RAC be Nimble RAC be Quick
Bert Scalzo, PhD.
Database Domain Expert

Quest Software

Bert.Scalzo@Quest.com
Oracle Real Application Clusters (i.e. RAC) is a fantastic achievement in the annals of relational database technology. From its inception as Oracle Parallel Server (i.e. OPS) through the various major database version improvements from 9i up to 11g, RAC has truly come of age – it has evolved and matured into a truly enterprise scalable solution. But like any complex new technology, the adoption curve and skill set level has lagged slightly behind. This had led to a rather interesting phenomenon that I jokingly refer to as “RAC in the box syndrome”. Namely, that many people initially experiment or perform a “proof of concept” project utilizing RAC and expect the cluster to perform “out of the box” or “auto-magically” as promised, even though they often possess less than expert experience in optimizing RAC databases, focus far too much on the Oracle aspects of the equation (thus failing to optimize all subsystems in the “big picture”), and inadequately factor the application’s nature into their optimization efforts – which most often leads to sub-par results. Thus many people prematurely abandon RAC and thus fall back to big using symmetric multi-processing (SMP) boxes – the evil that they already know and are very comfortable with. This paper will examine a unique and simplistic approach to tune RAC databases without being an expert, and by simply starting at the top and asking lots of seemingly dumb questions. Because with just a “little manual box winding”, almost anyone should be able to easily and successfully “Pop the RAC weasel free”. (
Start at the Top
The first thing one must embrace in order to effectively optimize any RAC environment is to remember that it’s a complex system, with numerous sub-systems – and therefore one must tune its entirety. Another way to state this is that RAC performance equals the sum of its parts (i.e. overall performance limited by the weakest link of its components).

Here is a realistic high-level breakdown of the RAC system and all its major subsystems.

[image: image1]
This may seem like an oversimplification and restatement of the obvious, but I’ve found that many of the sites I visit have often rushed past this basic view in order to start tuning the Oracle instance and RAC configuration parameters. I simply remind them that they really have the following critical factors and subsystems to understand and then optimize:
1. Application Nature (substantially effects all other considerations)
2. Public Network

3. Storage Network

4. Storage Subsystem

5. Instance level configuration

6. Cluster level configuration

7. Private Network or Interconnect

Traditional focus tends to favor the final three issues, therefore almost blindly assuming that all the other areas are already optimal. This paper will follow that breakdown, and don’t be surprised when many very basic and critical key success factors are often absent in the overall tuning equation. That’s OK though – I am quite lazy and love simply eating the “low hanging fruit”, and then seemingly appear like a RAC genius or “white knight” that magically saves the day!
Approach Alternatives
Traditional belief is that database tuning has two key approaches: pro-active and re-active – and that many tools fall into one camp or the other. However I’m going to suggest that there are in fact three approaches: Top-Down, Side-Ways and Bottom-Up as shown here:

[image: image2]
It may seem like I’m artificially “splitting hairs” and creating my own new category, but for now let’s run with this idea and postpone final judgment until we’ve seen the results. So when we include traditional optimization tools and/or techniques – we now obtain the following updated picture:

[image: image3]
I’ve categorized dashboard type tools based upon data dictionary aggregate data as representing the side-ways or ad-hoc approach, and I have denoted the trace file or instrumentation based optimization techniques (e.g. “Method R”) and tools as being bottom-up. What remains then is to answer the obvious yet critical question as to the meaning of top-down. That’s exactly the fundamental thesis of this paper.
The true top-down approach to successfully optimizing RAC environments is radically different than existing RAC tuning approaches. We’ll defer delving into more obscure hardware, OS, network and Oracle parameters or configuration issues and instead focus on the easy stuff that makes a big difference. This approach will instead focus more on applying the following ideals across all the subsystems that compose the RAC system:
· “Low Hanging Fruit”
· Obvious yet Overlooked
· Subtle yet Highly Critical
· “Dumb Question” Method
Why Top-Down Works
Sometimes such an obvious and simplistic approach seems to offer a questionable return on investment in time and effort – meaning can it actually make a worthwhile difference. Let me demonstrate a very dumb example of how and why this process works – and also to show you just how dumb I can be at times. (

