
David A Haas
The Nielsen Company

Session #421

ARE WE DONE YET?
CERTIFYING APPLICATION PERFORMANCE UNDER NEW DATABASE VERSIONS OR ARCHITECTURES

Speaker Qualifications

• Senior Director of Database Architecture
serving the Consumer Panel Services group
within the Nielsen Company.

• With over 20 years of experience with Oracle
relational database technology, I have participated in
the construction of data collection, automated data
production and decision support systems in a number
of roles during the growth of an entrepreneurial
startup company into a business unit within a global
provider of marketing information.

Overview
• Fear can cripple a cautious development team and

prevent upgrades necessary to maintain business
and technological relevance

• Lack of knowledge can allow a reckless development
team to make upgrades that render their application
unusable

• Application Development teams require proven
techniques to evaluate the impact of a change

• Empowering them to make the calculated risks
necessary for continued relevance

Environment & Upgrades
• Spectra’s Suite of Applications
• Upgrade from Oracle 8i to 9i
• Upgrade from Oracle 8i to 10g
• DBlinks Architecture
• Global Rollout

Spectra’s Suite of Applications
A web based marketing analytics system; combining proprietary methodology with in-house and
third party data staged in an operational data store, which generates individual data marts
focused by user selections
We typically refer to the data marts created by our application as reports, however, they contain
data which is not directly available in the database, created based on parameters supplied by the
end user targeted to resolve a specific sales or marketing issue.

Oracle 9i & 10g upgrades
The main goal was to maintain support from Oracle combined with underlying partition structure
eliminating some weaknesses within the current range partitions along with increased block size
for the fact tables within the schema

DBlinks Upgrade
Radical shift in database architecture isolating static and dynamic data content into separate
instances presented to the application as a single virtual instance using remote database links
Eliminating the largest part of the data release process, synchronization of user created assets.
We are now able to release updated data in minutes at any time during the week. Prior to this,
we were limited to releasing data on the weekend with 12-18 hours of downtime, depending on
users not creating new assets for 18 hours prior to the update.

Global Rollout
Our main concern in the upgrades was maintaining current performance levels, while simplifying
our support processes, increasing the quality of the deliverables and eliminating end user
downtime in preparation for a global rollout of our solutions.

Outline

1. Starting Assumptions
2. Test Case Selection
3. Benchmark Process
4. Proposed Environment
5. Final Comparison

Starting Assumptions
A. Test database and web/app server separately
B. Execute test cases serially in a fixed order
C. Utilize an isolated server/network

Test Components Separately
Ultimately end user perception of the system is all that matters
Impossible to capture performance benchmarks from this point of view
Focus on parts of the system impacted by change
In our case; running Java method calls directly on database server

Execute Test Cases Serially
Compute statistically reliable estimate of average performance for each test
Execute in consistent order and serial fashion to eliminate caching differences
Tests running in parallel impact the environment for every other test
Running individual cases serially reduces external performance impacts

Utilize an isolated Environment
Removes variance from network and application server layers
Ability to isolate database depends on storage environment
Accept variances for remaining tests that do not converge towards statistically reliable estimate of average
performance

Test Case Selection
A. Use "real world" test cases captured from end users
B. Create a subset ensuring full coverage of

conditional paths

Use "real world" test cases
Logging tables within our application capture all end user report requests
Extract report requests submitted by actual client users, not internal folks
Limited to reports from the past three months, ensures data availability
Covering a cross section of client usage patterns
Execution times within typical ranges, in order for any performance changes to actually be measurable and
avoiding iterations running for days

Create a subset
Requires process to analyze contents of sample
Review coverage and adjust parameters to generate representative tests
Select subset that maintains coverage of report types and conditional paths
Popularity of individual report types is not a factor at this time

