
Configuring and Manufacturing highly complex and extra long BOM
using Oracle Configurator: A Customer Case Study

Eashwaran Pallipuram & Tarun Sharma

Keste

Introduction

New York Blower, a leading industrial fan-blower maker was looking to use OM and Configurator to
design, configure and manufacture their products. The manufacturing bills and options were huge and
complexity of streamlining the process appeared very cumbersome to accomplish. Keste partnered with
NYB in solving this problem and helped realize a very feasible solution using the Oracle modules including
Configurator. This case study will review the key approaches and implemented optimization techniques.
Audience ROI: Insights into streamlining your complex MFG by leveraging Oracle OM and Configurator.

Challenges/Requirements

Various Challenges were faced for implementing an effective Configurator solution for New York Blower.
The major ones are:

Segregating the order entry process from the engineering or manufacturing process: During an order
placement process there could be situations when based upon various user selections in configurator, the
engineering would decide which part number to use. It could also end up creating a new part number.
Various techniques were used for capturing such configurations.

Placeholder Items were created in Item Master and Bill of Materials in the required Organization and
Operating Unit. These placeholder items were then imported in Configurator and during a runtime session
they would get driven under special conditions. These special conditions were nothing but the user
selections requiring a part which can only be decided by engineering. So after the placeholder item gets
driven in configurator and captured in order management, engineering would work towards replacing this
item with an actual part number.

Engineering would then start working on creating a new part number for it. A batch program was developed
which would based upon the feedback from Engineering go about creating new part numbers in the required
organization and operating unit. If a new part number was not required because an existing part number
could satisfy the requirements, this program would not generate a new part number. This program
communicates with the legacy system on which engineering works and goes about creating new part
numbers in Oracle Applications.

Another batch program would use the new part numbers created and replace it in place of the placeholder
item. If a new part number was not created and an existing part number was to be used instead, it would do
so. This replacement of part numbers would happen after the order has been booked and progressed.

Enable configuration of a Huge and Complex Bill Of Material: If a Bill is not created effectively no
matter how efficient the configurator’s performance is, the overall system gets affected. Thus we had to
make sure that Bill of Material for the items to be implemented was created properly. The Bill Of Material
for all the items was more or less created already. But after studying the Bill in detail we identified a few
places where Bill was required to be modified. The techniques followed were:

The Bill should be as abstract as possible rather than being explicit. There were a few option classes which
were placed underneath each of the three main ATO models. This is not only bad from maintenance point
of view but from configurator point of view also. The size of BOM increases and rules need to be written 3
times for driving the same item. So such option classes were redefined underneath the PTO model directly.

A few option classes had required items underneath them, so their optional flag in BOM was unchecked
thus making them required option classes. By doing so they did not flow in configurator reducing the size

COLLABORATE 08 Copyright ©2008 by Eashwaran Pallipuram & Tarun Sharma 1

of BOM Model instantiated in Configurator in runtime session. Also it did not require any rules to be
written for driving them, thus reducing the number of rules.

In case of New York Blower the routing items were not defined at Option Class level. The reason for that
being, items underneath the same option class could have different routings depending upon user selections.
Thus separate routing items were created in the Item Master. These routing items were driven based upon
user selections in configurator. Thus one of their major roadblocks of driving user selection based routings
was achieved successfully.

 PTO

 ATO 1

User Prompt
Model

 ATO 2

User Prompt
Model

 ATO 3

User Prompt
Model

User Prompt
Model

Figure: 1.0

As shown in the figure 1.0 above only one of the three ATO models should be instantiated. These ATO
models have on an average 7 more ATO models underneath them and around 80 option classes underneath
the main ATO models and 10 underneath each of the remaining 7 ATO models. Also some of the option
classes could have around 700 items underneath them. Thus if all the three ATO models were instantiated at
the runtime session, It majorly affected the performance of configurator. Thus we introduced configurator
extensions to instantiate only one of the three ATO models. The model which gets instantiated would
depend upon the user selections in User Prompt or Non – BOM Model. After making all the selections the
user would press “Configure Fan” button which would trigger an ‘On Command’ event extension, which
would finally instantiate the required ATO Model.