[image: image4]
When I first moved to Texas, I had an occasion where I needed to drive from Dallas to Austin. Now instead of simply looking at a map, I asked my neighbor where Austin was located – to which he replied just a little west of Houston. So like an idiot I drove south on highway 45 until reaching Houston, took the 610 Houston bypass west, and looked for any signs saying Austin – which led me to take 290. It took me 7 hours to make the trip!
Then I had to repeat the trip, so I looked to optimize my route – but only to optimize the prior route itself, not to replace it with a better route. So the second time I took 45 south to 79, and then 79 west to Austin. I felt rather proud of my 36% reduction in drive time down to 4.5 hours. Then someone educated me, and asked why not just take 35 south the whole way? Woops – I felt like Homer Simpson and said “doh!” at least a dozen times.

So the third time or trip was the charm. By taking the obvious best route, the trip took 50% less time or just 3.5 hours. Now laugh all you like at me (and quite deservedly so), but it’s not uncommon for me to find RAC optimization efforts where equally simple or dumb questions have yet nor ever not been asked. It’s amazing what performance issues that a little humility and stupidity can resolve. (
Step 1 – Application Nature
The most logical place to start is with fully comprehending the nature of the application and any special demands to support that nature. Often the knowledge about nature of the application seems to stop with the application architect. However the smart DBA should always be fully informed about what is being attempted, and not simply how it has been implemented within the database objects or code. Remember that in order to understand the “big picture”, we really need to start at the very top and examine the entire system. In order to provide context for that system and all its subsystems, we need to know what it’s trying to do. Otherwise the best we can do is to apply theoretical “golden rules” that may or may not apply. So we will simply be taking hypothetical, best guesses based on feeling rather than fact. Such an approach will generally not lead to optimal results.
I cannot overstate just how important this first step is. Everything that is discovered here will flow downstream to every subsystem being optimized. This information will usually help make key hardware and software architectural and configuration decisions that will directly define the limits of what can be achieved during the optimization process. So if we paint ourselves into a corner by skimping on this step, there may well be no solution to solve the experienced performance problems. And since RAC by its nature is more complex than single instance deployments, the ramifications are magnified even further.
Here’s an example list of things the DBA should know about the database application before ever trying to tune the database itself:
· OLTP vs. Data Warehouse vs. Staging Area vs. Reporting Copy, etc.

· Percentage read vs. write

· Average transaction size

· Concurrent user load profile

· Likelihood of record deadlock

· ACID compliance requirements (i.e. do need logging, flashback, etc.)