Benchmark Process
A. Perform initial iterations of individual test cases and

capture total time for each
B. Evaluate the confidence interval of the average

performance for each test case
C. Continue iterations until you achieve the desired

confidence interval

Perform initial iterations
Run a small number of initial iterations to generate basic data and get a feel for both the average execution
time for an iteration and the amount of variance within the individual tests

Evaluate confidence intervals
Calculate 95% Confidence Interval using the number of executions for each test along with the standard
deviation
Divide this confidence interval by average execution time for the test to provide a relative measure of the
size of the confidence interval
Both values required to determine reliability of average performance estimate, variations of several minutes
may be acceptable on large reports running more than an hour while variations of one or two minutes are
totally unacceptable on small reports running under two minutes

Continue iterations
Identify tests without reliable estimate of average performance, in our case where the confidence interval
was greater than 30 seconds as long as it was more than 10% of average execution time
Initially one third of tests were outliers, continue iterations until number of outliers stabilizes the confidence
interval on remaining outliers may not converge towards statistically reliable average

An example of the aggregated results in both milliseconds and human readable format.

CONFIDENCE(0.05,60,2605)

(0:00:00.659/0:00:34.819)

Estimating the Average Performance
The benchmark process produces a log file containing: the timestamp at the start of execution, the elapsed
execution time in milliseconds, unique identifying information for the test along with the result code and any
error messages
These results are aggregated for each test across the available iterations calculating: the total number of
executions, the standard deviation for the execution time in milliseconds along with the average plus the
minimum/maximum values which are used for diagnostic purposes only
The confidence interval for report [2430506] is .659 seconds, this is determined using the CONFIDENCE()
function which accepts the alpha (in our case .05 to produce a 95% confidence interval), along with the
sample size (60) and standard deviation (2.605 seconds)
This means that we are 95% certain that the true mean performance for this report falls between 34.16 and
35.478 seconds, which is the current average plus or minus the confidence interval.
We then divide this confidence interval (.659 seconds) by current average execution time for the test (34.819
seconds) to provide a relative measure of the size of the confidence interval (in this case the remaining
variation is only 1.89% of the currently computed average execution time)

Confidence Intervals
• Sometimes referred to as “Margin of Error”
• Describes certainty/uncertainty of current estimate
• Provides range of values likely to contain true mean
• Interval size depends on variability within the sample
• Higher degrees of confidence expand the interval
• Increasing sample size shrinks the interval

About Confidence Intervals
Political polls typically report the percentage of likely voters in favor of a particular candidate along with a
margin of error for the results
The statistical method of using random samples to make determinations and inferences about the total
population, introduces a level of uncertainty in to the results.
The goal is for the average from the sample to closely approximate the actual average for the total
population from which the sample was obtained (the true mean).
The confidence interval is the range needed to specify with varying degrees of probability (or confidence)
that the current estimate closely approximates the true mean.
The amount of variability within sample is determined by how much the individual data points differ from
each other within the whole population.
Increased variability means that a larger interval is required, reduced variability means that the interval can
be smaller.
The level of confidence required also dictates the size of the interval, being 70% certain of something
requires a much smaller interval than being 90% certain.
Typically intervals are taking using a 95% level of certainty, meaning that it’s okay to be wrong 5% of the
time.
As the size of the samples get larger, the amount of variability goes down and the interval shrinks while still
maintaining the same level of certainty.

Stating your Results
The mean execution time for this test was 34.819 seconds and we'd expect future samples to fall between
34.16 seconds and 35.478 seconds 95% of the time.
The mean execution time for this test was 34.819 seconds +/- .659 seconds (with 95% Confidence).
The mean execution time for this test was 34.819 seconds with a 95% confidence interval of 34.16 seconds
to 35.478 seconds

of Outlier Reports 4 4:14:02 (hr:mi:se)

Confidence > 30 secs Average Minimum Maximum StdDev 95% Conf. Relative
Relative > 10% 0:01:07 0:00:47 0:01:41 0:00:14 0:00:04 7.29%

