
<Insert Picture Here>

Developing a Risk Based Testing Plan for

Enterprise Applications Systems

Alex Collier
Senior Director, Services Engineering

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

Synopsis

A simple fact of life is that it is neither economically nor technically feasible to
completely test Enterprise Applications today. However, these same systems
are most often "business critical".

Enterprise systems are being changed at a head-spinning rate – patches
required for Sox or security compliance; new LOBs coming on line; upgrades;
new components in the stack; new customizations and so on.

Given today's business mantra of "doing more with less" the challenge is how
to determine what to test and more importantly what not to test.

The answer lies in using pragmatic "risk management" to tailor your test plan
to the business priorities.

This session will present a scalable methodology for creating a broad test
plan, assessing the risk and focusing the test plan to provide the maximum
value and minimize business risk.

Developing a Risk Based Testing Plan for Enterprise Applications Systems

Disclaimer

THE FOLLOWING IS INTENDED TO OUTLINE OUR GENERAL
PRODUCT DIRECTION. IT IS INTENDED FOR INFORMATION
PURPOSES ONLY, AND MAY NOT BE INCORPORATED INTO ANY
CONTRACT. IT IS NOT A COMMITMENT TO DELIVER ANY MATERIAL,
CODE, OR FUNCTIONALITY, AND SHOULD NOT BE RELIED UPON IN
MAKING PURCHASING DECISION. THE DEVELOPMENT, RELEASE,
AND TIMING OF ANY FEATURES OR FUNCTIONALITY DESCRIBED
FOR ORACLE'S PRODUCTS REMAINS AT THE SOLE DISCRETION OF
ORACLE.

<Insert Picture Here>

Agenda

• Establishing your business case

• Types of changes on the application (increasing risk…)

• Risk – the critical dimension

• What is testing?

• How to scope the testing problem

• Types of testing and test classification (decreasing risk…)

• How to test effectively at scale

About the Speaker

Alex Collier, Senior Director, Oracle Corporation

Alex Collier is the QA Strategist for Services Engineering at Oracle. Alex has
been involved in software development and engineering for over 20 years. He
joined Oracle in 2000 as a part of an acquisition of Carleton Corporation,
where he was vice president of development.

Prior to Carleton, Alex started a company called Position Sensitive Robots,
which was an early market leader in PC-based industrial automation. He
spent his earlier career in the field of semiconductor automation.

Alex has an honors degree in electrical and electronic engineering from
Hertford University, England, and an executive M.B.A. from Suffolk
University, Boston MA.

Advanced Customer Services
Solve Your IT Challenges

7

Support Account
Management

Change Management

System Availability

Technology Adoption System Performance

Faster Problem
Resolution

Oracle Services Framework
Advanced Customer Services at Every Phase

Business Insight

Business Impact

P
LA

N

M
E
A
S
U
R
E

TR
A
N
S
FO
R
M

O
P
TIM
IZE

Accelerate Business
Transformation with
Measurable Results

Continually Unlock More
Value from Technology

Investments

Establish the Business Case
and Roadmap for

Technology Investment

Align and Measure
Business and IT
Initiatives Against
Planned Objectives

8

Establish the Business Case…

• High upgrade costs hinders IT to set continuous upgrade policy
• Over $2,000 per user for Major Upgrade
• Over $1,000 per user for Minor Upgrade

• Upgrades and patches require enormous resources

• Planning, Installation,Testing, Data Migration required even
for minor releases

• Most companies do several test cycles, each requiring
support from users on the extended project team

• The Risk to the Business (and to the CIO’s job) are significant
• The complexities are overwhelming so problems will and do occur at
go-live that can significantly impact the business

• It is not economically feasible (or technically practical) to “test
everything”

<Insert Picture Here>

Summary of the PMI Environment

�FSCM 8.8 Tools 8.4.5

�HCM 8.9 Tools 8.4.6

�1,000 names users

�Global user distribution

�3 month migration plan

�First PeopleSoft customer in On Demand

Sultan Aziz
PeopleSoft Systems Manager , PMI

11

PMI Business Value

� New server Configuration

� Migrating to Linux Servers

� Converting to use Unicode

What were the business drivers that justified
to PMI that this testing should be done?