· SLA for average user response time

· Application code pre-canned or modifiable

· Etc, etc, etc …

Special Note: The examples from this point on are specific to a particular scenario – the TPC-C OLTP benchmark on a 10 GB database for 20-200 users, with a max two second average response time. Therefore the reader should not extrapolate any of the subsequent questions or results as “golden rule” candidates. Your mileage and success will vary.
There are numerous well-known “best practices” for keeping a database application humming along. We all know to write more efficient SQL and/or PL/SQL, use bind variables to reduce unnecessary parsing, maintain up-to-date statistics, partition large tables and their indexes, examine explain plans for in inefficiencies, examine extended trace files for deeper problems, and such. But many times we have zero ability to change or otherwise modify the application code. For example, I’m running a TPC-C benchmark. That is defined by a spec (www.tpc.org/tpcc) and is implemented by a software package (Quest’s Benchmark Factory: www.quest.com/benchmark-factory) – so I have no ability to change the application. You may have third party applications such as ERP and CRM, so you’d be in the same boat. Therefore this is neither an unreasonable nor uncommon example. We often are stuck with the application as is.
While I know that the TPC-C and thus OLTP in nature, I also can identify some critical application characteristics by examining the spec – and/or capturing the SQL sent to the database. Either way, I’ll discover that it’s primarily reads with some writes, very small average transaction sizes (i.e. works on a few rows from a few tables at a time), there is high concurrency with some potential for deadlock, and I have to meet ACID compliance relating to the transactions (i.e. logging=yes). That’s actually quite a lot of very useful information for the optimization process, so I’ll carry these finding forward and notice where they might apply across all the various subsystems.
Step 2 – Public Network
As with the database application, there are numerous well-known public networking “best practices”. Once again, we all know to isolate and/or size a public network’s capacity based upon cumulative application needs, use gigabit or possibly ten-gigabit networking technology, utilize only layer 2 or 3 switches, employ switches’ VLAN (virtual LAN) capabilities to further segment loads, “bond” network channels for increased throughput, and several other techniques.
But what if anything does our application’s nature (i.e. TPC-C OLTP) inform us about for this particular subsystem? Since we know that the transaction sizes will be relatively small, we won’t need to apply either Ethernet “jumbo frames” or increased SDU/TCU SQL*Net settings. There’s no application based need.
How could application knowledge have divulged a public network problem? One site that I visited has a database application driving manufacturing robots tooling titanium – with a cost of $20,000 per tooling instruction mistake. The application made hundreds to even thousands of tooling mistakes per day, so in effect it was a total failure. The DBA’s and some very high priced consultants had spent weeks tuning this database to no avail. Then I arrived and asked some networking “dumb questions” – and ignored the DBA’s and their consultants telling me what a waste of time that line of questions was. The result, they had placed the entire shop floor on one public network segment – even though the robots were not dependent on each other. I did not even waste the time to monitor the network for collisions. I simply suggested running a few extra cheap Ethernet cables, and the problem was entirely solved – with zero Oracle or RAC optimization efforts on my part. It’s true; sometimes we’re too close to the problem to see the forest from the trees. All those DBA and consultants actually knew more about RAC than I. I simply looked for “low hanging fruit”. It does not always work out that way – but it only took a couple minutes to play stupid and then solve their problem. So don’t overlook gift horses if they happen to exist. (
Step 3 – Storage Network
As with the public network, there also are many well-known storage networking “best practices”. Once again, we all know to isolate and/or size a storage network’s capacity based upon cumulative application IO needs, employ Fiber Channel or Infiniband for SAN’s, utilize ten-gigabit networking technology for NAS and iSCSI, deploy multiple pathways per storage controllers and HBA, consider TCP/IP offload engines (i.e. TOE’s) or specialized iSCSI HBA’s, and several other techniques.
But what if anything does our application’s nature (i.e. TPC-C OLTP) inform us about for this particular subsystem? Since we know that Oracle performs IO at the block level and that database block sizes are always bigger than the standard Ethernet packet size, that “jumbo frames” should be the norm. Seems like a no-brainer – right?
So how could application knowledge have divulged a storage network problem? I once visited a site where for some unknown reason, the RAC performance just tanked. And just like the prior section’s example, extraordinary tuning efforts had been attempted with zero success. So once again I entered the picture and asked a whole lot of relatively dumb questions. I was told that the storage network was leveraging “jumbo frames” – it was initially setup that way, and was that way now. I simply asked to prove it. Imagine their surprise when they found that a recent firmware upgrade on a switch had wiped out the “jumbo frames” settings to the NAS – and the VLAN setting that segregated the storage network. So two minutes to reset the switch setup fixed the problem – which once again had nothing to do with Oracle or RAC.
I know these examples may seem hard to believe, but never pass up the opportunity to quickly fix a nasty problem by simply correcting an obvious external yet critical factor. Sometimes life throws us a bone – an obvious yet overlooked problem that is subtle yet highly critical. So just accept whatever easy ones come your way, because we all know that life will throw us more than our share of tough ones.
Step 4 – Storage Subsystem
This topic could easily support a paper all on its own. Storage subsystem “golden rules” are both numerous and can vary by vendor and/or type, so it’s impossible to do this topic justice within this one paper. Therefore here’s just a very simple list of some of the more universal storage rules that most people agree upon and that apply across technologies:
· More Smaller Disks generally higher overall throughput

· More memory cache generally higher overall throughput (but expensive)
· Avoid “write-back” mode if no backup power source (e.g. battery)