0:00:01 0:00:01 0:00:01 0:00:00 0:00:00 0.62%
0:15:05 0:13:45 0:24:08 0:04:04 0:01:16 39.22%

bytes TRUE 0:02:16 0:01:52 0:03:27 0:00:31 0:00:10 4.95%

Data
Report Type Client Report Id Sample Average Minimum Maximum StdDev 95% Conf. Relative
Demand Ranking by AccoCADBURY 4261552 40 0:00:24 0:00:20 0:00:29 0:00:03 0:00:01 3.52%

4289171 40 0:05:32 0:01:28 0:09:59 0:02:29 0:00:46 13.93%
DIAGEO 4369606 40 0:00:15 0:00:14 0:00:18 0:00:01 0:00:00 2.44%

4396824 40 0:00:09 0:00:08 0:00:13 0:00:01 0:00:00 3.19%
KELLOGG 4311264 40 0:00:28 0:00:25 0:00:33 0:00:02 0:00:01 2.35%

4312283 40 0:00:05 0:00:05 0:00:08 0:00:01 0:00:00 3.31%
4325170 40 0:00:08 0:00:07 0:00:10 0:00:01 0:00:00 3.80%
4427395 40 0:00:08 0:00:06 0:00:11 0:00:01 0:00:00 4.67%
4460088 40 0:08:29 0:03:11 0:15:29 0:04:04 0:01:16 14.82%

Demand Ranking by StoreBAUSCH 4267878 40 0:00:24 0:00:06 0:03:25 0:00:30 0:00:09 39.22%
4369019 40 0:00:51 0:00:27 0:01:44 0:00:19 0:00:06 11.40%

CADBURY 4252197 40 0:00:06 0:00:03 0:00:17 0:00:03 0:00:01 13.44%
4256316 40 0:02:12 0:00:34 0:04:13 0:01:02 0:00:19 14.48%
4262045 40 0:00:07 0:00:04 0:00:13 0:00:02 0:00:01 10.34%
4441389 40 0:00:14 0:00:13 0:00:15 0:00:01 0:00:00 2.04%

CBRANDS 4252036 40 0:00:10 0:00:06 0:00:21 0:00:03 0:00:01 9.57%
4266161 40 0:00:05 0:00:04 0:00:08 0:00:01 0:00:00 5.74%

Maximum
StdDev

Cycle Time

Average
Minimum

An example of the summary statistics used to look across all test cases and determine if additional iterations were required.

confidential

Evaluating the Benchmark
To determine the health of a benchmark, you need to identify the number of test cases which are outside of
your acceptable range of confidence intervals.
The total of the average execution time for all reports is the expected cycle time for each iteration
The average and maximum values for the Confidence Interval and Relative change can be used as a
diagnostic on the size of the intervals are on the remaining outliers.
The maximum value may not actually represent an issue based on the combination of the two thresholds.
Eventually the number of remaining outliers will either work themselves out with increased iterations or
stabilize at a small number which require more iterations than you are willing to wait for.

Proposed Environment
A. Perform initial iterations of individual test cases and

capture total time for each
B. Compare to current benchmark and focus on

extreme outliers
C. Evaluate individual queries within the outlier test

cases to mitigate issues
D. Repeat these steps until performance is within

defined service levels

Perform initial iterations
Perform as few iterations as possible
Shake out worst performance issues
Aggregates calculated for each test are identical to benchmark set

Compare to current benchmark
Compute actual difference in average execution times along with delta
Focus on most extreme differences in performance
Continue lowering the threshold to highlight the dozen tests with worst performance

Evaluate individual queries
Execute the test case again in both architectures and generate detailed log showing execution time for each
SQL statement
Review logs side by side, calculating difference in time for each statement
Analyze execution plans and actual performance for long running statements
Identify optimizer hints or other changes required to achieve comparable performance