During prototype it was realized that if rules were written directly between the User Prompt Model and the
ATO model, it would create situations wherein certain selections were unavailable because of BOM Data

COLLABORATE 08 Copyright ©2008 by Eashwaran Pallipuram & Tarun Sharma 2

issues. Basically incorrect BOM data would prevent the rule from making a unique selection thus disabling
or excluding options from option feature which could drive that BOM Item. Thus by creating a design
wherein User Prompt Model was made independent of the ATO models eliminated this issue. Also after
user made all the selections, it was then copied to the NON BOM Model underneath the instantiated ATO.
This NON BOM Model was nothing but the same ATO Model referenced underneath all the three ATO’s
shown in figure above. An extension would trigger at the same time when the required ATO model gets
instantiated, which would copy all the user selections from the ATO independent NON BOM Model to the
referenced NON BOM Model underneath the instantiated ATO. The rules were then written in between
these user selections and the BOM Model driving the BOM Items.

The number of BOM Items and the validations required at BOM Item level and User Prompt level were
huge. The best way of selecting BOM Items is by using compatibility rules, but these rules need to be
mapped at each node level. Thus time taken for all the BOM Option classes increases substantially. Thus to
reduce this time taken, rules were written in a statement format. These statements were written using
various word editors like ‘Notepad’, ‘Notepad++’ or ‘WordPad’. By using this method various rules could
be copied across option classes and uploaded in a single file. This not only reduced the time frame required
to write the rules but also reduced the time to upload them in configurator. This reduction in development
time ended up in cost savings for the customer.

Pass Additional Information Downstream without Increasing the BOM/Order Size: New York Blower
had a requirement of capturing various user inputs, which could then be used for numerous downstream
processes. Majorly attribute mapping was the technique used to capture all these user selections required for
the downstream processes.

User Inputs captured through attribute mapping technique was used for determining the price of various
items. For doing this, pricing context and its segments was defined in application developer. These
segments were nothing but various user selections whose unique combination would decide the future price
of the item. The items were defined in a Price list and various pricing context along with attributes was
attached to these items. Depending upon various attributes a specific price was defined in the price list.
After user makes selection in the configurator and hits the finish button, a extension would then get
trigerred which would then capture the attributes which have been mapped to the cz schema table. An SQL
pricing routine would then compare these attributes with the attributes in price list and come up with a price
for it which would get displayed in the sales order lines.

These attributes which would get captured could also be used to modify the description of various Star
BOM items in a given configuration. These descriptions were required to be modified, so that they could be
well understood on the shopfloor. For carrying out a description update, the items whose descriptions were
required to be modified were attached a catalog and descriptive element indicating Description Update was
attached to them. At the end of configuration runtime session when this item would get captured in CZ
Schema a custom SQL Routine would then modify its description based upon the user selections. This
description would consist of a concatenated string of user selections made in configurator session. A batch
program was defined for executing this routine. Thus a business user from customer’s end could carry out
description update without having any knowledge of SQL.

Leveraging Customers Configurator Experience: Current Configurator Design ensures that customers
are able to place orders for valid configurations. There are several possible scenarios which were taken into
account to ensure the above.

There are situations when BOM items have either incorrect Descriptive Element values, missing descriptive
elements or two or more items have the same descriptive element values. In such cases one or more options
get excluded from option features or valid user selection might indicate contradiction messages. To prevent
any such situation NON BOM Models were created independently of ATO Models. i.e. there were no rules
linking the NON BOM Model directly with any of the three ATO Items. The method adopted to achieve
this functionality has been described earlier in the paper.

Runtime sessions when a rule is not able to select a unique item underneath an option class have been
mentioned above. To handle such a scenario custom SQL scripts have been provided to the customer. These
scripts are able to find out the items with duplicate descriptive element values, null descriptive element
values or missing descriptive elements. Thus customer can then correct the data issues.

COLLABORATE 08 Copyright ©2008 by Eashwaran Pallipuram & Tarun Sharma 3

Configurator with a standard design approach across models reaffirms the reduction in time taken for a
NYB user with minimum configurator experience to start using the application effectively. The user
interface templates across various product families are almost the same thus order entry user does not need
separate training for using the application. The design of BOM and validation rules is simplistic and
comparable across models thus NYB’s IT team would not have problem understanding multiple models.
The templates used to capture requirements and test cases are also generic, thus they can be used for future
implementations as well reducing the development time and effort.

