
SQL Tuning – Reaching 
Recent Data Fast

Copyright ©2008 by Dan Tow
dantow@singingsql.com
www.singingsql.com



Time is the Key to Tuning

• Obvious Point: Low-runtime of the SQL is the 
key goal (not logical I/Os, physical I/Os,…)

• Subtler Point: The data has a time-dimension, 
too, and well-designed, normal business 
queries mainly read recent data.



Business Table (and Entity) Types

• Reference tables: Customers, Products, etc., 
entities the business references in its 
interactions. These tables grow relatively 
slowly, and tend to be well-cached.

• “Events” tables: Orders, Payments, Invoices, 
Customer Interactions. These tables tend to 
grow fastest, and to dominate query-tuning 
problems. Sensible queries almost always 
concern recent business events, with 
reference to non-event entities.



Heap “Organization”

• What does a typical Oracle heap table have 
in common with an archeologist’s midden 
heap?

• Both have the most-recent stuff on top!
• Archeologists want to see old stuff, which 

requires slow digging, but businesses 
generally focus on new data, the “top layer”, 
so to speak, which is often conveniently 
available in the cache.



“Excavating” the Heap Table

• A well-designed query and execution plan 
won’t “dig deep” just to see last-week’s data!

• This usually implies that you will drive from a 
condition that correlates somehow to a recent 
event or to a set of recent events, avoiding a 
path that touches data for old events.



Optimal Paper-Based Business 
Process Rules
• The paper is touched or read by the minimum 

possible number of people, as few times as 
possible.

• The paper is modified as few times as 
possible, by as few people as possible.

• As soon as possible, the paper is either 
discarded or filed away where it will likely 
never need to be touched again.



Optimal Event-Based Business 
Process Rules
• The business event involves the minimum 

possible number of people, as few times as 
possible.

• The event generates as few workflow steps 
as possible, by as few people as possible.

• As soon as possible, all activity related to the 
event is completed, and the employees need 
never refer to the event, again, except under 
rare circumstances.



Optimal Data-Based Business 
Process Rules
• The row(s) related to a business event are 

touched by the database as few times as 
possible.

• The event-related workflow triggers as few 
updates as possible.

• As soon as possible, all database activity for 
an event-related row is completed, and the 
row ends up in a state where it need never 
again be touched by the database, except 
under rare circumstances.



Optimal Data-Based Business 
Process Rules
• As soon as possible… the row ends up in a 

state where it need never again be touched by 
the database, except under rare 
circumstances.
– Corollary #1: If some rows do not end up in this 

“closed” state, but instead figure into reports months 
or years later, again and again, then the business 
process has an unintended, endless loop!

– Corollary #2: Purging old data should have little 
effect on performance, if design is ideal, because 
those old rows would never be touched, anyway!



Optimal Data-Based Business 
Process Rules
• As soon as possible… the row ends up in a 

state where it need never again be touched by 
the database, except under rare 
circumstances.
– Corollary #3: Summarizing or reporting old events 

need only happen at most once, for any given event 
date range. Re-summarizing the same old data 
repeatedly implies that we either “forgot” to re-use 
the former result, or we suspect that history has 
been rewritten, both of which tend to point to a 
process failure!



Optimal Data-Based Business 
Process Rules
• As soon as possible… the row ends up in a 

state where it need never again be touched by 
the database, except under rare 
circumstances.
– Corollary #4: A repeatedly-executed query that 

violates this rule, querying the same old rows with 
every repeat, usually points to a design flaw in the 
application, or a defect in the business processes, 
or both!



Types of Conditions

• Joins – usually matches between primary keys 
and foreign keys.

• Filter conditions – anything that isn’t a join; 
these conditions are the proper focus when 
solving tuning problems.



Types of Filter Conditions

• Fixed-fraction subsets, unrelated to time, often 
restrictions based on non-event reference data.

• Date-range restrictions specifically related to a 
date pertaining to the events.

• Conditions on the workflow-related status of 
the events.

• Conditions defining data for a single, specific 
event.



Types of Conditions
• Fixed-fraction subsets, unrelated to time, often 

restrictions based on non-event reference data.
– E.g., “North American orders”, “orders from May’s 

Diner”
– These conditions are usually combined with some 

other condition(s) correlating to recent events, else 
the query would eventually return very old rows 
unlikely to be useful, and often would return far too 
many rows to “digest,” and too many to perform well. 
Fix queries that don’t make sense in light of this!

– Concatenated indexes can combine the selectivity of 
time-related conditions and reference data.



Types of Conditions

• Date-range restrictions specifically related to a 
date pertaining to the events.
– E.g., “Orders shipped in the past week,” “This 

month’s customer complaints”
– These begin as unselective, before history 

accumulates, but become highly selective as history 
piles up – design for the old system, not for the new!

– These date columns are useful to index, but they 
should usually be the last column of the index, 
because they are reached with range conditions, not 
with equalities.



Types of Conditions

• Conditions on the workflow-related status of 
the events.
– E.g., “Open, Ready-to-ship orders”
– These are ideal to reach rows requiring the next 

step in the workflow process, once, but if we reach 
those rows more than once following such a 
condition, the process is inefficient!

– Efficient workflow implies these are recent rows!
– These usually require an index and a histogram, so 

the optimizer “knows” the few-valued “status” 
column is highly selective for the “open” statuses.



Types of Conditions

• Date-range restrictions specifically related to a 
date pertaining to the events combined with:

• Conditions related to the workflow-related 
status of the events.
– Special Case: “Old event” and “Event still in an open 

workflow state,” combined, should be a rare, special 
exception belonging to two anti-correlated subsets 
(cost-based optimizers don’t handle anti-correlation 
well). Active monitoring for exceptions like this 
should point to process failures, if they exist, and 
opportunities for process improvements.



