
OAUG Collaborate 08 Copyright © 2008 Greybrooke Consulting, Inc. Page 1

Configurator Intelligent Product Numbers based on Customer

Selections

Brian J Looman

Greybrooke Consulting, Inc.

Introduction

Oracle Configurator is a very flexible and dynamic tool for building complex customer-specific products.

Using this same flexibility, along with an advanced Configurator Developer extension, these customer

selections can be used to generate and reuse intelligent product numbers. This greatly improves a

company's ability to manage and maintain even the most complex inventory systems.

Challenge

Oracle Configurator can be a great tool for creating customer-specific items. However, the amount of

items created by Configurator can get out of hand, and the item numbers will seldom be meaningful.

Solution

Using Oracle Configurator Developer, businesses can plug in a Configurator extension and setup text

features that are associated to different components and options to implement intelligent item

numbering. When a customer orders these items, the selections they choose will dynamically build the

item number that will be used when fulfilling the order.

Benefits

 Build product numbers based on the components selected by a customer.

 Manage the item master by validating against existing items and reusing items when available.

 Implement intelligent item numbers that are both meaningful and reusable.

Implementation

In order for Oracle Configurator to build this product number, first a set of text features will need to be

created to implement the intelligent item number logic. In general, each of the text features should be

prefixed with an identifier that the Configurator extension can use to distinguish the related text

features.

A Text Feature must be created to store the generated item number at the model level for the given

product category/type. This Feature should be a default item number that can be built upon. As a

customer chooses different components and options, this is the text feature that would be updated will

the appropriate item segment values.

OAUG Collaborate 08 Copyright © 2008 Greybrooke Consulting, Inc. Page 2

Text Features must also be created and associated to components and options within the model. The

default values of the text features follow a format similar to the following: 5:BA, 10:X77. The text

features contain a set of position and values for the different segments that will make up the intelligent

product number. Therefore, when a customer selects this specific option, the added Configurator

extension will replace the item segment values at the specific positions.

Here is a snippet of the Configurator extension used to implement this logic:

private void buildItemNumber(oracle.apps.cz.cio.Configuration configuration)

 throws Exception {

 Component rootComponent;

 TextNode itemNumTextNode;

 String itemNumber;

 // Get the configuration root node.

 rootComponent = configuration.getRootComponent();

 // Get the Item Number Text Feature.

 itemNumTextNode = rootComponent.getChildByName ("XXX-ITEM NUMBER");

 // Loop through the Item Nodes starting at the root.

 // When any of the item number text features are found,

 // this method will update the default item number

 // value with new segment values.

 itemNumber = loopItemNodes(rootComponent,itemNumTextNode);

 // Set the Text Feature value to the new item number.

 itemNumTextNode.setTextValue(itemNumber);

}

This extension will be executed as a Rule on the preConfigSave event in Configurator Developer.

After the user has booked the order, there is a database package that retrieves the product text feature

from the configuration. It uses a standard package that is provided by Oracle for producing custom item

numbers. This package also manages the creation of items, and will reuse an item if the item number is

the same.

CREATE OR REPLACE package body APPS.BOMPCFGI as

 FUNCTION user_item_number (model_line_id IN NUMBER)

 RETURN VARCHAR2 IS

 l_item_number VARCHAR2(40) DEFAULT NULL;

 CURSOR c_item (cp_line_id IN NUMBER) IS

 SELECT cci.item_val

 FROM apps.oe_order_lines_all ool,

 apps.cz_config_items cci

 WHERE ool.config_hdr_id = cci.config_hdr_id

 AND ool.config_rev_nbr = cci.config_rev_nbr

 AND ool.line_id = cp_line_id

 AND cci.ps_node_name = 'XXX-ITEM NUMBER';

 BEGIN

 -- --

 -- Fetch the text feature containing the item number

 -- for this order line’s configuration.

 -- --

OAUG Collaborate 08 Copyright © 2008 Greybrooke Consulting, Inc. Page 3

 OPEN c_item (cp_line_id => model_line_id);

 FETCH c_item INTO l_item_number;

 CLOSE c_item;

 RETURN l_item_number;

 END user_item_number;

END BOMPCFGI;

Once all these pieces are in place, you can use Configurator Developer to test the user interface. Once

the item number logic is validated, publishing the configurations will allow both Order Management and

iStore to utilize the functionality.

About the Author

Brian Looman is Director of Technologies for Greybrooke Consulting, a firm specializing in Oracle

Applications implementations and upgrades with principal offices in Orlando, Atlanta, Chicago, and

Tampa. Brian has a unique combination of business and technical expertise that is seldom seen in the

ERP consulting arena. He has both a keen sense for business and a wealth of experience as a solutions

architect, functional analyst, and technical lead.

His focus is on improving client ERP systems using a combination of technical and functional expertise in

both product implementations and solution designs. He has demonstrated his functional expertise for

over eleven years across a variety of Oracle Applications and business processes - Process & Discrete

Manufacturing, Order-to-Cash, and Procure-to-Pay. In addition, his technical expertise spans practically

all Oracle development tools and technologies.

More papers and presentations written by Brian are available at www.greybrooke.com.

http://www.greybrooke.com/