PMI Business Results

•Testing engagement required little time from PMI

•…just a few hours discussion with the testing team

•...and a few hours debugging

•Performance and Capacity predicted for the On
Demand instance by the testing engagement has been
confirmed by actual production experience

PMI Performance Test Results

• 5 cycles of load testing were undertaken for Financial Pillar and 3
cycles for HR Pillar.

• The Financial Pillar handled 322 concurrent users at 4 times the
transaction rate than required with the mid-tiers at 30% CPU and
the DB peaking at 70% CPU Utilization average. 89 concurrent
users required.

• The HR Pillar handled 140 concurrent users at 8 times the
transaction rate than required with the mid-tiers at 9% average
CPU Utilization (40% max) and database at and 6% average CPU
Utilization (24% max).

The Executive Summary of the “Capacity Baseline”
report stated:

The testing showed that the performance should exceed
requirements…but what actually happened after “go-live”?...

Financial Pillar – Test Cycle 5 CPU

Utilization

0

20

40

60

80

100

120

0 30 60 90 120 150 180

Time (min.)

C
P
U
 U
ti
li
z
a
ti
o
n
 %

0

50

100

150

200

250

300

350

400

V
ir
tu
a
l
U
s
e
r
L
o
a
d

pmireducewrkld_aug16640pm.aupodpmip15 (Linux : % CPU Utilization)
pmireducewrkld_aug16640pm.aupodpmip16 (Linux : % CPU Utilization)
pmireducewrkld_aug16640pm.Number of VUs
20 per. Mov. Avg. (pmireducewrkld_aug16640pm.aupodpmip15 (Linux : % CPU Utilization))
20 per. Mov. Avg. (pmireducewrkld_aug16640pm.aupodpmip16 (Linux : % CPU Utilization))

Ramping up
V users

DB CPU
Utilization

Mid Tier CPU
Utilization

Financial Pillar - Transaction Response Time

Under increasing User Load

0

2

4

6

8

10

12

14

0 30 60 90 120 150 180

Time (min.)

T
ra
n
s
a
c
ti
o
n
 T
im
e
 (
s
e
c
o
n
d
s
)

0

50

100

150

200

250

300

350

400

V
ir
tu
a
l
U
s
e
r
L
o
a
d

pmireducewrkld_aug16640pm.Online Journal Entry.Avg Server Time (sec)
pmireducewrkld_aug16640pm.Number of VUs

PMI Operational Performance Metrics

CPU Utilization on DB nodes

PMI Operational Performance Metrics
CPU Utilization on App Server Nodes

What does it take to implement

enterprise software systems?

• Business requirements

• IT systems and infrastructure

• User communities

• Applications packages

• Middle tier, database and OS choices

• Customer configurations

• Customer data

• Customer customizations

• Security systems

• Tools

And all of this while…

“…doing more with less…”

Changes that have impact on an Instance

(increasing risk…)

• Go live

• Instance consolidation

• New functionality / modules

• New customizations

• New user groups possibly in new regions with new
languages

• Upgrades & patches

• Security patches

• Sox patches

• Hardware and/or infrastructure changes/upgrades

What is Testing?

“Testing” is defined as:

“The process of validating that an item conforms to its

functional requirements over the complete life-cycle of that item”

The “item” tested may be as diverse as a customer instance or an
internally developed product or tool

The “functional requirements” may be represented by the number of
explicit (specified) and implicit (expected but not necessarily specified)
states that the item can achieve

The “QA Net”

Good
testing
catches
many
issues

Problems can get through with
inadequate or no testing

The “QA Net”

Good
testing
catches
many
issues

Problems can get through with
inadequate or no testing

The QA paradox…
C
o
s
t
o
f
T
e
s
ti
n
g

Number of Bugs Found

The more testing I do the more bugs I will find
but the higher the cost...so how much is enough?

