Architecture and Infrastructure

Shell Scripting Interfaces

with Dialog and Zenity

Ray Smith, Portland General Electric

Shell Scripting Interfaces with Dialog and Zenity

Most shell scripts provide a static interface between a single user (generally the administrator or cron) and the server. When user input is required, solutions can range from simple to elegant. This session will demonstrate how to program useful (even attractive) interfaces between your users and the shell.

Techniques to solicit user input

You can employ several methods for configuring shell scripts to run with different parameters.

1. Edit static values

2. Input variables

3. Prompts for user values

Method 1: Edit Static Values

Nothing beats tested, static values in a file for consistent and repeatable shell script performance. Parameter files sourced by the scripts or grabbing from the environment are easy to configure and provide a scalable solution when similar tasks require situation-specific values.

This method works well when all of the system’s users are trusted, trained, and well-qualified. However, when multiple users of varied technical competence are involved you need a solution that keeps those people out of the files. Run-time customization has to come from solicited input or by requiring values at the command line.

Method 2: Input Variables

Shell scripts can be written t require command-line input by using numbered values for variables. Unix and Linux both recognize positional parameters from command line input.

Echoing a variable in the script named $0 (that’s a zero) returns the name of the command being executed. If you qualify the path for that command, that will also be reflected in $0.

	 Command line
	Explanation

	> echo $0

-bash
	Echoes the shell, since there isn’t really a command here

	> ./illustrate_variables.sh

./illustrate_variables.sh
	Shell script illustrate_variables.sh is:

#!/bin/bash

echo $0

You can use other numbers represent the position of values passed from command line.

	Command line
	Explanation

	> vi illustrate_variables.sh

> ./illustrate_variables.sh Red White Blue

Variable dollar-zero is ./illustrate_variables.sh

Variable dollar-one is Red

Variable dollar-two is White
	Script illustrate_variables.sh is now:

#!/bin/bash

echo "Variable dollar-zero is $0"

echo "Variable dollar-one is $1"

echo "Variable dollar-two is $2"

	Notice that three variables were passed on the command line, but the script ignored the third one

This technique works well for shell scripts and particularly as a flexible, robust method of using the same script in cron jobs. For example, if the value for ORACLE_SID is declared as export ORACLE_SID=$1 inside the shell script, executing the script with the SID as the first command-line parameter sets that value in your script at run-time.

This method keeps the run-time user out of your file and ensures repeatable results. Although it can scale to a very large number of variables (if you enclose multi-digit values in quotation marks inside the script), it just isn’t very practical to expect users to type more than a few values on the command-line.

File edits and input variables represent the best means of customizing shell scripts for cron/automated tasks. Having a live user at a console opens your script to another dimension of usability.

Method: Prompt for User Values

The ‘read’ utility, dialog, and zenity are all means to the same end: Gathering user-defined values for use in your script.

The read utility has been around for along time. Through ‘read’, the user is prompted for values which are then processed by your script.

	Command line
	Explanation

	> ./read_demonstration.sh

What shall we say to the world? Hello

Hello world!
	#!/bin/bash

read -p "What shall we say to the world? " myResponse

echo "${myResponse} world!"

Cautionary side note

When you allow users to enter (fundamentally) free-form information in response to your questions, formerly simple scripts can become complex quickly. Answer validation (does it exist and is it in the right form), data and format manipulation (changing case to whatever the script expects to), and answer acceptability (is the answer something the script can handle) must all be handled through if or case statements, string manipulation, and error handling routines.

The read program has been around for a very, very long time and forms the basis for command-line interactions we’re all familiar with. We know from experience that our next interaction with the computer will come at the command line, and that same command line will probably be at the bottom of the screen.

What if you have group of otherwise-talented users who are used to GUI interfaces but, for whatever reason, must log into a Linux server to perform some task? There is a good chance they will not read all the output written to the screen and an even greater chance they’ll lose track of the command line as soon as they look away from the screen for a moment.

My first large-scale interactive programming task on Linux was a schema cloner routine that, based on user input, created new schemas from existing schemas by having the users type-in names for the source and target schemas and wait for completion.