Types of Conditions

• Conditions defining data for a single, specific 
event.
– E.g., “Data for a specific client visit for service”
– These should normally drive from an indexed 

primary or foreign key that uniquely points to a row 
mapping to that event.

– The details of that event will need to be reached 
through indexed foreign keys, with nested loops.

– The “recentness” of the queried data may be non- 
obvious, but it is almost invariably the case that the 
specific event queried will be a recent one.



The Advantage of Driving to Recent 
Rows

• Recent Rows cluster well 
and are well-cached

Recent Master rows

Recent Detail rows



The Advantage of Driving to Recent 
Rows

• Heap tables are perfect, 
here!

Recent Master rows

Recent Detail rows



The Advantage of Driving to Recent 
Rows

• Don’t “scramble the heap” with 
(for example) a parallel rebuild!

Recent Master rows

Recent Detail rows



“Good-Citizen” Queries

• Queries driving first to recent-events data benefit 
most from the tendency for this data to be 
cached.

• Queries driving first to recent-events data 
reinforce the tendency for this data to be 
cached.

• Queries reaching old data, on the other hand, 
tend to flush reusable data from the cache – 
these are bad citizens in the “query community.”



A Few Good Reasons to Read or 
Modify Old Data
• Looking for new ways that workflow items are 

“slipping between the cracks,” staying in the 
workflow longer than the processes should 
allow. (This applies only to moderately old 
data, ideally, because the old ways for 
workflow items to slip between the cracks 
should already have been fixed.)

• Reorganizing the database schema for a new 
version of the application.



A Few Good Reasons to Read or 
Modify Old Data
• Data-mining old data in new ways that were 

not formerly tried, to gain new insights. (For 
example: “Maybe we could predict… if we 
looked at the old trend for … in a new way.”)

• Handling rare business exceptions, such as 
lawsuits, or unusual customer problems.

• Handling repetitive business, such as 
automated annual renewals (but this would 
only be moderately old data).



Summarizing Principles

• Queries should rarely return rows relating to 
old events.

• Queries should not even touch old-event data 
early in the execution plan, even if that data is 
discarded later in the plan, with rare 
exceptions.



Conclusions

• The index used to reach the first event- 
related table in the join order should use 
some column condition correlating to recent 
rows (potentially combined with conditions 
unrelated to time, if a multi-column index 
applies).

• The rest of the event-related tables should be 
reached, usually, with nested loops to join 
keys, reaching related recent master and 
detail data for the same global recent events.



Conclusions

• Time-correlated conditions pointing to recent 
rows see far better clustering and caching 
than non-time-correlated conditions with 
similar selectivity, so drive to recent rows first, 
then filter on non-time-dependent conditions, 
unless the non-time-dependent conditions are 
much more selective.



Conclusions

• Nested-loops joins between master and detail 
event-type heap tables tend to join recent 
rows to recent rows, and see much better 
caching on the joined-to table and index 
blocks than the optimizer anticipates.

• Nested loops are usually faster than they 
look, and faster than the optimizer estimates.



Conclusions

• Queries repeatedly returning the same old 
event-type rows show application design 
flaws (such as reports of unimportant data) or 
business-process design flaws (such as 
workflow items getting “stuck” in a process 
loop that fails to resolve), or both.



Conclusions

• Queries touching old event data early in the 
execution plan, then discarding it later in the 
plan, tend to indicate poor join orders, or poor 
join methods (hash joins that should be 
nested-loops joins, especially), or non-robust 
plans (plans that are only OK because the 
tables have not grown to mature size), or 
poor indexes.



Conclusions

• Good application design and good process 
design do not rewrite history, and do not re- 
summarize the same history repeatedly.

• Purging old data should have almost no effect 
on day-to-day performance if the application 
is well-designed and the query execution 
plans are well-tuned and robust. (Purging can 
save disk and make backups, recoveries, 
conversions, other DBA tasks easier and 
faster, though.)



Conclusions
• Although purging old data should have almost 

no effect on day-to-day performance if the 
application is well-designed and the query 
execution plans are well-tuned and robust, 
correctly designed applications and 
processes should almost never touch old 
data, making such purges relatively safe and 
easy.

• A “read trigger” would be a useful innovation, 
here – “Notify me if, contrary to expectations, 
anyone ever reads these rows…” 



Conclusions

• The natural data layout of simple heap tables 
is ideal for event-type tables, naturally 
clustering hot, recent rows together at the top 
– don’t mess with this useful natural result! 
(Rebuilding heap tables with parallel threads 
is one way to shuffle recent rows in among 
old rows, with disastrous results to caching 
and performance!)



Questions?


	SQL Tuning – Reaching Recent Data Fast
	Time is the Key to Tuning
	Business Table (and Entity) Types
	Heap “Organization”
	“Excavating” the Heap Table
	Optimal Paper-Based Business Process Rules
	Optimal Event-Based Business Process Rules
	Optimal Data-Based Business Process Rules
	Optimal Data-Based Business Process Rules
	Optimal Data-Based Business Process Rules
	Optimal Data-Based Business Process Rules
	Types of Conditions
	Types of Filter Conditions
	Types of Conditions
	Types of Conditions
	Types of Conditions
	Types of Conditions
	Types of Conditions
	The Advantage of Driving to Recent Rows
	The Advantage of Driving to Recent Rows
	The Advantage of Driving to Recent Rows
	“Good-Citizen” Queries
	A Few Good Reasons to Read or Modify Old Data
	A Few Good Reasons to Read or Modify Old Data
	Summarizing Principles
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Questions?

