
Developing Oracle EBS Custom Extensions – The Right Way

Douglas Manning
Johns Hopkins University – Applied Physics Laboratory

Keyur Pancholi
Johns Hopkins University – Applied Physics Laboratory

Introduction

This white paper outlines how a longtime Oracle EBS customer [The Johns Hopkins University Applied Physics
Laboratory (JHU-APL)] has developed and deployed (the right way) a range of simple to complex custom
extensions to our Oracle EBS application (using the delivered and supported Oracle application framework and
tools) in a cost effective and supported manner.

Background

APL is the largest division of one of the world’s premier research institutions, Johns Hopkins University. It is home
to approximately 4000 scientists, engineers and other staff who work on over 400 programs sponsored by the United
States (U.S.) Government, as well as other organizations located across the globe.

APL has been using Oracle applications products since 1994, and is currently in the process of migrating to Oracle
EBS version R12. APL’s existing portfolio of Oracle Applications EBS modules includes the following:
Purchasing, Accounts Payable, Fixed Assets, General Ledger, Inventory, Accounts Receivable and Cash
Management.

Business Case for Customization of Oracle EBS

Overview

Over the past twenty years as the functionality and sophistication of commercially available software has increased
and the price of this same software has decreased, a majority of small, medium and large organizations have
purchased and deployed COTS software to run their core back-office business systems and even their more industry
specific business processes. The major driver for these organizations in pursuing the COTS solution was the ability
to access and use state-of-the-art automation and automation processes, without having to incur the high cost
(money, time and risk) of developing this software within their organization, as well as supporting and maintaining
these custom self-developed software solutions. Even the U.S. Government (in the 1990’s) caught on to the trend of
implementing COTS software solutions through legislation and executive directives (the Clinger-Cohen Act of
1996, the President’s Management Agenda of 2002 and the Department of Defense Quadrennial Defense Review),
and now mandates the acquisition and purchase of COTS software (where appropriate) and has mandated that this is
the preferred software solution in order to reduce the short-term development and long-term maintenance and
ownership costs of software for the U.S. Government.

The major issue area that has always plagued COTS software solutions, is in order for COTS software products to
be cost effective to produce and to procure, the associated functionality that is built into these software products
must be somewhat generic so that the widest range of customers (businesses and organizations) can use some aspect
of the COTS functionality. For example, major COTS software suppliers like Oracle need to design and build a
purchasing module that can be used by any “Joe’s Regional Inc.”, as well as a global giant such as Home Depot, in
order to sell their software solution to the broadest customer base possible. Because of this inherent condition,
COTS software products may not possess the ability to capture all of the unique processes and associated data that
businesses and organizations require, in order to exist in their specific markets and areas of expertise.

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

1

Customization Considerations and Circumstances

The first and most paramount consideration that an organization should heavily investigate and pursue in reference
to customizing COTS software products (like the Oracle EBS), is simply to try to avoid it at all costs. The current
view of experts and leading edge organizations in all areas of information technology (academia, government and
the commercial world) is that re-engineering business processes to fit and align with COTS software solutions is
vital in terms of reducing ownership costs while providing the latest functionality and technology that an
organization relies on to stay competitive and to succeed.

For example, “NASA and Boeing successfully built complex systems based on COTS products because they didn’t
practice business as usual. They changed their business and engineering processes to make the best use of the
available COTS products. And they recognized the need for sustained engineering and management effort, such as
evaluating new product releases to determine system impact and actively monitoring emerging technology, to keep
the products and the system current.” [1]

Even Oracle Corporation, in their 2006 presentation titled “Oracle E-Business Suite Customers: 10 Things You Can
Do Now To Prepare For Fusion Applications,” stated that Oracle E-Business Suite customers should rethink their
customization strategy by taking inventory of their current customizations, evaluating them (in terms of what they
are, how they were built, current requirements, obsolescence and their business value to the organization) and also
plan for engineering their EBS products for the future by configuring rather than customizing.

By customizing the Oracle EBS, an organization incurs a higher cost and risk of product ownership. Higher
ownership and risk costs associated with customization include the following:

1. Increased costs due to hiring, training and maintaining a competent IT staff to design, develop, implement,
maintain and support Oracle EBS customizations.

2. Increased costs of applying Oracle EBS patches and upgrading your Oracle EBS investment to a newer
version since customizations need to be evaluated, tested, and possibly re-implemented in association with
patch and upgrade activities.