Lessons Learned from Prototype: Prototype which was developed for NYB before going ahead with the
implementation of various product families turned out to be a good learning exercise for both NYB and
Keste. The lessons learned can be summarized in the points mentioned below:

User Prompt Model consisted of 10 components with on an average of 30 option features and 5 options
underneath each of these option features. All the options underneath these option features had at least one
property attached to them. Thus creating all these options and properties manually was going to be a very
time consuming job. Thus a SQL script was developed which used the values entered in a standard pre-
decided format in excel sheet and uploaded them in the configurator developer. This script was able to
create hierarchical structure and create the entire NON BOM Model structure the way it was intended to.

Figure 1.1

The figure 1.1 shows a template created to capture the various details such as Model Name, Component,
Option Feature and finally options. This template was used to create NON BOM Model. A similar template
was used to create properties underneath these options.

COLLABORATE 08 Copyright ©2008 by Eashwaran Pallipuram & Tarun Sharma 4

Figure 1.2

After understanding the business process and various product families of NYB, a standardized template was
developed (shown in figure 1.2) to gather the requirements for various Components, Option Features and
Options underneath User Input Prompt Model. This template being simple in nature was understood clearly
by the customer. Thus the time taken for requirement gathering process could be reduced to only a couple
of days from 10 days. As the customer got accustomed to the template requirement gathering turned out to
be more fruitful, exhaustive and successful. These templates also made the customer understand the product
more, thus improving the quality of communication between the customer and Keste.

The BOM Items and Routing Items were also captured in an excel spreadsheet. They were captured in a
manner which showed their hierarchical structure in Oracle Applications as well as criteria’s or rules which
can be used to drive them. These templates made sure that all the BOM Items were considered and perfect
criteria could be chosen to select a unique item. Figure 1.3 shows the template used for capturing the BOM
Model structure with rules.

Test Cases with end user selections and expected Manufacturing BOM structure enabled the developers to
weed out cases where configurations were not captured exactly as per expectations. The templates were not
only simple but also enlisted the outcome very effectively. Figure 1.4 and 1.5 shows the templates.

Thus on the whole capturing of requirements as well as test cases in standardized templates helped the
customer in increasing their understanding of the product. For Keste it helped to understand the
requirements totally and clearly thus developing a quality solution for NYB.

COLLABORATE 08 Copyright ©2008 by Eashwaran Pallipuram & Tarun Sharma 5

Figure 1.3

Figure 1.4

COLLABORATE 08 Copyright ©2008 by Eashwaran Pallipuram & Tarun Sharma 6

Figure 1.5

Some of the type of rules used during prototype was modified during actual implementations. The reason
being that by modifying the rule type a noticeable improvement in performance was seen. For example
keywords like CONSTRAIN was used instead of COMPTABILE for reducing the time taken for
configurator in selecting items underneath a BOM Option Class with around 1000 items. Populators were
used to populated BOM items of a specific item type underneath an Option Feature and use them for BOM
Item selection. But Populators did not prove to be effective, as rules written in between populators and
Options in Option Features would at times disable options or option features due to BOM data issues. Thus
it was decided to do away with populators altogether. This led to developing a new technique of referencing
the NON BOM Model underneath the instantiated ATO Model discussed in the paper earlier. This
technique was much more effective and efficient and ensured capture of valid configurations.

Thus prototype proved to be a good test bed for trying out various techniques before actually rolling out the
configurator solution for various product families.

Positive Impact of Configurator Solution on NYB’s overall Enterprise Solution

The following tangible benefits were derived post implementation:

• Accurate Bill of Material
• Better Management of Inventory
• Better Scheduling and Forecasting
• Better Costing of items
• Various Reports on Sales across product families
• Intelligence Reports

COLLABORATE 08 Copyright ©2008 by Eashwaran Pallipuram & Tarun Sharma 7

COLLABORATE 08 Copyright ©2008 by Eashwaran Pallipuram & Tarun Sharma 8

Conclusion

We obtained almost all the benefits we planned for at the outset. The implementation methodology and the
approach used did reduce the total implementation cost. The implementation time was also reduced due
clarity of solution mapping, proper training and ownership taken by the implementation team. This
implementation also led to improvement of the existing process of the organization. We have also learnt a
great deal from this implementation, which can only benefit our own clients in their implementations.

	Positive Impact of Configurator Solution on NYB’s overall Enterprise Solution
	Conclusion