The Paradox resolved…
C
o
s
t
o
f
T
e
s
ti
n
g

R
IS
K

Optimum Bug Level

Number of Bugs Found

I should test for minimum overall risk to the business

RISK

Optimum ROI

The QA Problem Space

Do you know where the mines are in your mine field?

The QA Problem Space

Application

Application Server

Database Server

OS

Platform

Network

Storage

Topology

Environment

Product D
Product C

Product B

Product A

Life Cycle

Solution Stack

Req
uire
men

ts
Dev
elo
pm
ent
 Te
stin
g/D
eplo

yme
nt
Pro
duc
tion
 M
ain
ten
anc
e

A complex, multi-dimensional environment

Example of a QA Audit
A Risk Assessment Tool for the QA “Universe”

Install/Deinstall Function Integration

Component

Product/Bundle

Reference Configuration

Customer Instance

Environment n/a

Stability UsabilityEnvironment
Functionality

Performance Security

Simplified example only

Medium Risk Area

Low Risk Area

High Risk Area

A “QA Audit” helps assess the risk areas
today and determine a plan for tomorrow

Why Customer Business Flows?
…it’s all about “Scope”…

eBusiness Suite
~260 products

~600+ business flows

5,646 forms

1,137,180 objects

100% of Apps

Core Products (example only)
7.48 products

211 forms

42,546 objects

4% of Apps

Customer

Business Flow

Usage
100 forms
9,700 objects
0.85% usage

Customer Business Flow

test coverage
85 forms
6,200 objects
0.54% coverage of Apps

64% coverage of

customer business flows

…narrowing the focus

Test what is important to the business

Business
Flow Code

Issue with
impact to
business

Total
Application
Code Space

Potential
issues

Classification by

“Importance to the Business”

• Business critical – has immediate impact to
customers, daily operations or the bottom line

• Important and urgent – will impact the business but
not immediately. For example, closing the books at
quarter end.

• Important but not urgent – impacts the operational
effectiveness but has viable workaround until resolved

• Nice to have – non essential items that help the
business run smoother

Testing Dimensions

• Consumers – customers, vendors, platforms, dev groups,
critical accounts…

• Product - EBS, PSFT, Siebel, JD Edwards…

• Technology – RAC, distributed loads…

• Verticals – Financials, HR, CRM, manufacturing…

• Testing domains – functional, load, capacity, performance,
security

Primary QA Metrics…

• # Issues detected before release to production

• Total cost of testing (manual & automatic)

• Testing yield (# issues caught / total time taken)

• # Issues detected in production (not all issues are bugs)

• Cost to the business of issues that get to production
(not all issues are equal)

How do you define your success?

Types of testing to validate the changes

• Oracle Generic
• Functional, performance

• Customer Generic
• Upgrades, Early Implementer Program, support readiness,
release notes, platform specific issues, sizing, feature testing
e.g. RAC, Shared Appletop, certified configurations,
parameter settings

• Customer Specific
• Assessments, Health Checks, Oracle Diagnostics, RAC
Environment Analysis, Functional Testing, Capacity Baseline,
Instance Load Profile

“Testing” Validates State Coverage

S
ta
te
s

Classification of Testing

• Assessments
• Validate the initial state

• Functional testing
• Validate those states without resource constraints (no
boundary conditions)

• Load testing
• Validates additional states with resource constraints (certain
boundary conditions)

• Probe testing
• Validates specific states under defined boundary conditions

Typical QA Yield Distribution Jan 7 - Mar 9

Real Application Testing

RemediateRemediate

TestTestTest

DeployDeploy

• Value

• Rapid technology adoption

• Higher testing quality

• Business Benefit

• Lower cost

• Lower risk

• Features
• Database Replay

• SQL Performance Analyzer (SPA)