3. Increased risk to your Oracle EBS investment due to in-house developed customizations that break existing
Oracle product transaction and/or interface processes.

4. Increased risk to your Oracle EBS investment due to Oracle patches that (when they are applied to your
Oracle EBS product) break in-house custom developed transaction and/or interface processes.

5. Increased risk to your organization of Oracle not supporting your Oracle EBS investment due to your
implementation of non-supported customizations.

The above costs and risks are not trivial, and should be reflected upon very carefully and conservatively when
considering customizing your Oracle EBS investment.

As previously mentioned, the goal of all businesses and organizations that rely primarily on COTS software to run
their enterprise (like Oracle EBS) must be, where possible and feasible, to have their business processes and
procedures in-line with, and according to, the generic processes of the COTS software they rely upon and use. The
key element associated with this industry goal is the phrase, where possible and feasible. “In many cases there will
be a few instances where business process re-engineering is not possible. For example, due to policy or law, it may
be necessary to build or acquire needed reports, interfaces, conversions, and extensions. In these cases, adding to
the product must be done under strong configuration control.” [2]

If re-engineering a business process or procedure to fit a standard (and possibly rigid) COTS software model will
not provide the data or information that an organization needs to function, or leads to critical data integrity issues,
unacceptable processing time or renders the process too complex or burdensome to reasonably use, then the benefits
of not tailoring or not customizing the process to fit organizational reality may not be worth the extra cost or risk of
implementing the customization.

A balanced business case for customization of the Oracle EBS would include the following:

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

2

1. Re-engineer as many business processes and procedures of an organization as possible, in order to align
with and accommodate the COTS software. However, do not re-engineer business processes to align with
COTS software, where the change will render critical data processing unusable or greatly impact an
organization’s data integrity.

2. Only develop software customizations to objects (custom reports, custom processes or functional
extensions, custom objects, modifying existing objects, etc.) where no equivalent COTS software process
exists or the existing process associated with the standard COTS object is unusable (too complex or
burdensome).

3. Only use Oracle certified third-party COTS software products as bolt-on's to Oracle EBS, or custom
developed bolt-on software (which is coded to Oracle development standards), in conjunction with the
Oracle EBS, where no equivalent Oracle EBS process exists or the delivered COTS process is unusable.

Oracle EBS Customization Types

Part of the process of developing Oracle EBS custom extensions the right way, is having a clear understanding of
the types of Oracle customizations that are out there, and knowing when to use them. The Oracle EBS product
provides three core approaches for performing customization and product tailoring (the right way) in a supported
framework. These three supported customization methodologies are known as product configuration,
personalization and extensibility.

“Configuration provides setup and administrative choices using native features of the product. Some configuration
examples include:

• Profile Options

• User defined fields (Flex field)

• Function Security Setup

• Data Security Setup

Personalization enables you to declaratively tailor the User Interface (UI) look-and-feel, layout or visibility of page
content to suit a business need or user preference. Some personalization examples would include:

• Tailor the order in which table columns are displayed

• Tailor a query result

• Tailor the color scheme of the UI

• Folder forms

• Forms Personalization

• Oracle Application Framework (OAF)

Extensibility is about extending the functionality of an application beyond what can be done through
personalization. Some extensibility examples include:

• Add new function flows

• Extend or override existing business logic

• Using Oracle Forms Developer, Oracle JDeveloper and Oracle Workflow” [3]
COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

3

Configuration and personalization customization methodologies almost always involve the use of delivered Oracle
EBS product standard functionality to change or tailor the Oracle EBS to perform in a specific (non-vanilla) custom
fashion. Configuration and personalization usually never require the development and integration of custom code or
objects to perform non-standard actions, events or processes.

Extensibility customizations, on the other hand, almost always involve the design and development of custom code
or objects to change or augment the delivered Oracle EBS product. Along with the above mentioned custom flows
and Oracle Forms, extensibility would include the design and development of custom reporting objects (Oracle
Reports, Oracle BI Publisher, OBIEE and Hyperion), as well as integrating outside 3rd party products and processes
with the Oracle EBS.