Repeat these steps
Keep looping until performance is equivalent across both architectures
Avoid temptation to focus remaining iterations on specific tests
Measure impact of tuning across application, since fixes for one test could correct issues within other tests,
or it could cause other issues
Frequent executions with updated code are essential

of Outlier Reports 19 # of Reports within Confidence 59 4:14:02 6:09:30
of High Deltas 28

 (more than 1 StdDev above average) Difference Delta Average Average
Difference > 90 secs Average 0:00:35 45.03% 0:01:07 0:01:37

Delta > 10% Minimum 0:00:00 -94.64% 0:00:01 0:00:01
Maximum 0:09:07 299.60% 0:15:05 0:21:32

of Improved Reports 2 StdDev 0:01:23 60.84% 0:02:16 0:03:21

Report Type Client Report Id Confidence Difference Delta Average Average
CADBURY 4289026 > 0:00:12 122.30% 0:00:10 0:00:21

4403196 > 0:05:18 152.78% 0:03:28 0:08:46
4403607 > 0:00:05 67.97% 0:00:07 0:00:13
4450723 > 0:01:02 172.11% 0:00:36 0:01:39

CBRANDS 4273319 <= 0:00:00 -4.57% 0:00:07 0:00:07
4334078 <= 0:00:04 -12.82% 0:00:32 0:00:28

DIAGEO 4335450 > 0:00:06 24.29% 0:00:27 0:00:33
4372023 <= 0:00:04 20.95% 0:00:18 0:00:22
4391892 <= 0:00:03 6.09% 0:00:56 0:01:00

KELLOGG 4340159 > 0:00:03 39.08% 0:00:06 0:00:09
4340163 > 0:00:20 84.14% 0:00:24 0:00:45
4348433 <= 0:00:01 11.33% 0:00:10 0:00:11
4398827 > 0:00:00 27.40% 0:00:02 0:00:02

Best Products by Market or Account CADBURY 4441182 > 0:00:06 70.56% 0:00:08 0:00:13
CBRANDS 4280517 <= 0:02:27 20.18% 0:12:07 0:14:34
KELLOGG 4320662 <= 0:00:12 -59.14% 0:00:21 0:00:09

Best Products by Product CADBURY 4403019 > 0:00:35 73.60% 0:00:47 0:01:21
4441305 > 0:00:17 92.35% 0:00:19 0:00:36

CBRANDS 4440461 > 0:00:22 61.33% 0:00:36 0:00:59
DIAGEO 4348009 <= 0:00:00 0.00% 0:00:09 0:00:09

4352967 > 0:00:01 17.06% 0:00:08 0:00:09
KELLOGG 4320086 <= 0:01:32 -79.83% 0:01:56 0:00:23

An example of the summary statistics used to compare performance of test cases to focus on extreme outliers.

Confidential

Evaluating the Benchmark
To evaluate the architecture change, you need to review the differences in average performance across both
benchmarks.
Set thresholds in order to focus on most extreme differences in performance
Like the confidence intervals, you need to compare both the actual difference in average execution times
along with delta or relative change.
As you tune the problems out of the system, continue lowering the threshold to highlight the dozen tests with
worst performance
Near the end of the process, review tests where delta is more than one standard deviation above average
delta to find extreme differences in performance.
Compare both confidence intervals to determine if interval from proposed environment is less than or equal
to interval from current environment
Eventually you will run into performance differences that you cannot tune out of the new environment.

An example of the side by side comparison of the SQL log’s to identify which queries required tuning.