· Align Stripe Boundaries: drive, OS block, LVM, file sys, database block, etc

· Stripe Depth (i.e. size) from 256 KB to 1 MB

· Stripe Width (i.e. # disks) between 4 and 16

· Stripe Depth = Stripe Width X Drive IO Size = One IO per Disk per IO request

· Average I/O <= Stripe Width X Stripe Depth

· Write-intensive = RAID 0+1/1+0 and Read-intensive = RAID 3 (sequential) or 5 (scattered)
So what from the application nature is relevant to the storage subsystem settings? Since user concurrency will be relatively high, spreading database objects and partitions across LUN’s is highly desirable. Furthermore, since we know that average transaction size is relatively small, then Stripe Depth >= db_block_size X db_file_multiblock_read_count.
But all this kind of advice merely focuses around the database oriented storage subsystem configuration settings at an obvious level. It’s in the slightly less obvious settings that can often yield significant improvements for little effort – it’s just that too many DBA’s don’t feel comfortable with asking some “dumb questions” such as these (due to the separation of duties between database, OS and storage administrators):
· What’s the disk array’s memory cache size

· How many IO controllers or processors are there

· Why did we choose a stripe depth of size X

· Why did we choose a stripe width of size Y

· Do my LUN’s overlap or share drives with other databases

· How many actual drives or spindles are my LUN’s spread across

But even these kinds of questions are too high a level, remember that we want to make sure to examine the obvious yet overlooked, and the subtle yet highly critical. Far too many sites I visit cannot answer the following questions – which are at the lowest level and define the maximum level of performance they can expect to eek out of that storage subsystem:
· What are the storage array’s read-ahead or pre-fetch settings

· What are the storage array’s cache operation/algorithm percentages

For example one site that I visited doing a data warehouse had limited themselves to 100 spindles and had no idea on how these last two settings were set. When we adjusted the settings from their default OLTP natured configuration to something more conducive to performing large queries against lots of data and aligned the pre-fetch approach to match our database’s needs, we obtained a very substantial performance improvement. Then I simply recommended doubling the disk count from 100 to 200, since disks are so cheap. Total time to make these recommendations was just one hour. Total cost to double the drives was $20,000. That may sound like a large fee, but it was substantially under the total amount of money they had spent on person hours just researching how to optimize their existing RAC setup further. Management and customers both love simple ideas with fixed costs that are sure to work. (
Step 5 – Oracle Instance
As with the prior topic, there have been hundreds of books and tens of thousands of papers written on how to tune an Oracle database instance. So once again it would be arrogant to think that I could add any purely technical new insight here. But when we now instead ask database “dumb questions”, we find one of the most fundamental and critical factors for performance often possesses an unqualified answer. Namely, when asked why the database block size is 8K, many people say I don’t know – meaning that they just accepted the default in DBCA (Database Configuration Assistant) or have that hard coded in their database creation scripts. Yet this is one of the most important items to base upon the application’s nature. And this issue is even more paramount in a RAC setup, but we’ll examine that issue in the following section about cluster best practices.
So what if anything can we do at the instance level that should apply just as well within a cluster? In the example I’m running a TPC-C OLTP benchmark. Furthermore the amount and nature of transactions are straightforward and well defined, and thus easy to examine. So once again we’ll just look for some “low hanging fruits” within the Oracle init.ora or spfile file parameter settings. Obvious TPC-C analysis ramifications include results such as the following:

· Primarily Reads = opt_index_caching=80, opt_index_adj_cost=20

· Small Transaction = Size redo logs correctly for small size X high load

· High Concurrency = cursor_space_for_time=true, cursor_sharing=similar

· No Logging, etc… = Turn off “Recycle Bin”, but must keep logging=yes
Remember this set of observations. At the end of this paper I’ll demonstrate how simple changes such as these can yield amazing results when the decision to set them is based purely upon application nature.
Step 6 – Oracle Cluster
There are many much brighter people when it comes to RAC than I. Fortunately for me, Quest employs two such experts in Mike Ault and Muralli Valleth – both well known authors and RAC experts. I learn more in an hour working along side these guys than typically can be taught in a week long class. But even when I’m working alongside such RAC gurus, my simplistic approach still adds value to and compliments their approach. Between my asking the “dumb questions” versus their smarter ones, and my attacking the problem from above to their more thorough and scientific approach from below – we completely cover the entire spectrum of performance optimization possibilities. Therefore little to nothing gets missed. At least that’s the little white lie I keep telling myself so that I can feel worthwhile next to my infinitely brighter workmates. (
Some well known and generally agreed upon RAC “best practices” include doubling the ASM instance default parameters for SGA memory size (64MB simply does not scale too well), the interconnect is single most important limiting factor or bottleneck, and consider hash partitions and reverse indexes to spread IO across cluster nodes. Beyond this, many of instance specific optimization “golden rules” may not apply when doing RAC. So test any and all assumptions beyond these just to be safe.
Returning to the TPC-C OLTP benchmark example, two application nature facts identify some key factors to focus on when doing RAC. The following two characteristics yield advice to decrease both the block size and multi block read count as follows:
· Small Transaction = Decrease the db_file_multiblock_read_count