Integrating certified 3rd party software solutions (bolt-ons) to Oracle EBS represents the high-end of extensibility
customizations. “In cases where a particular COTS product does not provide the entire set of required functionality,
a ‘bolt-on’ could be used. A bolt-on is not part of the COTS software product but is typically part of a suite of
software that has been certified to work with the product to provide the necessary additional functionality. These
suites of software are integrated to provide the full set of needed functionality.” [4]

An explanation of extensibility customizations would not be complete without mentioning an extensibility
customization practice that should be avoided at all costs, the direct modification of Oracle EBS object code.
Examples of this ultra bad habit would include the following:

• Directly modifying or changing object elements in an Oracle delivered form (deleting or modifying
buttons, fields, regions, tabs, menu items, etc.).

• Directly modifying or changing object elements in an Oracle delivered report (deleting or modifying
buttons, fields, regions, tabs, menu items, etc.).

• Directly modifying or changing standard product object elements (code) in an Oracle EBS delivered
trigger, function, and/or procedure.

Directly modifying or changing delivered Oracle EBS object code (such as the ways mentioned above) is extremely
risky due to the high probability that future Oracle bug fixes, CPU’s, RUP’s and other product patches that are
specifically associated with the object that was customized, may produce unwanted, unintended or incorrect results,
or may not be able to be applied at all (thus risking current and future product functionality). Also, this type of
product alteration may jeopardize (make null and void) your Oracle EBS product support from Oracle Corporation.

JHU-APL Oracle EBS Custom Extensions

Configuration

Oracle EBS configuration custom extensions are the first place to start when contemplating the customization of
your Oracle EBS product. Configuration custom extensions are the easiest to perform and maintain and represent
the least risky and least intrusive of all Oracle EBS product custom extension approaches, since they use standard
Oracle product data fields and functionality to extend the base Oracle EBS product.

 In fact, Oracle designed their EBS product to provide the capability to capture and store customer specific industry
data, within the delivered product, so customers would not have to write and maintain custom developed code and
functionality to process just a few proprietary data elements and processes.

When configuration custom extensions are designed and deployed correctly, future Oracle bug fixes, CPU’s, RUP’s
and other product patches that are later deployed within your Oracle EBS product should have no adverse effect on
your custom extended configuration data or processes.

Some of the JHU-APL Oracle EBS configuration custom extensions that we have created and deployed (the right
way) are detailed below (In some instances, proprietary data appearing on forms is intentionally blurred):

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

4

1. Profile Options

Profile Options are an Oracle EBS built-in feature (like a data flag), that provide a way to tailor and/or create
custom processes within the standard Oracle EBS product. These custom processes can be setup at the site,
application, responsibility and user levels.

An example of how to setup user profiles using the “System Profile Values” is listed below:

The associated custom SQL code and associated setup values for the profile option “View All User’s
Concurrent Requests” is detailed in the below Profile Options “Profiles” form. This profile option determines if
a user can see another user’s concurrent requests:

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

5

This profile option is very helpful for APL Oracle EBS support personnel because it gives them access to view
the concurrent request outputs and/or concurrent request log file information of regular APL Oracle EBS users
(who may be having trouble with the system), without having to use a 3rd party software product to takeover a
user’s workstation or without having to visit users to access more detailed information.

The below web form display’s the results of a general user’s concurrent request listing, associated with the
option “View All User’s Concurrent Requests” set to ‘YES’ for a specified APL Oracle EBS support user’s
account:

2. Flex Fields

Flex fields are a mechanism and data component where the Oracle EBS allows customers to capture their
specific industry or organization data (associated with a specific EBS forms transaction process) that are not
contained in the standard EBS delivered functionality. These custom data elements are associated with a
specific database table (e.g., PO.PO_HEADERS) and a specific database field within that table (e.g.,
ATTRIBUTE1). Most of the “Core” Oracle EBS module transaction forms (Enter Purchase Orders in the
Purchasing module, Enter Invoices in the Accounts Payable module, etc.) provide the ability to create Flex
fields.

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

6

JHU-APL takes full advantage of the Oracle EBS flex field data functionality, and uses quite a number of these
data field elements for data capture and processing. The below figures display the JHU-APL Descriptive Flex
field (DFF) structure and associated custom data fields that are used to process a JHU-APL Oracle Purchase
Order (Enter Purchase Order form, PO Header zone):

Notice the number of DFF’s that JHU-APL needed to deploy in order to capture important organization data
that was not part of the standard Oracle EBS “Enter Purchase Order” process. One of the major drawbacks of
the Oracle EBS Flex Field custom extension functionality is actually the success of this functionality. Meaning,
for a lot of Oracle EBS customers in certain Oracle module form areas, not enough DFF’s exist, forcing Oracle
EBS customers to look to other means to capture critical custom organization data.