Then we added some complications:

1. Copy schemas between databases

2. Clones from some databases could only go to certain other databases

3. Users had to be authenticated on two databases

4. Decisions about over-writing target schemas of the same name

5. If multiple copies were being made, should we reuse the same export dump file

6. What should the target schema be called

7. Who else should receive an email when this clone was complete

After all the user information was collected, the script would run and then it needed answer to a couple questions about the new schema and wanted instructions about the dump. If the users were patient and their situation allowed calm thought, they were typically able to cope with finding the command line. If either of those conditions were not met I had to sit with them while they ran the program. I had three alternatives:

· Perform all their work for them

· Watch over their shoulder while they do it (once or twice is fine . . .)

· Make the program GUI using dialog or zenity

Dialog Package

Dialog is a program that will let you to present a variety of questions or display messages using dialog boxes from within a shell script.

	Option Type
	Example
	Purpose

	Calendar
	dialog –calendar “What day is it?” 0 0 25 12 2008
	Interactive GUI calendar for user to select dates. Notice the additional numerals in the string (date, month, year)

	Checklist
	dialog --checklist "Pick all you like" 0 0 0 \

 "1)" "One Selection" "on" \

 "2)" "Another Guess" "off"
	Three columns are required

1. The value to be returned to the script

2. A description

3. Default status of the check box

	Dselect
	dialog --dselect /etc 0 0
	Select a directory from a tree

	Editbox
	dialog –editbox hello.txt 0 0
	Edit a file from the dialog box

	Form
	
	Beyond scope of this presentation

	Fselect
	dialog --fselect /etc 0 0
	Select a file from a tree

	Gauge
	dialog –gauge “Look, progress” 0 0
	Display progress for a background process

	Infobox
	dialog –infobox “Your message here” 0 0
	Textual information flashed on the screen

	Inputbox
	See below
	Input box received typed data from the user

	Menu
	dialog --menu "Please select something" 0 0 0 \

 "A)" "Make popcorn" \

 “B)" "Open a cool one" \

 "3)" "Go back to work"
	Select an item from the menu. Third numeral is for the number of items to display in the list

	Mixedform
	
	Beyond the scope of this presentation

	Mixedgauge
	
	Beyond the scope of this presentation

	Msgbox
	dialog –msgbox “Hello, world” 0 0
	Same as infobox

	Passwordform
	See examples below
	

	Pause
	dialog –pause “Please wait” 10 30 5
	Third numeral is for wait time. Time is counted down on the form

	Progressbox
	dialog –progressbox 0 0
	Box displays progress of a background process. No text is displayed

	Radiolist
	dialog --radiolist "Pick any one" 0 0 0 \

 "1)" "One Selection" "on" \

 "2)" "Another Guess" "off"
	Box displays a list with radio buttons

	Tailbox
	dialog –tailbox hello.txt 0 0
	Display the contents of a file. No edits

	Textbox
	dialog –textbox “Hello, world” 0 0
	Box to display text information

	Timebox
	dialog --timebox "It is now" 0 0 11 30 00
	

	yesno (yes/no).
	See examples below
	Form displays a question and two buttons, labeled Yes and No

Help is available by typing ‘dialog -- help’ or ‘man dialog’.

Working With Dialog

All dialog commands consist of four mandatory elements

1. Call the program

2. Name the functionality to use, plus text or option

3. Height of the display box. Hint: Setting height and width values to zeroes allows dialog to select the proper size

4. Width of the display box

Parameters are always preceded by two hyphens (dash-dash)

dialog --msgbox "Hello world" 12 80

#!/bin/bash

file: dialog_demo_01.sh

dialog --inputbox "Who are you: " 12 80 2>tempfile.lst

echo "`cat tempfile.lst` is the responder"

Cases and If Statements

In most cases, responding to the user input requires a ‘case’ or ‘if’ statement.

#!/bin/bash

file: dialog_demo_01.sh

dialog --inputbox "Who are you: " 12 80 2>tempfile.lst

export myAnswer=`cat tempfile.lst`

echo "${myAnswer} is the responder"

dialog --yesno "Does ${myAnswer} seem like a real user?" 12 80

case $? in

0) echo "Reality is elusive";;

1) echo "That depends on what real user means";;

*) exit 0;;

esac

In this example the case statement is responding to dialog’s response code:

$ = 0 means they pressed the Yes button

$? = 1 means they pressed the No button

If no response was given ($? is anything but 0 or 1), quit the application.

