
Getting Concurrent with
Java

Janette Lockhart

Overview

• Reasons to start using Java
– Powerful
– Object-oriented
– Provides classes that make many routine tasks

easy – such file manipulation
– E-Business Suite increasing embraces Java

• Java Concurrent Programs (JCP) are a great
way to begin your dive into Java

Objectives

• Learn how to develop and test a JCP from
JDeveloper

• Understand how to leverage OA Framework
BC4J objects in a JCP

• Learn how to register and run a JCP in the E-
Business Suite

• Understand how to call XML Publisher APIs
from a JCP

Getting Started

• See Metalink for the correct JDeveloper OA
Extension version and download as patch

• For 11.5.10, the base version of JDev is
9.0.3. For R12, the version of JDev is 10g
– Many different “OA Extension sub-versions”

depending on your ATG patch level. 11iRUP4
requires different JDeveloper than does 11iRUP5,
etc.

• View the Patch Readme for install steps.

Preparing your JDeveloper
Environment for JCP Development
• Download the fnd/cp class files from the

middle tier
– Login to the applications server and set your

environment
– Change directories to

$JAVA_TOP/oracle/apps/fnd
– zip –r cp cp
– Above command recursively zips the cp directory

and creates cp.zip
– Download cp.zip and unzip into your

<jdev_install>/jdevhome/jdev/myclasses/oracle/ap
ps/fnd directory

Preparing your JDeveloper
Environment for JCP Development
• Download the DBC file for your environment

– Login to the applications server and set your
environment

– Change directories to $FND_SECURE
– Download the .dbc file from that directory
– Place in your <jdev_install>\jdev\dbc_files\secure

directory

Create an OA Workspace and OA
Project
• In JDeveloper’s Applications Navigator, right-

click the Applications node and select “New
OA Workspace”

Create an OA Workspace and OA
Project, continued

DBC File

Applications Login

Responsibility
Application and Key

Workspace and Project Setup
Complete

Your First Java Concurrent Program

• Right-click on JCPDemoProject and choose
“New” from the context menu

• In the “New” Gallery, select General => Java
Class. Click OK.

Your First Java Concurrent
Program, continued
• In the Create Class window

– Enter JCPDemoClass for Name
– Enter vis.oracle.apps.xxvis.cp.demo for Package
– Leave other defaults

Editing the Generated Code
• Add import statements
import oracle.apps.fnd.cp.request.ReqCompletion;
import oracle.apps.fnd.cp.request.JavaConcurrentProgram;
import oracle.apps.fnd.cp.request.CpContext;

• Add “implements JavaConcurrentProgram”
public class JCPDemoClass implements JavaConcurrentProgram

• Add program logic
public void runProgram(CpContext ctx) {
ctx.getLogFile().writeln("Starting to run Java concurrent program",

0);
ctx.getReqCompletion().setCompletion(ReqCompletion.NORMAL,

""); }

Code Explanation
• We have created a class named JCPDemo
• Class resides in a directory structure (package)

named vis.oracle.apps.xxvis.cp.demo
• Import statements refer to other Oracle/Java classes

that we will reference
• Our class implements JavaConcurrentProgram

– Which is an interface (or a template)
– Meaning we promise to provide the code for the methods

specified by the interface: runProgram in this case

• The runProgram takes one argument – ctx which is of
type CpContext

Code Explanation, continued

• CpContext provides us with “context”
– Access to concurrent request log and output files
– Access to profile and global values
– Access to a JDBC connection

• So far, we’ve used CpContext to get a handle
on the log file for our request and write some
text to the log

• Also, we’ve used CpContext to set the
program completion status

Running the JCP from JDeveloper

• Why? Convenient not to have to deploy to
middle tier for every test

• We need to set Java Options so JVM can find
our DBC File, our log file, and our output file
on the desktop

• Right-click the JCPDemoProject
– Choose “Project Properties”
– Choose “Run=>Debug”
– Click the “Edit” button for the default configuration

Running the JCP from JDeveloper,
continued

• Java Options:
-Ddbcfile=<jdev_install>\jdevhome\jdev\dbc_files\secure\OS11.dbc
-Drequest.logfile=c:\jcpdemo.log
-Drequest.outfile=c:\jcpdemo.out

Running the JCP from JDeveloper,
continued
• In the Applications Navigator, right-click the JCPDemo

project and select “Run”
• You should get a successful completion message
• Go look for your log file and verify that the text you

specified was written

Leveraging OA Framework BC4J
Objects in a JCP

• Use “About this Page” to learn about BC4J Objects
underlying an OA Framework web page

Leveraging OA Framework BC4J
Objects in a JCP

• Application Module is ProjectInfoAM
• View Object is ProjectHomeInfoVO

BC4J Quick Overview

• In Business Components for Java (BC4J)
– Application Module is

• A “container” object that gives access to other objects in
the model, like the ProjectHomeInfoVO

• Provides context (similar to CpContext)

– View Object is
• An object that queries the database
• It is defined with a query whose where clause maybe

manipulated at run time
• It returns rows which have attributes representing the

“columns” of data returned from the database query
• Provides a writeXml method

Adding a Method to Build XML

• Name our new method buildXml
• Takes CpContext as an argument
• Creates an Application Module Factory
• Use the “factory” to create the ProjectInfoAM

