Exploring Oracle E-Business Suite Load Balancing Options

Venkat Perumal
IT Convergence
Objectives

- Overview of 11i load balancing techniques
- Load balancing architecture
- Scenarios to implement
Load Balancing

• What is load balancing?
 – Improve Performance
 – Scalability
Load Balancing Options in 11i

- DNS Based Load Balancing
- HTTP Layer Load Balancing
- Forms Metric Server Load Balancing
- Apache Jserv Layer Load Balancing
- Parallel Concurrent Processing
DNS Load Balancing

- Independent of Oracle EBusiness Suite Techstack
- Domain Name Server (DNS) Layer load balancing solution distribute end-user requests across multiple servers based on dynamic assignments of IP addresses to a fully qualified domain name
- Associated with Round Robin DNS technique
- Inexpensive and easy to setup
DNS Load Balancing

DNS Mapping
http://apps.itc.com 192.168.100.10
http://apps.itc.com 192.168.100.10
http://apps.itc.com 192.168.100.10
DNS Load Balancing

- Load balance multiple web/forms servers
- Widely used to load balance Self Service Applications
- Virtual Host Naming option in Oracle Applications is used to configure DNS Load balancing among multiple web/forms server nodes
DNS Load Balancing

- High availability is not guaranteed
- Doesn’t consider “actual” server load - balances number of users on each server, it doesn't necessarily balance the server load
- Incase of server failure, DNS needs to be reconfigured - Bigger problem when removing a node than when adding one. When a node is dropped, a user may be trying to hit a non-existing server
HTTP Layer Load Balancing

- Two types – Hardware and Software HTTP load balancers
- Load balancers accepts communication and forwards the requests to Application web nodes
- Primarily used to load balance Web nodes
- Yet to be certified by Oracle
HTTP Layer Load Balancing
HTTP Layer Load Balancing

• Requires additional patches and context file configuration.

• Hardware based HTTP Load-Balancers must be configured to ensure persistent session connections between clients and Web Server Nodes.

• Need to make sure that load-balancer sends all the requests from one client session to the same Web Server Node.

• Sophisticated HTTP load balancer algorithm guarantees fail over.
HTTP Layer Load Balancing

• Primarily used for load balancing high volume of Self Service Application users

• Compared to DNS based – requires expertise to setup HTTP layer load balance

• Guarantees high availability against failures
DNS and HTTP – connectivity.

- EBusiness 11i is a stateful application
- Difference between STATEFUL and STATELESS
 - A *stateful* application maintains session state information within its runtime environment between successive client calls
 - A *stateless* application maintains no such information within its environment. It may persist state information in a common store such as a database or in the client browser
STATEFUL Application Example

- Step-by-step example of client requests to a STATEFUL application
STATEFUL Application Example

- Step-by-step example of client requests to a STATEFUL application

Client issues request; request gets routed for service by Node A. Node A may access db to service the request
STATEFUL Application Example

- Step-by-step example of client requests to a STATEFUL application

Node A services request; maintains session state for Client’s session
STATEFUL Application Example

- Step-by-step example of client requests to a STATEFUL application

On any subsequent request, Client must be serviced by Node A (and not Node B) to access Client’s session state.
STATELESS Application Example

- Step-by-step example of client requests to a STATELESS application

Node A services request; maintains session state for Client’s session
STATELESS Application Example

- Step-by-step example of client requests to a STATELESS application

On any subsequent request, Client may be serviced by either Node A or Node B and access session state.

Client’s session state
Forms Metric Server Load Balancing

- Available from R11
- Matured load balancing technique for Forms servers
- Load balances multiple forms servers
- Requires minimum of two nodes – Primary and Secondary
- Primary acts as Metric Server and Secondary as Metric Client
Forms Metric Server Load Balancing

- Web Browser
- Application Server
- Database Server
- Web Listener
- Config file
- Base HTML file
- Load Balance Server
- Forms CGI
- Server Args
- <HTML>...
 <OBJECT...
 serverHost=%leastloadedhost%
 serverport="8000"
 serverargs="%module=%myfmx%"
 </OBJECT>
Forms Metric Server Load Balancing

- Web Browser
- Load balancer Server (Data Port = 9010, Request Port = 9020)
- Load Balancer Client (Remote Port = 9010)
- Database

Load Information (number of forms processes)
Forms Metric Server Load Balancing

User request

Web Browser

Data Port = 9010
Request Port = 9020

Web Listener

Forms CGI

Load balancer Server

Load Information (number of forms processes)