Case statements should always be written with error handling (case = *). This could consist of simply cajoling the user, exiting cleanly, or running a clean-up/shut-down procedure to remove temporary files and write out logs, etc.

Formatting Hints

Multiple line format is encouraged, with ‘ \ ’ continuation characters. Decide which of these identical strings you’d rather edit when you revisit this script in a few months:

dialog --backtitle "Sample Dialog Application" --clear --title "Database Selection" --timeout 90 --entry "Justify your preference” 2>/export/home/oracle/dialogs/temp/yougettheidea.lst

dialog --backtitle "Sample Dialog Application" \

 --clear \

 --title "Database Selection" \

 --timeout 90 \

 --entry "Justify your preference” \

 2>/export/home/oracle/dialogs/temp/yougettheidea.lst

Use shell variables for recurring values (title test, etc.)

#!/bin/bash

file: dialog_demo_03.sh

export myTitle=" Dialog Demo "

export myHeight=10

export myWidth=75

dialog
--title "${myTitle}" --clear \

--inputbox "Who are you: " \

"${myHeight}" "${myWidth}" 2>tempfile.lst \

--and-widget

export myAnswer=`cat tempfile.lst`

echo "${myAnswer} is the responder"

dialog
--title "${myTitle}" --clear \

--yesno "Does ${myAnswer} seem like a real user?" \

"${myHeight}" "${myWidth}"

retval=$?

case $retval in

0) dialog --title "${myTitle}" --infobox "Reality is elusive" "${myHeight}" "${myWidth}";;

1) dialog --title "${myTitle}" --infobox "That depends on what real user means" "${myHeight}" "${myWidth}";;

 *) echo "Failed gracefully";;

esac

Example: Simple Dialog Input Box

The shell script below launches two dialog boxes that ask a question and evaluate the response.

[image: image1.png]< Applications Places ~System

Sun Mar 16, 12:45 PM * gif]

23

g germinall

Ele Edit View Terminal Tabs Help

)

Who are you? |

T 8
[Fabulisimof] I
1 —

who_are_youL.sh (~/Desktopjcollaborate08) - gedit

Ele Edit View Search Tools Documents Help

& .3 < q
New Open Save | Print.. | Undo Redo | Cut Copy Paste | Find Replace

3 who_are_youlsh %

dialog --inputbox 550 2>tempfile.lst
export

dialog --yesno 550

Are you really Fabulisimo?

es < No >

L __

case n

0) dialog --infobox 5 50;;
1) dialog --infobox 5'50;;
*) echo i

esac

Ln3, Col 37

I knew it was you

rays on rays-mondo > | |

23):|[@ [collaborate0s - File B... | (# who_are_youl.sh (~/... | @ Terminal & Terminal

& Terminal

The syntax on the first line of the shell script consists of six parts that are found in most dialog commands:

1. The command line starts with the name of the application (dialog)

2. Pass a ‘type’ command (--inputbox, that is ‘dash dash inputbox’)

3. Ask the user a question (“Who are you?”). Text statements are always enclosed in double-quotes.

4. The height of the dialog box in screen rows (5)

5. The width of the dialog box in screen columns (50)

6. Redirection of standard output to a file. These values can also be passed into a named variable.

In this example the results of the first statement (standard output captured in a file and turned into variable $myAnswer) are fed into the second dialog screen as feedback to the user. This is a useful technique when assembling related information:

1. Dialog asks: “Which database do you want to connect to?”
Answer: Silver

2. Dialog asks: “What is the name of your account on silver?”
Answer: Nancy12

3. Dialog ask: “What is the password for Nancy12 on silver?”
Answer: mobblybobbly31

4. Script exports a connect string of nancy12/mobblybobbly31@silver and work continues . . .

You improve the friendliness of your application by reminding the user of their previous answer. You also reduce the ambiguity of the question! Two fine goals.