Solution for the Agile Business

Change

Database Replay

• Replay actual production database workload in test
environment

• Identify, analyze and fix potential instabilities before making
changes to production

• Capture Workload in Production
• Capture full production workload with real load, timing &

concurrency characteristics

• Move the captured workload to test system

• Replay Workload in Test
• Make the desired changes in test system

• Replay workload with full production characteristics

• Honor commit ordering

• Analyze & Report
• Errors

• Data divergence

• Performance divergence

Analysis & Reporting

……

ClientClient

…
Client

Capture SQL

• Test impact of change on SQL query performance

• Capture SQL workload in production including statistics & binds

• Re-execute SQL queries in test environment

• Analyze performance changes

• Identifies all SQL regressions and improvements

Middle Tier

Storage

Oracle DB

Re-execute SQL Queries

Production Test

Use SQL Tuning
Advisor to tune
regression

SQL Performance Analyzer (SPA)

Database Replay vs. SPA

• Replay real database workload
on test system

• Predict SQL performance
deviations before end-users can
be impacted

What is it?

• Comprehensive testing of all
sub-systems of the database
server using real production
workload

• Unit testing of SQL with the goal
to identify the set of SQL
statements with
improved/regressed performance

When to use?

• Replay with production context
including concurrency,
synchronization &
dependencies

• Single, isolated execution of SQL
with production context

How it works?

• Assess impact of change on
workload throughput

• Assess impact of change on SQL
response time

What Purpose?

Database ReplaySQL Performance Analyzer

SPA and Database Replay are complementary

Testing at Scale – QA Yield
Typical QA Yield Distribution Jan 7 - Mar 9

0

5

10

15

20

25

30

35

40

longqa lrgjut sure_v5 tkmain_4g1 tkmain_9m5 tkmain_dpb tkmain_o1 tkmain_s4

LRG Suite (All 877 in Round Robin)

#
 T
B
R
/H
r
Id
e
n
ti
fi
e
d

9-Mar

9-Feb

2-Feb

26-Jan

14-Jan

7-Jan

Average

Frequent Integration Cycles

Reduce Risk
#
C
h
a
n
g
e
s
to
In
te
g
r a
te

Time to Release

Less frequent integrations means greater
number of changes to integrate
more disruption – more risk

More frequent integrations means
less changes to integrate
less disruption – less risk

The “So What” slide…

• A minimum amount of carefully selected testing can provide
huge ROI and “reduce risk” significantly

• Testing is like exercise…
… a small amount regularly has much greater benefit than a
large amount occasionally

• Aligning your testing to actual production issues experienced
significantly increases the focus, reduces risk and consequently
the ROI of your testing

• “Plain vanilla” instances benefit from the experiences of the
whole product user community – if you customize – then you
embark on a journey “…to boldly go where no App has gone
before…”

The Vision for Testing…

• Increase the scope of coverage while reducing the domain
specific expertise required
• Tools that understand the context of an application
For example – the key configuration parameters, primary data
structure and flows

• Direct API communication between tools and applications – thus
removing the need for intermediate script or object programming

• Close the loop between post go-live issues and pre-release
testing
• Integration between production conditions through monitoring and
integrated incident tracking and testing tools to provide a solid
objective basis for determining focus areas for testing

• Reduce “ the cost of rediscovery” by leveraging user community
knowledge (Wikipedia model?) to improve service levels in all
aspects, including testing

Summary

Test the business critical areas first:

• Will the system provide the essential functionality?

• Will the system hold up and perform under a basic load?

Oracle does extensive testing in the areas of:

• Oracle generic

• Customer generic

To mitigate risk during the many changes that impact an instance
and ensure maximum ROI the customer must test:

• Customer specific – which includes:

• Configuration

• Customizations

For More Information

Contact:
alex.collier@oracle.com – Service Engineering

Who has the First Question?

<Insert Picture Here>

Appendix

