9.8 0.0 4922.4 0.0 0.0 0.4 0.0 43.3 0 39 c1t50060482CC369DD8d185

 22.6 0.0 3776.2 0.0 0.0 0.3 0.0 14.0 0 23 c1t50060482CC369DD8d177

 15.7 0.0 3211.0 0.0 0.0 0.3 0.0 21.2 0 26 c1t50060482CC369DD8d120

 16.7 0.0 7788.1 0.0 0.0 0.8 0.1 50.6 0 63 c1t50060482CC369DD8d119

 2.9 0.0 1012.8 0.0 0.0 0.1 0.0 31.9 0 7 c1t50060482CC369DD8d115

 5.9 0.0 2504.4 0.0 0.0 0.1 0.0 21.5 0 11 c1t50060482CC369DD8d110

 2.0 0.0 997.1 0.0 0.0 0.1 0.0 38.9 0 8 c1t50060482CC369DD8d88

 264.0 5.9 50616.6 5.9 0.0 6.4 0.0 23.8 0 289 c2

 2.0 0.0 510.3 0.0 0.0 0.0 0.0 23.2 0 5 c2t50060482CC369DD7d217

 2.9 0.0 1004.9 0.0 0.0 0.1 0.0 35.5 0 7 c2t50060482CC369DD7d194

 27.5 0.0 4365.2 0.0 0.0 0.5 0.0 17.2 0 33 c2t50060482CC369DD7d185

 1.0 0.0 502.5 0.0 0.0 0.0 0.0 33.3 0 3 c2t50060482CC369DD7d183

 26.5 0.0 5040.4 0.0 0.0 0.5 0.0 17.1 0 32 c2t50060482CC369DD7d177

 7.9 0.0 2959.9 0.0 0.0 0.3 0.0 32.7 0 22 c2t50060482CC369DD7d120

 58.9 0.0 9052.4 0.0 0.0 2.1 0.0 35.7 0 61 c2t50060482CC369DD7d119

 4.9 0.0 1523.1 0.0 0.0 0.2 0.0 34.1 0 12 c2t50060482CC369DD7d115

 23.6 0.0 1232.6 0.0 0.0 0.4 0.0 16.3 0 8 c2t50060482CC369DD7d110

 0.0 2.0 0.0 2.0 0.0 0.0 0.0 0.8 0 0 c2t50060482CC369DD7d105

 6.9 0.0 1837.2 0.0 0.0 0.2 0.0 24.5 0 12 c2t50060482CC369DD7d88

 43.2 0.0 9547.3 0.0 0.0 1.0 0.0 22.3 0 40 c2t50060482CC0E969Ad96

 44.2 0.0 12397.4 0.0 0.0 1.2 0.0 27.0 0 47 c2t50060482CC0E969Ad72

 171.8 1.0 50729.3 502.5 0.0 5.4 0.0 31.5 0 312 c3

 2.0 0.0 1005.0 0.0 0.0 0.1 0.0 31.8 0 6 c3t50060482CC369DD8d217

 2.9 0.0 1499.6 0.0 0.0 0.1 0.0 38.8 0 10 c3t50060482CC369DD8d185

 22.6 0.0 6069.3 0.0 0.0 0.6 0.0 28.8 0 38 c3t50060482CC369DD8d177

 2.9 0.0 989.3 0.0 0.0 0.1 0.0 47.3 0 9 c3t50060482CC369DD8d126

 3.9 0.0 2010.0 0.0 0.0 0.1 0.0 37.0 0 14 c3t50060482CC369DD8d120

 29.4 0.0 9210.0 0.0 0.0 0.9 0.0 31.9 0 65 c3t50060482CC369DD8d119

 4.9 0.0 1122.8 0.0 0.0 0.1 0.0 30.4 0 8 c3t50060482CC369DD8d110

 0.0 1.0 0.0 502.5 0.0 0.0 0.0 12.1 0 1 c3t50060482CC369DD8d108

 2.0 0.0 675.2 0.0 0.0 0.1 0.0 38.6 0 6 c3t50060482CC369DD8d88

 35.3 0.0 12853.2 0.0 0.0 1.7 0.0 47.4 0 67 c3t50060482CC0E9696d96

 55.0 0.0 12248.7 0.0 0.0 1.2 0.0 21.7 0 66 c3t50060482CC0E9696d72

 1.0 172.7 7.9 558.9 0.1 2.4 0.3 13.8 1 81 c4

 1.0 172.7 7.9 558.9 0.1 2.4 0.3 13.8 3 81 c4t0d0

 161.9 0.0 32892.5 0.0 0.0 3.6 0.0 22.4 0 226 c5

 4.9 0.0 2010.1 0.0 0.0 0.1 0.0 29.3 0 11 c5t50060482CC369DD7d217

 2.9 0.0 1012.9 0.0 0.0 0.0 0.0 16.3 0 5 c5t50060482CC369DD7d211