Zenity Package

Zenity is an improvement on Xdialog, the x-windows version of dialog. Zenity that provides most of the core dialog box types with reduced functionality but a significantly more attractive presentation layer. The presentation is the result of passing widgets to the X-server instead of painting the terminal window with standard output like dialog does.

	Option type
	Example
	Purpose

	calendar
	zenity --calendar --text "Pick your favorite day" \

 --title "Collaborate08" \

 --day 14 --month 4 --year 2008
	Simple list of values

	checklist
	zenity --list --text "Favorite conference activity?" \

 --checklist \

 --column "Value" --column "Activity" \

 TRUE "Standing in line" \

 TRUE "Looking at geeks" \

 FALSE "Thinking about work" \

 FALSE "Reading papers" \

 --separator=":"
	List of values with check boxes. First column must consist of TRUE and FALSE values

	entry
	zenity --entry --text "Who are you?"

zenity --entry --text "Who are you?" --entry-text "Me"
	Solicit user feedback without an icon on the dialog box. Like all entry boxes, default values can be given to the user through entry-text option

	error
	zenity --error --text "Something is not right, at all"
	Notify user of error condition

	file-selection
	zenity --file-selection

zenity --file-selection --save --confirm-overwrite
	Select a file from familiar GUI tree

Additional options:

 zenity --help-file-selection

	info
	zenity --info --text "Welcome to Denver"
	Pass information to user

	progress
	zenity --progress --pulsate
	Display progress of program element

	question
	zenity --question --text "Who are you”
	Prompt user for a string or value

	radiolist
	zenity --list --text "Is this a decent paper?" --radiolist \

 --column "Value" --column "Feedback" \

 TRUE “Astounding” \

 FALSE “Boring” \

 FALSE "Unfit for humans"
	List of values with radio buttons. First column must consist of TRUE and FALSE values

	scale
	zenity --scale --text "Select a value" --min-value=2 --max-value=100 –value1 --step 2
	Allow the user to select a number within a defined range

	text-info
	ls | zenity –text-info –title “Files here”
	Post information to user, generally as the last piped command as shown

	warning
	zenity --warning --text "Calamity will ensue. Continue?"
	Prompt for user verification of action

	Paste the example scripts at a Linux command prompt to view the results

Help is available by typing ‘zenity -- help’ or ‘man zenity’.

About the Examples in this Paper

Microsoft Word has done its best to rewrite all of my apparent misspellings and punctuation errors, particularly by capitalizing keywords like ‘dialog’ and ‘zenity’, arbitrarily replacing double hyphens with a long dash, and replacing straight quotation marks with enhanced marks. All of the script examples in this paper will work in bash, if you un-correct these format errors introduced by this overly-helpful word processing program.

Final Word

This introductory paper was intended to improve your comfort-level when experimenting with dialog and zenity. After you’ve played with the examples, try building a simple application. Get familiar with the man and help pages. Have fun!

Demonstration Scripts

These scripts were used to demonstrate the key concepts during the conference.

#!/bin/bash

file: betterflow_d.sh

myTEMP=/tmp/tempfile.txt

export myBACKTITLE="Collaborate08 Session 741 Demonstration"

dialog --backtitle "${myBACKTITLE}" --clear --timeout 90 \

 --inputbox "Enter username" 0 0 2>${myTEMP}

export myUSER=`cat ${myTEMP}`

dialog --backtitle "${myBACKTITLE}" --clear --timeout 90 \

 --insecure --passwordbox "Enter password" 0 0 2>${myTEMP}

export myPASS=`cat ${myTEMP}`

dialog --backtitle "${myBACKTITLE}" --clear --timeout 90 \

 --default-item "URANIUM" \

 --menu "Select the database instance" 0 50 5 \

 "NICKEL" "Five Cent Database" \

 "URANIUM" "Not-For-Export Database" \

 "CUSTOM" "User defined instance" 2>${myTEMP}

retval=$?

case $retval in

 0) mySOURCESID=`cat ${myTEMP}`

 export myCONNECT="${myUSER}/${myPASS}@${mySOURCESID}";;

 1) echo "No database was selected"

 exit 0 ;;