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

7

With the above drawback being stated, Oracle EBS DFF’s are an excellent way (and the right way) for an
organization to extend the standard product functionality of Oracle EBS to capture important custom data.

3. Functional Data/Security Setup

Oracle EBS functional data and security features are another way of custom configuring the Oracle EBS
product without having to write code.

One of the drawbacks of version 11.5.7 of the Oracle EBS was that the purchasing product did not contain
query-only purchasing functionality. The Purchasing summary form allowed users to not only query data but
also allowed them to modify and change this data through the ‘New Release’ and ‘New PO’ buttons (see below
form). APL wanted to provide our user base with a pure query-only capability in the purchasing area, in order
to provide this detailed information to our community, without the ability to mistakenly change or modify data.

The way we provided this additional capability was through the use of Oracle’s functional data/security setup
features. The below screen shots detail how a “query-only” purchasing form and the associated “Purchasing
Inquiry” responsibility were created.

The View Purchase Order form function was created using the default purchase order entry form, through the
use of the parameter QUERY_ONLY. This function allows a user to access specific functionality in READ
ONLY mode (see below form):

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

8

The associated APL “Purchasing Inquiry” responsibility and query-only purchasing form (see below forms),
were created from a combination of the above custom form function and other relevant custom and delivered
form functions:

APL Purchasing Inquiry Responsibility:

Query-only purchasing form:

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

9

Personalization

The second consideration when thinking about customizing your Oracle EBS product, from a visualization
perspective, would be in the area of personalization. Personalization allows you to modify the look-and-feel and
visualization components of standard Oracle EBS (UI) functionality, within a supported product frame work.

Personalization custom extensions are easy to perform and maintain. They are not as risky and intrusive as
designing and developing custom Oracle forms or associated web forms for capturing, displaying and processing
data, since this custom extension approach also uses standard Oracle product functionality to extend the base Oracle
EBS product.

When personalization custom extensions are designed and deployed correctly, future Oracle bug fixes, CPU’s,
RUP’s and other product patches that are later deployed within your Oracle EBS product should have no adverse
effect on your custom extended personalization data or process.

4. Query Result, Table Column Display Order and Folder Forms

One of the ways that JHU-APL was able to incorporate personalization custom extensions to our Oracle EBS
product was through the use of Oracle built-in folder forms functionality. We changed the “default” AP Invoice
form with the creation of a custom folder. Using this custom default folder, we are able to add fields, change the
order of display of the fields and change the data sorting order. The below screen shots detail how this was
performed:

• First create a custom folder called “Invoices”, with associated display fields and order of display:

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

10

• Second assign this custom folder to specified custom Oracle EBS responsibilities:

• Results of custom AP Invoice form folder (proprietary data intentionally blurred on form):

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

11

Extensibility

Extensibility is the Oracle EBS custom extension approach that is associated with designing, developing and
maintaining custom code that is used in conjunction with the standard Oracle EBS delivered product.

Extensibility comes in many forms. It could be as small scale as a line or two of custom developed code
incorporated into Oracle’s CUSTOM.PLL forms library, or as big as numerous custom developed forms, reports and
interfaces associated with an in-house developed process that is linked to the standard Oracle EBS product, or a full-
blown 3rd party custom software product that contains data and processing interfaces to and from your Oracle EBS.

Extensibility custom extensions (depending on their context and associated requirements) can be tricky and will
involve risk. And as noted in previous sections they are the most expensive (time, resources and money) custom
extension option, however, they may be the only option an organization has, in order to perform a critical customer
specific data and/or process function. Extensibility custom extensions should be used within your Oracle EBS only
when the following cannot be met:

• Existing standard Oracle EBS data elements or processes cannot be used.
• Oracle EBS configuration custom extension(s) will not satisfy the requirement.
• Oracle EBS personalization custom extension(s) will not satisfy the requirement.

Some of the JHU-APL Oracle EBS extensibility custom extensions that we have created and deployed are detailed
below:

5. New Function Flows

An example of how APL incorporated a new function and associated process flow to the Oracle EBS would
include our custom function called “Local Printing”. The “Local Printing” function was established to give our
user community some flexibility in choosing a printer to send output to, since this custom process is not tied to
a specific defaulted and assigned Oracle EBS user account printer or a printer within the Oracle EBS defined
structure.