 2.0 0.0 502.5 0.0 0.0 0.1 0.0 53.9 0 6 c5t50060482CC369DD7d204

 32.4 0.0 3941.7 0.0 0.0 0.4 0.0 13.5 0 34 c5t50060482CC369DD7d185

 24.5 0.0 3878.9 0.0 0.0 0.6 0.0 23.5 0 22 c5t50060482CC369DD7d177

 2.9 0.0 997.2 0.0 0.0 0.2 0.0 60.4 0 13 c5t50060482CC369DD7d152

 3.9 0.0 1515.5 0.0 0.0 0.1 0.0 26.5 0 7 c5t50060482CC369DD7d135

 2.0 0.0 1005.1 0.0 0.0 0.1 0.0 37.3 0 6 c5t50060482CC369DD7d126

 38.3 0.0 4263.8 0.0 0.0 0.5 0.0 12.1 0 33 c5t50060482CC369DD7d120

 31.4 0.0 9713.2 0.0 0.0 1.2 0.0 37.2 0 65 c5t50060482CC369DD7d119

Sar –d output example. Note that the output has been passed through grep –v to omit lines with all zero statistics.
> sar -d 1 5 | grep -v "0 0.0 0 0 0.0 0.0"

SunOS king 5.10 Generic_118833-33 sun4u 02/18/2008

11:14:40 device %busy avque r+w/s blks/s avwait avserv

 md8 0 0.0 1 16 0.0 2.2

 md9 0 0.0 1 16 0.0 3.6

 md104 0 0.0 1 16 4.6 3.7

 sd15 1 0.0 2 17 0.0 4.0

 sd15,d 0 0.0 1 1 0.0 4.5

 sd15,f 0 0.0 1 16 0.0 3.6

 ssd0 1 0.0 2 17 0.0 2.8

 ssd0,d 0 0.0 1 1 0.0 3.5

 ssd0,f 0 0.0 1 16 0.0 2.1

 ssd11 7 0.2 3 32 0.0 70.5
 ssd11,c 7 0.2 3 32 0.0 70.5
 ssd15 0 0.0 1 1 0.0 3.9

 ssd15,c 0 0.0 1 1 0.0 3.9

 ssd54 7 0.1 1 1 0.0 69.9
 ssd54,c 7 0.1 1 1 0.0 69.9
 ssd58 14 0.1 1 31 0.0 143.8
 ssd58,c 14 0.1 1 31 0.0 143.8
 ssd64 0 0.0 1 31 0.0 2.3

 ssd64,c 0 0.0 1 31 0.0 2.3

 ssd67 9 0.1 1 31 0.0 93.8
 ssd67,c 9 0.1 1 31 0.0 93.8
 ssd68 1 0.0 3 47 0.0 4.3

 ssd68,c 1 0.0 3 47 0.0 4.3

 ssd69 0 0.0 1 1 0.0 3.8

 ssd69,c 0 0.0 1 1 0.0 3.8

 ssd192 7 0.1 1 1 0.0 70.2
 ssd192,c 7 0.1 1 1 0.0 70.3
 ssd194 1 0.0 2 47 0.0 4.4

 ssd194,c 1 0.0 2 47 0.0 4.4

 ssd196 1 0.0 2 47 0.0 3.0

 ssd196,c 1 0.0 2 47 0.0 3.0

 ssd201 7 0.1 2 31 0.0 70.4
 ssd208 0 0.0 1 1 0.0 3.9
Network

Various network tools exist to examine network traffic, throughput and the like. You may find that many of them (such as snoop) are available only to privileged users. As with disk, you need to know what your thresholds are. The latency times I find acceptable in my shop [Millsap 2003]:
SQL*Net transmission via WAN

200 ms (.2 seconds)

SQL*Net transmission via LAN

 15 ms (.015 seconds)

SQL*Net transmission via IPC

 1 ms (.001 seconds)

You also need to consider if the application is doing things in the right place. Use arraysize to minimize round trips. Does the job really need to be run from the application server, or does the database server have enough spare capacity to run the job locally and remove the network from the response time equation?