 *) exit 0 ;;

esac

echo "set myCONNECT=${myCONNECT}"

dialog --backtitle "${myBACKTITLE}" --clear \

 --title "Connect String Acceptance" \

 --timeout 90 \

 --yes-label "Accept" \

 --no-label "Reject" \

 --yesno "Connect string for this session
is `echo ${myCONNECT}`" 15 50

#!/bin/bash

file: calendar_d.sh

myTEMP=/tmp/temp_file.lst

dialog --calendar "What day is it, anyhow?" 0 0 22 12 2008 2>$myTEMP

case $? in

 0) dialog --infobox "The date is `cat $myTEMP`" 0 0;;

 *) exit 0;;

esac

#!/bin/bash

file: calendar_z.sh

zenity --calendar \

 --title "Select a date" \

 --text "Pick any date from this lovely calendar" \

 --day=16 --month=4 --year=2008

#!/bin/bash

file: inputbox_d1.sh

export myTEMP=/tmp/temptext.lst

dialog --inputbox "Who are you: " 0 0 2>${myTEMP}

echo "`cat ${myTEMP}` is the responder"

#!/bin/bash

file: inputbox_d2.sh

myTEMP=/tmp/tempfile.txt

dialog --inputbox "Enter username" 0 0 2>$myTEMP

 export myUSER=`cat $myTEMP`

dialog --inputbox "Enter password" 0 0 2>$myTEMP

 export myPASS=`cat $myTEMP`

dialog --inputbox "Which database?" 0 0 2>$myTEMP

 export mySID=`cat $myTEMP`

export myCONNECT=${myUSER}/${myPASS}@${mySID}

echo ${myCONNECT}

dialog --infobox "Connect string for this session is ${myCONNECT}" 0 0

#!/bin/bash

file=inputbox_z.sh

export myName=`zenity --entry --text "Who are you?"`

zenity --question --text "Are you really $myName ?"

case $? in

 0) zenity --info --text "I knew it was you";;

 1) zenity --error --text "Show some ID, please";;

 *) echo "Unexpected error has occurred";;

esac

#!/bin/bash

file: listmenu_d.sh

export myTEMP=/tmp/temptest.txt

dialog --title "Source Database Selection" \

 --menu "Select the source database instance from this list" 17 80 6 \

 "CADMIUM" "Glowing Database" \

 "NICKEL" "Five Cent Database" \

 "URANIUM" "Not-For-Export Database" \

 "CUSTOM" "User defined instance" 2> ${myTEMP}

retval=$?

case $retval in

 0) mySOURCESID=`cat ${myTEMP}`;;

 1) exit 0 ;;

 255) exit ;;

esac

export mySOURCESID=`echo ${mySOURCESID}|tr '[:lower:]' '[:upper:]'`

case `echo ${mySOURCESID}` in

 CADMIUM) echo "Logging into CADMIUM . . .";;

 NICKEL) echo "Logging into NICKEL . . .";;

 URANIUM) echo "Logging into URANIUM . . .";;

 CUSTOM) read -p "Enter the SID you want: ";;

 *) exit 0;;

esac

#!/bin/bash

file=listmenu_z.sh

mySID=`zenity --list \

 --title "Source Database Selection" \

 --text "Select the source database instance from this list" \

 --column "SID" --column "Description" \

 "CADMIUM" "Glowing Database" \

 "NICKEL" "Five Cent Database" \

 "URANIUM" "Not-For-Export Database" \

 "CUSTOM" "User defined instance" `

case `echo $mySID` in

 CADMIUM) echo "Logging into CADMIUM . . .";;

 NICKEL) echo "Logging into NICKEL . . .";;

 URANIUM) echo "Logging into URANIUM . . .";;

 CUSTOM) read -p "Enter the SID you want: ";;

 *) exit 0;;

esac

#!/bin/bash

file: passwords_d1.sh

export myTEMP=/tmp/temptext.txt

dialog --passwordbox "Enter your secret password: " 15 35 2>${myTEMP}

case $? in

 0) echo "Your password is `cat ${myTEMP}`" ;;

 1) echo "No answer was given" ;;