-- GeotradeSegmentation2.getDefaultB -- GeotradeSegmentation2.getDefaultB
TRUNCATE TABLE G_GEOTRADE_ 63 TRUNCATE TABLE G_GEOTRADE_D 78 15 23.81% 0:00:00
 -- ^63^20 -- ^78^20
INSERT INTO T_VALUE_LIST_80042 INSERT INTO T_VALUE_LIST_80042
 -- 1SELECT DISTINCT S.BASE_CL_ 297 -- 1SELECT DISTINCT S.BASE_CL_ 219 -78 -26.26% 0:00:00
 -- ^297^21 -- ^219^21
INSERT INTO G_GEOTRADE_DATA INSERT INTO G_GEOTRADE_DATA
 UNION ALL SELECT /*+ INDEX(B)*/ 26563 UNION ALL SELECT /*+ USE_NL(L B 31454 4891 18.41% 0:00:05
 -- 2372^26563^22 -- 2372^31454^22
INSERT INTO G_GEOTRADE_DATA INSERT INTO G_GEOTRADE_DATA
 UNION ALL SELECT /*+ INDEX(B)*/ 18578 UNION ALL SELECT /*+ USE_NL(L B 194801 176223 948.56% 0:02:56
 -- 1^18578^23 -- 1^194801^23
CREATE TABLE T_GT_COUNTS_TE 125 CREATE TABLE T_GT_COUNTS_TE 204 79 63.20% 0:00:00
 -- ^125^24 -- ^204^24
ANALYZE TABLE T_GT_COUNTS_T 157 ANALYZE TABLE T_GT_COUNTS_T 140 -17 -10.83% 0:00:00
 -- ^157^25 -- ^140^25
INSERT INTO T_CLEANUP_LIST_80 46 INSERT INTO T_CLEANUP_LIST_80 47 1 2.17% 0:00:00
 -- ^46^26 -- ^47^26
 -- Total Method time = 45844 -- Total Method time = 226959

-- GeotradeFacts.getGTFacts -- GeotradeFacts.getGTFacts
DROP TABLE T_GT_FACTS_800425 813 DROP TABLE T_GT_FACTS_800425 125 -688 -84.62% 0:00:01
 -- Threw an exception^813^27 -- Threw an exception^125^27
SELECT A.ID, A.CELL_TYPE, A.DATA 234 SELECT A.ID, A.CELL_TYPE, A.DATA 94 -140 -59.83% 0:00:00
 -- ^234^28 -- ^94^28
INSERT INTO T_VALUE_LIST_80042 156 INSERT INTO T_VALUE_LIST_80042 109 -47 -30.13% 0:00:00
 -- ^156^29 -- ^109^29

Current Architecture Proposed ArchitectureExecution
Time (ms) Execution

Time (ms)
Difference
(ms)

Percent
Difference

Difference
(h:mi:ss)

Working with Individual Test Cases
After pasting the logs in from both environments, there were formulas in the tan columns which extracted
the execution time for each step and given times in both environments calculated the difference in
performance
Look for the most extreme differences within the test case and focus on running that SQL again in both
environments
Sometimes you will need to grab some of the previous statements to set up the environment for your test
Compare the execution plans in both environments and add hints as necessary to bring the plans in line,
which hopefully also mitigates the performance issue.

Final Comparison
A. Regenerate both benchmarks with new code
B. Summarize results for the business

Regenerate both benchmarks
Best to repeat your initial benchmark with latest code
Strengthen benchmark in proposed environment
Reliable estimates of average performance are essential for final comparisons
Proceed once tests in both environments fall within desired confidence interval

Summarize results
Most difficult part of entire process
Need to summarize performance differences for review and approval by stakeholders
Exposing risks associated with architecture change
Create a normal distribution by collapsing tests into ranges by both actual difference and percentage change
Group the individual tests by report type based on actual usage
Show that worst performing tests are not indicative of a general problem within a specific class of test cases.

Final Results: Actual Difference in Average Execution Time

• Over 92% of the benchmark reports run 1½ min slower or less on average,
with 80% of the reports showing no detectable difference (or an improvement)
in performance.

• The execution plan hints to mitigate the remaining performance differences
resulted in much worse performance under the other prompt selections and
were rolled back.

2 3

178

26

10 9

0

25

50

75

100

125

150

175

200

> 3 min Faster > 1.5 min Faster > 30 sec Faster < 30 sec Change > 30 sec Slower > 1.5 min Slower > 3 min Slower

Difference in Average Execution Time

of

 R
ep

or
ts

Final Results: Percentage Change in Average Execution Time

• Over 86% of the benchmark reports were 100% slower or less on average,
with 64% of the reports showing no detectable difference (or an improvement)
in performance.