Netstat

Often the best thing to look at is to see if you have large amounts of collisions and/or errors. This can be shown with netstat. Unfortunately, netstat reports statistics in packet format, so you only know packets per second (or higher averages, depending on the interval you pass as an argument). This does not tell you how big the packets are, nor can you get usable utilization data.
Here is an example of netstat output. There have been some errors since server startup, but none in the observed interval.
watson:/u01/home/oracle> netstat -irn 3

 input eri0 output input (Total) output

packets errs packets errs colls packets errs packets errs colls

792058224 0 860444922 6238 0 259604881 204267 -310421021 6238 0

1378 0 1578 0 0 4301 0 4483 0 0

1028 0 1172 0 0 5800 0 5925 0 0

527 0 546 0 0 6419 0 6413 0 0

480 0 506 0 0 6827 0 6834 0 0

490 0 543 0 0 5098 0 5132 0 0
There are other tools available. nicstat (part of the K9Toolkit) is available from http://www.brendangregg.com/K9Toolkit/nicstat.c

Nicstat shows read and write kilobytes and packets, average read and write in bytes, utilization and saturation. From the source code, the fields displayed are:
Int

Interface

rKb/s

read Kbytes/s

wKb/s

write Kbytes/s

rPk/s

read Packets/s

wPk/s

write Packets/s

rAvs

read Average size, bytes

wAvs

write Average size, bytes

%Util

%Utilisation (r+w/ifspeed)

Sat

Saturation (defer, nocanput, norecvbuf, noxmtbuf)

I did need to plug in a couple of extra libraries to generate an executable on my Solaris 10 machine.

> gcc -o nicstat nicstat.c -l kstat -l rt -l gen

> nicstat 1

 Time Int rKb/s wKb/s rPk/s wPk/s rAvs wAvs %Util Sat

09:20:39 ce0 95.65 4857.30 1550.59 3293.95 63.16 1510.00 4.06 0.00

09:20:39 ce1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

09:20:39 ce2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

09:20:39 ce3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

09:20:39 eri0 2.77 0.94 3.59 3.50 789.38 275.59 0.03 0.00

09:20:39 ge0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Time Int rKb/s wKb/s rPk/s wPk/s rAvs wAvs %Util Sat

09:20:40 ce0 1.45 0.00 6.00 0.00 246.67 0.00 0.00 0.00

09:20:40 ce1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

09:20:40 ce2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

09:20:40 ce3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

09:20:40 eri0 989.54 334.69 1270.00 1237.00 797.86 277.06 10.85 0.00

09:20:40 ge0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Using nicstat –z eliminates the lines that are all zeros.

> nicstat -z 1

 Time Int rKb/s wKb/s rPk/s wPk/s rAvs wAvs %Util Sat

09:39:44 ce0 95.62 4855.74 1550.10 3292.90 63.17 1510.00 4.06 0.00

09:39:44 eri0 2.77 0.94 3.60 3.50 789.39 275.59 0.03 0.00

 Time Int rKb/s wKb/s rPk/s wPk/s rAvs wAvs %Util Sat

09:39:45 ce0 0.67 0.00 5.00 0.00 136.80 0.00 0.00 0.00

09:39:45 eri0 1043.51 345.61 1331.00 1283.00 802.82 275.84 11.38 0.00

 Time Int rKb/s wKb/s rPk/s wPk/s rAvs wAvs %Util Sat

09:39:46 ce0 0.35 0.00 5.00 0.00 71.20 0.00 0.00 0.00

09:39:46 eri0 1050.25 348.00 1358.00 1313.00 791.94 271.40 11.45 0.00
Truss

Truss is a utility that provides a high level of detail about what is going on in a particular process on your server. It is used to trace system calls made by a process. Truss must be used with care, as it can cause significant slowdowns to the process.
Truss needs to be run by root or the owner of the process (oracle, for example).