 255) exit 0 ;;

esac

#!/bin/bash

file: passwords_d2.sh

export myTEMP=/tmp/temptext.txt

dialog --passwordbox "Enter your secret password: " 15 35 2>${myTEMP}

case $? in

 0) echo "Your password is `cat ${myTEMP}`" ;;

 1) echo "No answer was given" ;;

 255) exit 0 ;;

esac

#!/bin/bash

file: passwords_z.sh

export myVal=`zenity --entry \

 --text "Enter your secret password " \

 --entry-text "someseedvalue" \

 --hide-text`

case $? in

 0) echo "Your password is ${myVal}" ;;

 1) echo "No answer was given";;

 -1) exit 0;;

esac

#!/bin/bash

file: returncodes_d1.sh

export myTEMP=/tmp/tempfile.lst

dialog --inputbox "Who are you?" 5 50 2>${myTEMP}

export myAnswer=`cat ${myTEMP}`

dialog --yesno "Are you really ${myAnswer}?" 5 50

retval=$?

case $retval in

 0) dialog --infobox "I knew it was you" 5 50;;

 1) dialog --infobox "Show some ID, please" 5 50;;

 *) exit 0;;

esac

#!/bin/bash

file: returncodes_z.sh

myWhom=`zenity --entry \

 --text="Who are you: "`

myGuess=`zenity --list \

 --radiolist \

 --text="${myWhom} is the responder. Does he/she seem like a real user?" \

 --column "Pick" --column "Educated Guess" \

 TRUE "Yes" \

 FALSE "No" \

 FALSE "Maybe"`

case ${myGuess} in

 Yes) zenity --info \

 --text="He has all of us fooled";;

 No) zenity --info \

 --text="He seems kind of unreal";;

 Maybe) zenity --info \

 --text="Define a real user";;

sac
Sample dialogrc Files

#

Run-time configuration file for dialog

Types of values:

Number - <number>

String - "string"

Boolean - <ON|ON>

#

use_shadow = ON

use_colors = ON

screen_color = (BLUE,WHITE,ON)

shadow_color = (BLACK,BLACK,ON)

dialog_color = (WHITE,BLUE,ON)

title_color = (WHITE,BLUE,ON)

border_color = (WHITE,BLUE,ON)

button_active_color = (WHITE,BLUE,ON)

button_inactive_color = (BLACK,BLUE,ON)

button_key_active_color = (YELLOW,BLUE,ON)

button_key_inactive_color = (BLACK,BLUE,ON)

button_label_active_color = (YELLOW,BLUE,ON)

button_label_inactive_color = (BLACK,BLUE,ON)

inputbox_color = (YELLOW,BLUE,ON)

inputbox_border_color = (BLUE,YELLOW,ON)

searchbox_color = (BLACK,WHITE,ON)

searchbox_title_color = (BLUE,WHITE,ON)

searchbox_border_color = (WHITE,WHITE,ON)

position_indicator_color = (WHITE,BLUE,ON)

menubox_color = (WHITE,BLUE,ON)

menubox_border_color = (WHITE,BLUE,ON)

item_color = (WHITE,BLUE,ON)

item_selected_color = (WHITE,BLUE,ON)

itemhelp_color = (WHITE,BLACK,ON)

tag_color = (WHITE,BLUE,ON)

tag_selected_color = (YELLOW,BLUE,ON)

tag_key_color = (YELLOW,BLUE,ON)

tag_key_selected_color = (RED,YELLOW,ON)

check_color = (BLACK,WHITE,ON)

check_selected_color = (WHITE,WHITE,ON)

uarrow_color = (BLACK,WHITE,ON)

darrow_color = (BLACK,WHITE,ON)

form_active_text_color = (GREEN,BLUE,ON)

form_text_color = (WHITE,GREEN,ON)