The APL “Local Printing” uses MOD PL/SQL and the web to access APL’s printer universe, thus allowing a
user to send their output, easily, to any APL network printer. The big functionality gain for APL is flexibility to
the user community and less printer assignment and print queue maintenance for APL developers and support
staff.

The MOD PL/SQL code for performing this functionality is detailed below:

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

12

The associated Oracle EBS procedures and functions that need to be setup are listed below:

One - This procedure must be added to web enabled PL/SQL so that it can be used as a PL/SQL cartridge from
the web server.

Two - A form function needs to be created in order to use it in the menu-tree

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

13

Three – After the function was setup and assigned to an APL custom Oracle EBS responsibility, a user would
select the option “Local Printing” from this responsibility after running a report:

 Four – The user would receive their concurrent request output, via the web, and then select their associated
report from the output file list:

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

14

Five – Once the report was selected, a user could simply send their report to any APL network printer and not
be restricted to their default printer or any other printer that needed to be maintained in the Oracle EBS:

6. Override, Supersede and Extend Existing Business Logic

One of the primary and most effective ways of overriding and extending your Oracle EBS product, in a
supported manner, is by using the CUSTOM.pll forms library. This built-in Oracle EBS functionality and
process allows customers to incorporate custom (user exit and execution) code from within the Oracle EBS
product to modify and change standard product forms functionality and characteristics in a safe and supported
manner.

Over the years APL has incorporated dozens of CUSTOM.pll forms extensions to tailor standard Oracle EBS
forms and transaction processes in a way that reduced support and data integrity and more effectively met our
business process. The following are examples of APL Custom.pll extensions and associated library code:

In the Oracle EBS “Enter Requisitions” form, we created our own supplier and supplier site validation process
that forces users to select this information from a supplier pick-list. We implemented this change in order to
capture better supplier data:

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

15

 The associated enter requisition supplier entry field code contains the following elements:

Another CUSTOM.pll extension that we created provided our users the ability to print requisitions and access
other custom developed functionality (software Catalog and Requisition Routing) from within the Oracle EBS
Enter Requisitions form (see below Tools Menu drop down). This custom extension allowed our users to
perform these tasks without having to navigate back to the main Oracle EBS purchasing navigation form.

The associated custom Tools menu item code contains the following elements:

7. Custom Oracle Forms Development

Several years ago APL had a serious need and requirement for an automated purchase requisition routing
approval system. At the time, and in some cases still true today, the associated Oracle purchasing product,
corresponding workflow and approvals process were too basic and maintenance heavy to be deployed at APL.
We needed a system that had the following attributes:

• Route requisitions through approval paths that can vary by department, type of requisition, or individual

program needs
• Send supporting materials electronically, along with the requisition
• Be able to determine the status of a requisition approval at any point along the approval process
• Be able to change a routing path “on the fly”
• Cost effective to support and maintain

After exploring many options, we decided to build our own system using delivered Oracle tools (including
Oracle forms and MOD PL/SQL). The following information details how APL developed and incorporated a
custom designed extension process (the right way) using Oracle and html forms and the MOD PL/SQL, to
provide this capability to our users. For a more comprehensive “deep-dive” into this custom process, please

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

16

reference the APL COLLABORATE06 white paper, titled “Obtaining the Seal of Approval: Automated
Requisition Routing and Approval.”

The first custom form we built (using the same look and feel as our standard Oracle EBS product) was one that
could act as a template for capturing the requisition to be approved, the preparer, the requisition approvers, the
type of requisition approver they were and the order of approval (see below custom APL Requisition Routing
Distribution List Oracle form):

The second form we built was the purchase requisition routing process form. This form was used by requisition
preparers to submit routing once the purchase requisition had been created and was also used as a gateway to
our custom developed MOD PL/SQL web form, that were used to retrieve requisition related attachment
documents.

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

17

The remainder custom developed Oracle forms and MOD PL/SQL web forms were built to process and track
purchase requisition attachments. The following example outlines the custom forms and associated process:

“After clicking the ‘Attachment’ button on the ‘Requisition Routing’ form, a new form will display called
‘Requisition Routing Attachments’ (below figure). Requisition document attachments are created and
displayed on this form.

Clicking the ‘Attach New’ button on this form executes a PL/SQL procedure that dynamically generates an
HTML page (below figure) for attachment file identification, selection and submission. The generated web
page contains a ‘Browse’ button that allows a user to search their client or network for file objects to associate
with (attach to) a specified requisition.