Various handy switches:

-a

shows arg strings from each exec() call

-d

shows time stamp on each line, relative to beginning of the trace, in seconds.fraction format

-D

show time delta

-f

follow all children (fork() or vfork()) of the truss’d process

-o

output file the trace is written to
-p

process ID to be traced

Example syntax:

truss –adDf –o <outfile> -p <pid>

truss –adDf –o /tmp/truss_orcl.out –p m12345

Here we see an Oracle server process that performed the fnctl, close, fstatvfs, and pread system calls. Note the high time deltas for pread(), greater than 100 ms.
 time fsof elapsed syscall & parms

23606:
10.7471
 0.0001
fcntl(13, F_DUPFD, 0x00000100)

 = 257

23606:
10.7473
 0.0002
close(13)

 = 0

23606:
10.7474
 0.0001
fcntl(257, F_SETFD, 0x00000001)

 = 0

23606:
10.7475
 0.0001
fstatvfs(257, 0xFFFFFFFF7FFF6208)

 = 0

23606:
10.8782
 0.1307
pread(257, "0602\0\006C0 B FC8 <07 $".., 524288, 0x10918000) = 524288

23606:
11.1139
 0.2357
pread(257, "0602\0\006C0 B fF0BEBF\n".., 507904, 0x10998000) = 507904

23606:
11.2242
 0.1103
pread(256, "0602\0\00681B2C6EB91A1 @".., 524288, 0x6CB18000) = 524288

23606:
11.3268
 0.1026
pread(256, "0602\0\00681B2E6F0BEBF0E".., 507904, 0x6CB98000) = 507904

23606:
11.4325
 0.1057
pread(257, "0602\0\006C0 B86DCDE +FF".., 524288, 0x10A18000) = 524288

23606:
11.5063
 0.0738
pread(257, "0602\0\006C0 BA6F0BEBF H".., 507904, 0x10A98000) = 507904

23606:
11.5702
 0.0639
pread(256, "0602\0\00681B306F0BEBF L".., 524288, 0x6CC18000) = 524288

23606:
11.6475
 0.0773
pread(256, "0602\0\00681B3 &F0BEBF O".., 507904, 0x6CC98000) = 507904

23606:
11.7339
 0.0864
pread(257, "0602\0\006C0 BC6EE DE4 F".., 524288, 0x10B18000) = 524288

23606:
11.8250
 0.0911
pread(257, "0602\0\006C0 BE6EB85 FD1".., 507904, 0x10B98000) = 507904

23606:
11.8646
 0.0396
pread(256, "0602\0\00681B3 FF0BEBF W".., 524288, 0x6CD18000) = 524288

23606:
11.9016
 0.0370
pread(256, "0602\0\00681B3 fF0BFC9\b".., 507904, 0x6CD98000) = 507904

23606:
12.0232
 0.1216
pread(257, "0602\0\006C0 C06EE DE6F0".., 524288, 0x10C18000) = 524288

23606:
12.2208
 0.1976
pread(257, "0602\0\006C0 C &F0BFC914".., 507904, 0x10C98000) = 507904

23606:
12.3829
 0.1621
pread(256, "0602\0\00681B386F0BEBF `".., 524288, 0x6CE18000) = 524288

23606:
12.5267
 0.1438
pread(256, "0602\0\00681B3A6EB85 FF9".., 507904, 0x6CE98000) = 507904

23606:
12.6472
 0.1205
pread(257, "0602\0\006C0 C FF0BFC9 ".., 524288, 0x10D18000) = 524288

23606:
12.6921
 0.0449
pread(257, "0602\0\006C0 C fF0BEBF g".., 507904, 0x10D98000) = 507904

References

McDougall, R.; Mauro, J.; Gregg, B. 2006. Solaris Performance and Tools: DTrace and MDB techniques for Solaris 10 and OpenSolaris, Prentice Hall

Millsap, C. V.; Holt, J. L. 2003. Optimizing Oracle Performance, O’Reilly: Sebastopol CA

Unix man pages for truss, vmstat, iostat
4 processors, all 1200 MHz

2 boards

5

Paper #108