#

Run-time configuration file for dialog

#

Automatically generated by "dialog --create-rc <file>"

use_shadow = ON

use_colors = ON

screen_color = (CYAN,BLUE,ON)

shadow_color = (BLACK,BLACK,OFF)

dialog_color = (BLACK,WHITE,OFF)

title_color = (BLUE,WHITE,ON)

border_color = (BLACK,WHITE,OFF)

button_active_color = (WHITE,BLUE,ON)

button_inactive_color = (BLACK,WHITE,OFF)

button_key_active_color = (WHITE,BLUE,ON)

button_key_inactive_color = (RED,WHITE,OFF)

button_label_active_color = (YELLOW,BLUE,ON)

button_label_inactive_color = (BLACK,WHITE,ON)

inputbox_color = (BLACK,CYAN,OFF)

inputbox_border_color = (WHITE,WHITE,OFF)

searchbox_color = (BLACK,CYAN,OFF)

searchbox_title_color = (BLUE,WHITE,ON)

searchbox_border_color = (WHITE,WHITE,OFF)

position_indicator_color = (BLUE,WHITE,ON)

menubox_color = (WHITE,WHITE,OFF)

menubox_border_color = (WHITE,WHITE,OFF)

item_color = (BLACK,WHITE,OFF)

item_selected_color = (WHITE,BLUE,ON)

tag_color = (BLUE,WHITE,ON)

tag_selected_color = (YELLOW,BLUE,ON)

tag_key_color = (YELLOW,WHITE,ON)

tag_key_selected_color = (WHITE,BLUE,ON)

check_color = (BLACK,WHITE,OFF)

check_selected_color = (WHITE,BLUE,ON)

uarrow_color = (GREEN,WHITE,ON)

darrow_color = (GREEN,WHITE,ON)

itemhelp_color = (WHITE,BLACK,OFF)

$Id: slackware.rc,v 1.2 2001/12/02 21:19:05 Patrick.J.Volkerding Exp $

Run-time configuration file for dialog, matches Slackware color scheme.

#

Types of values:

#

Number - <number>

String - "string"

Boolean - <ON|OFF>

Attribute - (foreground,background,highlight?)

#

Shadow dialog boxes? This also turns on color.

use_shadow = ON

Turn color support ON or OFF

use_colors = ON

Screen color

screen_color = (WHITE,BLACK,OFF)

Shadow color

shadow_color = (WHITE,BLACK,OFF)

Dialog box color

dialog_color = (GREEN,BLACK,OFF)

Dialog box title color

title_color = (YELLOW,BLACK,ON)

Dialog box border color

border_color = (BLACK,BLACK,ON)

Active button color

button_active_color = (WHITE,BLUE,ON)

Inactive button color

button_inactive_color = (WHITE,BLACK,OFF)

Active button key color

button_key_active_color = (WHITE,BLUE,ON)

Inactive button key color

button_key_inactive_color = (CYAN,BLACK,OFF)

Active button label color

button_label_active_color = (WHITE,BLUE,ON)

Inactive button label color

button_label_inactive_color = (WHITE,BLACK,ON)

Input box color

inputbox_color = (BLUE,WHITE,OFF)

Input box border color

inputbox_border_color = (BLACK,BLACK,ON)

Search box color

searchbox_color = (YELLOW,WHITE,ON)

Search box title color

searchbox_title_color = (WHITE,WHITE,ON)

Search box border color

searchbox_border_color = (RED,WHITE,OFF)

File position indicator color

position_indicator_color = (YELLOW,BLACK,OFF)

Menu box color

menubox_color = (GREEN,BLACK,OFF)

Menu box border color

menubox_border_color = (BLACK,BLACK,ON)

#

Item color

item_color = (GREEN,BLACK,OFF)

Selected item color

item_selected_color = (RED,BLACK,OFF)

Tag color

tag_color = (YELLOW,BLACK,ON)

Selected tag color

tag_selected_color = (WHITE,BLUE,OFF)

Tag key color

tag_key_color = (CYAN,BLACK,OFF)

Selected tag key color

tag_key_selected_color = (GREEN,BLUE,ON)

Check box color

check_color = (CYAN,BLACK,OFF)

Selected check box color

check_selected_color = (WHITE,CYAN,ON)

Up arrow color

uarrow_color = (GREEN,BLUE,ON)

Down arrow color

darrow_color = (GREEN,BLUE,ON)

Item help-text color

itemhelp_color = (RED,BLACK,OFF)

16

Paper #716