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

18

After entering all of the requisite fields on the ‘Upload Attachments’ form (previous page) and then clicking the
‘Submit’ button, another PL/SQL procedure executes that dynamically generates an HTML page (below
figure) that informs the user if his or her document attachment upload was successful.

After successful upload, a user would return to the ‘Requisition Routing Attachments’ form to verify (View
Button) and save (Save button) their document attachment (below figures). The title, description, file name and
date when the document/file was attached to the requisition would be displayed on this form.

Virtually, an unlimited number of documents can be attached to a requisition using this form. The
maximum document attachment file size is approximately the file size of a LONG RAW DB file type.” [5]

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

19

The final forms that were built for this process involved MOD PL/SQL procedures and html web forms. These
process forms alerted requisite APL employees to take action on the associated requisition, informed them of
the latest status and allowed for requisition approval or rejection. The following screen shots display this
functionality:

MOD PL/SQL generated email notification for Requisition Approval:

APL Requisition Approval web form:

In the years since our development and deployment of this very successful custom augmentation of the Oracle
EBS, Oracle has developed a similar process called the Approvals Management Engine (AME). As we pursue

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

20

our deployment of Oracle’s latest version of the EBS (R12), we intend to comprehensively evaluate this process
to see if this can be used to replace our very successful custom extension.

8. Oracle JDeveloper

Several years ago there was a very strong need for JHU-APL to provide a system and process that would allow
the organization to easily and comprehensively rate and report upon suppliers that had provided goods and/or
services to our organization. At the time our current version, and Oracle’s latest version, of the EBS did not
provide the requisite functionality to perform this activity in the desired fashion.

Due to the importance of this requirement to our organization and based on the insufficient capability of the
Oracle EBS (at the time) to provide the level of product functionality that we desired, JHU-APL decided to
design and develop an Oracle EBS “Supplier Rating” system using Oracle’s latest web development
technology, Oracle JDeveloper.

The following information details how JHU-APL developed core Oracle JDeveloper web forms and processes
and incorporated this custom designed extension (the right way) in order to provide a processing solution to our
organization within our existing Oracle EBS product:

The first part of any supplier scorecard system is to have functionality that allows a customer to rate a specific
supplier. The APL Supplier Rating product performed this by designing and deploying the below Oracle
JDeveloper “Rate Supplier” web form:

This web form allowed our customers (APL employees) to view the specific supplier, PO, PO description and type
of goods and/or services that were purchased and that they were obligated to rate. Simply clicking on the PO link in
the above form provided a comprehensive supplier rating score sheet (see below form) that would be filled out by
the corresponding customer:

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

21

A sample of JSP code that comprises the above 'Rate Supplier’ information is presented in the below text:

<%@ page content Type="text/html;charset=windows-1252"%>
<%@ page errorPage="/ErrorPage.jsp?page=Pending Rating List" %>
<%@ page import="model.RatingInfoList"%>
<%@ page import="model.RatingInfo"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"/>
 <title>Rating List</title>
 <link href="css/Rating.css" rel="stylesheet" media="screen"/>
 <script>
 function ratingInfo(pIndex){
 document.ratingListForm.ratingInfo.value = pIndex;
 document.ratingListForm.submit();
 }
 function lookup(){
 window.open('http://mbsunp0.jhuapl.edu:8180/pls/aps11ip_apps/poc_wq_intf_pkg.po_search' ,
 'POLookup','toolbar=yes,scrollbars=yes,status=no,width=800,height=600,resizable=yes');
 }

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

22

The second part of this custom developed Oracle JDeveloper system involved the functionality to “View”
historical APL supplier scores. The APL Supplier Rating product provided this feature through the following
web form:

Any valid APL employee, using the above web form can view how well a specific supplier is performing.
Search criteria can be by supplier name, by item provided, by PO number and by APL supplier reviewer. A
user simply selects their criteria and then enters that criterion into the ‘Key Word’ text area. Once the ‘Submit’
button is entered the process will display the associated rating for that APL supplier, based on the criteria
entered (see below form):

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

23

Depending on the type of items that a specific supplier supplies (goods, service contracts or sub contracts), the
form would show the specific scores for that supplier by item and by rating criteria (see above form). Some
sample JSP code used to present the above “View Supplier” web form data would include the following:

<h1 align="center">Search Supplier Rating</h1>

 <c:out value="${requestScope.errorMsg}"/>

 <c:set var="supplierChecked" value=""/>
 <c:set var="itemChecked" value=""/>
 <c:set var="poChecked" value=""/>
 <c:set var="reviewerChecked" value=""/>
 <c:choose>
 <c:when test="${param.searchType == '1'}">
 <c:set var="supplierChecked" value="checked"/>
 </c:when>
 <c:when test="${param.searchType == '2'}">
 <c:set var="itemChecked" value="checked"/>
 </c:when>
 <c:when test="${param.searchType == '3'}">
 <c:set var="poChecked" value="checked"/>
 </c:when>
 <c:when test="${param.searchType == '4'}">
 <c:set var="reviewerChecked" value="checked"/>
 </c:when>
 <c:otherwise>
 <c:set var="supplierChecked" value="checked"/>
 </c:otherwise>

 </c:choose>

The third and last core component area of the APL Supplier Rating product is reporting. The below forms
display how APL supplier rating data can be accessed via this custom Oracle JDeveloper process:

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

24

Again, any valid APL employee account can access and run these various APL Supplier rating reports (from the
above form) by clicking on the “Reports” tab, selecting the associated report to run and then clicking the ‘Run
Report’ button. Sample web report data are displayed below:

Some sample JSP code used to present the above reporting web form data would include the following:

checked="checked"/>Goods

 <input type="radio" name="ratingType" value="S"/>Service

 <input type="radio" name="ratingType" value="C"/>SubContract

 <input type="radio" name="ratingType" value="-1"/>Overall

 <input type="radio" name="reportNumber" value="4"/>
 Acceptable Suppliers

 <input type="radio" name="ratingType1" value="G"

For a more comprehensive “deep-dive” into this custom process, please refer to APL’s Oracle OpenWorld 06
white paper titled, “Supplier Scorecard: Rating Your Buying Experience.”

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

25

9. Oracle Workflow

APL has also designed and deployed several custom extensions to the delivered Oracle EBS workflow
transaction process. The below example details one of our custom extensions to the standard Oracle EBS PO
approval workflow, where an APL “buyer” would receive a notification if a PO validation approval failed due
to an incorrect entry of a charge number distribution task:

10. Certified 3rd Party Oracle Bolt-On

A couple of years ago our organization’s receiving department came to us with several issues that they hoped
we could help them resolve. In a nut shell, they were in desperate need of a system/process that would work
with our currently installed Oracle EBS receiving product, which would allow them to track (real-time) parcels
and packages that were to be delivered within the JHU-APL campus.

After several meetings with our receiving department, our research and analysis work with our current Oracle
EBS product version capabilities, and after meeting with Oracle Corporation many times where they researched
our issues and requirements to see if a current Oracle EBS product portfolio solution could cost effectively meet
our needs (which did not pan out), we decided to look at a certified 3rd party bolt-on custom extension solution.

The following information details how JHU-APL incorporated a certified 3rd party product bolt-on (the right
way) in order to custom extend and augment our existing Oracle EBS product:

APL’s Oracle EBS “Receiving product” serves as a data source for a 3rd party bolt-on tool that captures and
tracks APL in-campus parcel and package delivery information . This 3rd party software product receives data
related to active APL employees and their current office delivery locations. The 3rd party software receives this
data via a daily automated interface. The interface runs as a concurrent process in Oracle EBS and then pushes
the data to the 3rd party product.

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

26

Here is the example of the Oracle EBS concurrent process definition for the 3rd party Parcel Tracking software
product:

Here is the sample code for the same procedure.

CREATE OR REPLACE PROCEDURE INTRASYSADMIN.SP_IMPORTRECIPS_JH_PEOPLE(ERRBUF OUT
VARCHAR2,
 RETCODE OUT VARCHAR2) AS

 STOO_SELCNT INTEGER;
 STOO_ERROR INTEGER;
 STOO_ROWCNT INTEGER;
 STOO_ERRMSG VARCHAR2(255);

 --
 -- 1) Pulls recipient information from recipients (view) into a temp table (RecipImportTable)
 -- 2) Inserts any records from RecipImportTable into the Recipient table that does not already exist
 -- 3) Updates any records in the Recipient table that have changed
 -- 4) Tags records as Deleted (Status='Deleted') that are in the Recipient Table but not in the RecipImportTable
 --
 --
BEGIN
 APPS_FND.FND_FILE.PUT_LINE(APPS_FND.FND_FILE.OUTPUT,
 '>>> Process Started : ' || TO_CHAR(SYSDATE,
'DD-MON-YYYY HH:MI:SS'));
 -- Delete records from temp import table.
 --

..