• The average difference in execution time is only 48 seconds for the reports
with a 200% increase or more and under 2 minutes for the reports with 100%
to 200% increase, in comparison, the average improvement is just over 1
minute.

4

143

50

23

8

0

25

50

75

100

125

150

175

200

> 50% Faster < 50% Change > 50% Slower > 100% Slower > 200% Slower

Delta in Average Execution Time

of

 R
ep

or
ts

Performance across Report Types
• Looking at all 228 individual prompt

sets across the 43 report types
tested; 64% are contained within
the green or blue zones.

• The average difference in
execution time is only 48 seconds
for the 8 entries stretching into the
red zone.

• The average difference in
execution time is under 2 minutes
for the 23 entries within the orange
zone.

• The average improvement in
execution time just over 1 minute
for the 4 entries in the blue zone.

• The 9 remaining outliers running 3
minutes longer or more under the
DB links are split evenly within the
yellow and orange zones with an
average percentage change of just
over 100%.

Percentage Change in
Average Execution Time

-100% 0% 100% 200% 300%
Repor t Bui l der by St or es

Demand Ranki ng by St or es

Consumer Pr of i l e (Gr i d)
B est Pr oduct s by T ar get

B est P r oduct s by Pr oduct

Consumer Pr of i l e (Demogr aphi cs)

T ar get Snapshot

Pr oduct Snapshot

Consumer Pr of i l e (Behavi or Scape) -

Demand Ranki ng by A ccount HQ

Account vs Mar ket (Demogr aphi cs)

Account vs M ar ket (Gr i d)

Account Snapshot

T ar geti ng Nat i onal Behavi or sRepor t B ui l der by Geogr aphy
Pr oduct vs Account Pr of i l es (Gr i d)

Pr oduct vs Account P r of i l es

Demogr aphi c Ranki ng by St or es

Best Pr oducts by Mar ket or Account

Repor t Bui l der by A ccount HQ

T ar get Ranki ng by Geogr aphy

T ar get Ranki ng by St or es

Demand A l l ocati on by St or es

Cl uster Snapshot

Stor e Pr oxi mi t y

Demogr aphi c Ranki ng by Geogr aphy

T ar get i ng Local M ar ket Behavi or s

Ret ai l I nter acti on by St or es

T ar get Ranki ng by A ccount HQ

Geogr aphy Compar i son (Demogr aphi cs)A ccount Ar ea Def i ni t i on

Demogr aphi c Ranki ng by A ccount HQ
Account vs Competi t or s (Gr i d)

Locat i onal Fact sAccount vs Compet i t or s (Demogr aphi cs)

V i tal St ati s t i cs Fact sSuper mar ket P l us(T M) Fact sConsumer T r ade Ar eas
Local M ar ket Snapshot

FSI by DemandLocal Behavi or Demand by Geogr aphy
Local Behavi or Demand by St or esRet ai l I nter acti on by C l ust er

R
ep

or
t T

yp
es

 b
y

Pe
rc

en
t U

sa
ge

Items Learned in this Session

• Insight into the issues with testing application
performance on a complex decision support system.

• A method for capturing real-world test cases to insure
the results are relevant to the business.

• Examples of a proven statistics based approach that
compares performance before/after a change.

Questions?

David A Haas
Senior Director, Database Architecture

Consumer Panel Services

The Nielsen Company
39 East Chestnut Street

Lancaster, PA 17602-2701
717-397-1500

dave.haas@nielsen.com

Thank You

• Please complete your evaluation form

– ARE WE DONE YET?
– CERTIFYING APPLICATION PERFORMANCE UNDER NEW DATABASE VERSIONS OR ARCHITECTURES

– David A Haas
– Session #421