Application Module
• Use the findViewObject method on the AM to

get the ProjectHomeInfoVO view object
• Set the VO where clause and bind variable
• Execute query and writeXml to our out file

Adding a Method to Build XML,
continued
private void buildXml(CpContext ctx)

{
String amName = "oracle.apps.pa.project.server.ProjectInfoAM";
String voName = "ProjectHomeInfoVO";
OAApplicationModuleFactory amFactory = new OAApplicationModuleFactory();
OAApplicationModule am = amFactory.createRootOAApplicationModule(ctx,
amName);
OAViewObjectImpl vo = (OAViewObjectImpl)am.findViewObject(voName);
vo.addWhereClause("project_number = :1");
vo.setWhereClauseParam(0, "B100"); //temporarily hard-coded
vo.executeQuery();
XMLNode root = (XMLNode)vo.writeXML(0, XMLInterface.XML_OPT_ALL_ROWS);
BlobDomain result = new BlobDomain();
try
{
root.print((OutputStream)result.getBinaryOutputStream());
ctx.getOutFile().writeln(result.toString());
} …

Adding a Method to Build XML,
continued
• Compile and run the project
• Look for the output file which now has the

XML
• Notice the root element has the same name

as the VO.

Registering the Concurrent Program
in the E-Business Suite
• Register Concurrent Executable

– Execution Method: Java Concurrent Program
– Execution File Name: Class Name (without .class)
– Execution File Path: Package name

Registering the Concurrent Program
in the E-Business Suite
• Register Concurrent Program

– Set Output Format to “XML”
• Assign to Request Group
• Test!

Calling XML Publisher APIs from
JCP
• Demo requirement is to

– Programmatically apply XMLP template
– Burst (split) the output by project number
– Email resulting PDF files

• Note: in R12 bursting comes out of the box,
no need for a custom JCP

• Bursting operations are driven by an XML
control file

• Download the oracle/apps/xdo class files

Bursting Control File
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
<xapi:request select="/ProjectHomeInfoVO/ProjectHomeInfoVORow">
<xapi:delivery>
<xapi:email server="vansmtp.impacservices.com" port="25"

from="jlockhart@impacservices.com" reply-to
="jlockhart@impacservices.com">

<xapi:message id="123" to="jlockhart@impacservices.com"
attachment="true" subject="JCP Demo Test">Please review the
attached document.</xapi:message>

</xapi:email>
</xapi:delivery>
<xapi:document output-type="pdf" delivery="123">
<xapi:template type="rtf" location=

"xdo://XXVIS.XXVIS_JCPDEMO.en.US/?getSource=true" >
</xapi:template>
</xapi:document>
</xapi:request>
</xapi:requestset>

Calling the Bursting API from our
JCP
• Add a new method to our class

– Get the Custom Top path where our bursting
control file resides

– Get the request output file path and name, which
is our XML data source

– Instantiate a Document Processor object
– Call the process() method on the Document

Processor

Calling the Bursting API from our
JCP
private void emailOutput(CpContext ctx){

//get the path to our custom top directory
String sCustomTop = ctx.getAppsEnvironmentStore().getEnv("XXVIS_TOP");
//concat the directory path and file name for the bursting control file
String sCtlFile = sCustomTop + "/jcpdemo_ctl.xml";
try {

//get the file name for the conc request output file
String sXmlFile = ctx.getOutFile().getFileName();
//call the document processor, passing control file and xml file
DocumentProcessor dp = new DocumentProcessor(sCtlFile, sXmlFile);
dp.process();

}
catch (Exception e)
{

ctx.getLogFile().writeln(e.getMessage(), 0);
mReqStatus = ReqCompletion.ERROR;

}
}

Conclusion

• We’ve learned how to
– Write and run a JCP from JDeveloper
– Instantiate OA Framework BC4J objects and use

them to generate XML output
– How to register a JCP in the E-Business Suite
– How to call XML Publisher APIs from a JCP

• We were able to do a lot with very little code!

Note: The complete program code is in the Appendix in the
paper that will be available on the OAUG web site

	Getting Concurrent with Java
	Overview
	Objectives
	Getting Started
	Preparing your JDeveloper Environment for JCP Development	
	Preparing your JDeveloper Environment for JCP Development
	Create an OA Workspace and OA Project
	Create an OA Workspace and OA Project, continued
	Workspace and Project Setup Complete
	Your First Java Concurrent Program
	Your First Java Concurrent Program, continued
	Editing the Generated Code
	Code Explanation
	Code Explanation, continued
	Running the JCP from JDeveloper
	Running the JCP from JDeveloper, continued
	Running the JCP from JDeveloper, continued
	Leveraging OA Framework BC4J Objects in a JCP
	Leveraging OA Framework BC4J Objects in a JCP
	BC4J Quick Overview
	Adding a Method to Build XML
	Adding a Method to Build XML, continued
	Adding a Method to Build XML, continued
	Registering the Concurrent Program in the E-Business Suite
	Registering the Concurrent Program in the E-Business Suite
	Calling XML Publisher APIs from JCP
	Bursting Control File
	Calling the Bursting API from our JCP	
	Calling the Bursting API from our JCP	
	Conclusion