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

27

..

..
 --
 COMMIT;
 --
 APPS_FND.FND_FILE.PUT_LINE(APPS_FND.FND_FILE.OUTPUT,
 '<<< Process Ended : ' ||
 TO_CHAR(SYSDATE, 'DD-MON-YYYY HH:MI:SS'));
EXCEPTION
 WHEN OTHERS THEN
 STOO_ROWCNT := 0;
 STOO_SELCNT := 0;
 STOO_ERROR := SQLCODE;
 STOO_ERRMSG := SQLERRM;
 RAISE_APPLICATION_ERROR(SQLCODE, SQLERRM, TRUE);
 ROLLBACK;

END;

 -- Procedure

When a package is received into the Oracle EBS purchasing receiving process, a receiving clerk enters the package
carrier’s tracking number into the “Bill of Lading” field. As a business rule, it is assumed that the package has
already been received into the 3rd party parcel tracking software from the delivery truck, and if that is not the case,
the receiving clerk using the Oracle EBS will get the following error:

This way the tracking number data is checked in real-time for the existence in the tool.

Once a user successfully saves the receiving transaction in Oracle EBS, it then transfers the final recipient
information back to the tool. At that point, destination data are updated from “*Unknown*” to the intended
destination information.

3rd Party Package Tracking Software Screen-Shot
COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

28

Oracle EBS Custom Extensions (R12 and Beyond)

Developing and deploying Oracle EBS custom extensions in R12 in the application forms (Oracle forms and web
forms) area will probably center on two major technology tracks:

• Oracle Forms (OF) based application.

• Oracle Application Framework (OAF)

The CUSTOM.pll library will still be available in R12 for building custom extension overrides to R12 Oracle forms.
Some new functionality that was added to this process structure includes the following:

WHEN-RESPONSIBILITY-CHANGED
This fires immediately when user selects “File Switch Responsibility”. Note that you cannot get
information about the responsibility user leaves.

WHEN-LOGON-CHANGED
This fires immediately when user selects “File Log On as a Different User”. Here also, you cannot get
information about the previous user.

In addition, CUSTOM.STYLE, is also available in many product areas. With this added product feature, a
developer can choose to have their code execute before, after or in place of the code provided in Oracle
Applications. This functionality does not affect all generic form events that are available in the custom library and
some product-specific events may not support all execution styles.

COLLABORATE 08

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

29

COLLABORATE 08 30

Copyright ©2008 by The Johns Hopkins University Applied Physics Laboratory

If you have developed custom extension functionality in previous versions using the MOD PL/SQL structure, you
will need to rewrite/re-establish this functionality using Oracle APEX and the 10gR2 Embedded SQL Gateway or
recoding using OAF.

Conclusion

How do organizations today and in the future world of Oracle EBS software solutions maximize the cost, efficiency
and technology benefits that the Oracle EBS product provides, without losing the ability to capture, transact, retrieve
and report on unique and important data that are essential and vital to their organizations?

They do it first by rigorously contemplating, designing, developing and implementing solutions within their
organizations that are business process driven (not involving the modification of COTS, Oracle EBS product
software), and if that is impossible and cannot be done, they develop Oracle EBS custom extensions the right way.

Notes
[1] Brownsword, Lisa. “The Good News About COTS.” News @ Software Engineering Institute,
 pg 2 (1Q03).

[2] U.S. Department of Defense. “Modifying Commercial Off-the-Shelf (COTS) Software.” Defense
 Acquisition Guide, section 7.10.4 (December 16th, 2004)

[3] Oracle Corporation. “Customization and Development for E-Business Suite.” Oracle Technology Network
 (June 2006)

[4] U.S. Department of Defense. “Modifying Commercial Off-the-Shelf (COTS) Software.” Defense
 Acquisition Guide, section 7.10.4 (December 16th, 2004)

[5] Manning, Douglas; Payne, Raymond; Tamer, John The Johns Hopkins University Applied Physics
 Laboratory. “Obtaining the Seal of Approval: Automated Requisition Routing.”, OAUG
 COLLABORATE06, pgs. 15-16 (April 2006)