· High Concurrency = Decrease block size (at most 4K, possibly smaller)

Remember the block size question from the prior section? Let examine in more detail why both block size and concurrency can become critical performance factors for RAC.

[image: image5]
The above diagram depicts how both block and row level contention happens on a single instance database. If two Oracle server processes request access to Row X, then we have row level contention or deadlock. But we know from application nature that’s a fairly low occurring event. However it’s not unlikely that two Oracle server processes might seek to access different rows within the same block (e.g. Rows X and Y). And as the block size increases, the likelihood of concurrent block access increases – but there’s no real cost in performance terms. Now let’s examine at the exact same scenarios in a RAC database as shown below for a simple two node cluster.

[image: image6]
As before, row level contention is something to clearly be avoided. But now we have block level contention that introduces a definite cost for RAC databases. If two Oracle server processes need to access different rows within the same block, we now have an interconnect traffic producing event. Furthermore depending upon your Oracle version, it might even add IO’s to copy that block across nodes. So as the block size increases, we therefore increase the likelihood of experiencing this performance hit. See now why the question regarding block size makes sense? I know that the TPC-C’s OLTP application nature could clearly benefit from a smaller block size – thereby reducing any block level contention. Moreover, reducing the database multi block read count or pre-fetch size can further alleviate any potential block contention issues. No amount of tuning can so easily and so readily compensate for the performance ramifications of choosing the wrong block size. Because level block contention means more interconnect traffic – which we said is the single most important RAC limiting factor. So now my “dumb questions” don’t quite seem so dumb.
Step 7 – RAC Interconnect
As with the other networking issues, there are numerous well-known private networking or interconnect “best practices”. Once again, we all know to isolate and/or size a private network’s capacity based upon cumulative application needs, use gigabit or possibly ten-gigabit networking technology, always utilize “jumbo frames”, “bond” multiple network channels for increased throughput, and several other techniques.
But once again our application nature adds a critical piece to the puzzle: we must account for high concurrency. So as the last section identified, we can reduce block contention by reducing the block size and multi block read count. But sometimes those steps alone may not be enough. Sometimes we can project that the concurrency is so high that block level contention cannot be eliminated, but just reduced – so we need a way to further optimize handling for that scenario. That might lead one to increase (i.e. re-nice) the global cache cluster service processes to mitigate this unavoidable cost. As before, we also might be able to make that call up front for very little cost. Just be careful on whatever you may preemptively attempt to handle – because the Interconnect is truly RAC’s Achilles’ heal.

Real World Results

Now here’s proof that all the above concepts can genuinely lead to actual performance improvements. Let’s apply four the simple recommendations across five test cases listed below and further displayed on the following chart:
1. Establish our baseline test for comparing subsequent results

2. Reduce the multi block read count from its default of 16 to 2

3. Decrease the database block size from its default of 8K to 4K

4. Adjust 4 basic init.ora of spfile settings (refer back to step #5)
5. Implement Jumbo frames on both storage and private networks
[image: image7.png]1 2 3 4
Read | Block |Cursor | Cursor | Index | Index | Jumbo
Count | Size | Space | Share | Cache | Cost
Test 1 16 8 False | Exact 0 100 False
Test 2 2 8 False | Exact 0 100 False
Test 3 2 4 False | Exact 0 100 False
Test 4 2 4 True | True 80 20 False
Test b 2 4 True | True 80 20 True

Now while some people like to focus on the transactions per second for such test case scenarios, it’s really only the average response time that has any meaning to your users and hence might be part of your SLA requirements. So here’s the chart for these five test cases and these four sets of changes.
[image: image8.png]6.00