Load balancer Client

Remote Port = 9010

Database
Forms Metric Server Load Balancing

User request

Web Browser

Least Loaded Server

Data Port = 9010
Request Port = 9020

Web Listener

Forms CGI

Load Balancer Server

Load Information (number of forms processes)

Load Balancer Client

Forms Run Time

Database
Forms Metric Server Load Balancing

Diagram:

- User request from Web Browser
- Least Loaded Server
- Web Listener
- Forms CGI
- Load Balancer Server
- Load Balancer Client
- Load Information (number of forms processes)
- Forms Run Time
- Database
Forms Metric Server Load Balancing

• Load balancer based on number of Forms processes running on each node

• Doesn’t take into account of actual OS resources like CPU load and memory

• Doesn't guarantee high availability

• Fail over option is not supported

• Web servers are not load balanced as it is running only on Primary Node

• Supported by Oracle
Apache Jserv Layer Load Balancing

Diagram:

- **Oracle HTTP Server Powered by Apache**
 - Mod_Perl
 - Mod_Jserv
 - Mod_SSL

- **Apartment**
 - Jserv Protocol

- **Node 1**
 - Servlet Engine

- **Node 2**
 - Servlet Engine
Apache Jserv Load Balancing

- Poor web page performance
- User requests being timed out
- Java processes taking 100% CPU on your server
- Sample error message in Apache log file:
 java.lang.OutOfMemoryError"
Apache Jserv Load Balancing

- Default setup – jserv.conf file.

ApJServGroup OACoreGroup 2 1 /usr/.../jserv.properties
ApJServGroup DiscoGroup 1 1 /usr/.../viewer4i.properties
ApJServGroup FormsGroup 1 1 /usr/.../forms.properties
ApJServGroup XmlSvcsGrp 1 1 /usr/.../xmlsvcs.properties

- OACoreGroup is the default group.
- DiscoGroup is only used for Discoverer 4i requests
- FormsGroup is only used for Forms Servlet requests
- XmlSvcsGrp is for XML Gateway, Web Services, and SOAP requests
Apache Jserv Load Balancing

Factors affecting JVM performance
• JServ configuration file tuning (jserv.properties and zone.properties)
 • Applications modules being used
 • How many active users
 • Hardware specification
Apache Jserv Load Balancing

As per Oracle Best Practice:

- One JVM per CPU (ideally, there should be 1 JVM per 2 CPUs)
- OACoreGroup
 1 JVM per 100 active users
- DiscoGroup
 2 JVM per 75 active Discoverer users
- FormsGroup
 1 JVM per 50 active forms users
- XmlSvcsGrp
 1 JVM
Apache Jserv Load Balancing

- How to configure multiple JVM’s:
 Through OAM - > Autoconfig edit wizard
Parallel Concurrent Processing

- Only load balancing option for Concurrent Manager tier
- Supported and available from R11
- Different from distributed concurrent processing
- Against one database with multiple concurrent manager nodes
- Widely used in RAC architecture
Concurrent Manager Load Balancing

1- ICM contacts TNS listener
2- TNS listener spawn Service Manager
3- ICM communicates with Service Manager
4- Service Manager spawns Manager and Services processes
Concurrent Manager Load Balancing

1- ICM contacts TNS listener
2- TNS listener spawn Service Manager
3- ICM communicates with Service Manager
4- Service Manager spawns Manager and Services processes
5- ICM Crashes
6- Internal monitor spawns a new ICM on Node 2
Parallel Concurrent Processing

- Each node has its own memory that is not shared with other nodes
- Each node operates independently of other nodes, except when sharing a resource such as a disk
- Specialization rules can be written in Oracle to execute a particular managers on a node. For example PO Document manager can be deployed a certain node
- Managers can be deployed on multiple nodes, thus load balancing among concurrent managers
Parallel Concurrent Processing

• **High performance** - the ability to run concurrent processes on multiple nodes to improve concurrent processing throughput

• **Fault Tolerance** - the ability to continue running concurrent processes on available nodes even when one or more nodes fails

• **Adaptability** - the ability to integrate with platform–specific batch queue and load–balancing systems to maximize concurrent processing performance on a particular platform

• **Single Point of Control** - the ability to administer concurrent managers running on multiple nodes from any node in a cluster, massively parallel, or networked environment
Application 11i Load Balancing

Summary:

- Concurrent Manager
 - PCP LB
- Middle Tier
 - HTTP LB
 - Forms LB
 - DNS LB
 - Apache Jserv LB

Oracle Applications 11i
Questions