5.00

4.00

3.00

2.00

1.00

0.00

Average Response Time

——Run1
——Run2

Run3
——Run4
——Run5

Sub

100

150

200 250 300 350

400

450 500

Second

Now the above results are quite substantial. We’ve increased the scalability of our cluster from a maximum of 350 concurrent users before hitting our two second limit, to handling well over 500 users – or at least a 43% performance improvement, although we’d have to continue testing more users until we hit our time limit once again. In reality we were able to scale this RAC database to almost 1200 users – for about a 300% improvement in user scalability! But even more impressive are the average response time percentages. For that 43% scalability improvement for 500 users, we also realized a response time reduction of 1567%! Now that’s what I call results – and for nothing more than simply fixing the easy stuff.
Conclusion

So the next time you have a RAC database that needs tuning, before diving head first into really complex and tedious tuning examinations and analysis – try this approach. It does not take long and can sometimes yield amazing results. Plus the knowledge you’ll gain in this my approach will only serve to better equip you for the bottom-up or ad-hoc database optimization methods. There’s very little to loose, and lots to gain. And for lazy or time challenged people like myself, if it’s fast and produces results that are good enough – that will do. Since I rarely have the time to learn all the subtle nuances and intricate details of RAC internals, I often merely need to meet my SLA requirements as quickly as humanly possible – and then move on to the next of my ever growing list of tasks. (

[image: image9.jpg]

Bert Scalzo is a Database Architect for Quest Software and a member of the TOAD team. He has worked extensively with Toad’s developers and designed many of its features. Mr. Scalzo has worked with Oracle databases for well over two decades, starting with version 4. His work history includes time at Oracle Education and Oracle Consulting, plus he holds several Oracle Masters certifications. Mr. Scalzo also has an extensive academic background - including a BS, MS and PhD in Computer Science, an MBA and several insurance industry designations. Mr. Scalzo is an accomplished speaker and has presented at numerous Oracle conferences and user groups - including OOW, ODTUG, IOUGA, OAUG, RMOUG, et al. His key areas of DBA interest are Data Modeling, Database Benchmarking, Database Tuning & Optimization, "Star Schema" Data Warehouses and Linux. Mr. Scalzo has written articles for Oracle’s Technology Network (OTN), Oracle Magazine, Oracle Informant, PC Week (eWeek), Dell Power Edge Magazine, the Linux Journal, www.linux.com, and www.orafaq.com. He also has written four books: "Oracle DBA Guide to Data Warehousing and Star Schemas", "TOAD Handbook", "TOAD Pocket Reference" (2nd Edition), "Database Benchmarking: Practical methods for Oracle 10g & SQL Server 2005", "Oracle on VMware: from Laptops to Production" [2008], and "Oracle Utilities: The Definitive Reference" [2008]. Mr. Scalzo can be reached via email at bert.scalzo@quest.com or bert.scalzo@yahoo.com.
Re-Active

Pro-Active

Side-Ways (Ad-Hoc)

Bottom-Up

Top-Down

DBA_, V$ and X$ Aggregate Information

Oracle OEM Diagnostics & Tuning Packs

Confio Ignite for Oracle

BMC DBXray for Oracle

Quest Spotlight for Oracle & Spotlight for RAC

Response Time ~= Wait Events

Cary Millsap (Hotsos) calls this “Method R”

Anjo Kolk & et al Oracle) call this “YAPP Method”

Kyle Haily (PerfVision) paper on “Waits Defined”

Trace/Instrumentation

V$, STATS$, DBA_HIST_

Side-Ways (Ad-Hoc)

Bottom-Up

Top-Down

[image: image10.jpg]Public Private Storage
Network Network Network

RAC Node 1

App Node 2

[image: image11.jpg]

[image: image12.jpg]Oracle
Process

Oracle
Process

Wants Row X Wants Row Y

SGA

Header

Row X

Row Y

Oracle Data Block

[image: image13.jpg]Oracle Oracle

Process Process

Wants Row X Wants Row Y

SGA #1 SGA #2

Header

Oracle Data Block Oracle Data Block

