Architecture – Design/Configuration

Simulating Oracle I/O to Accurately Configure Storage
James F. Koopmann, Guardium, Inc.

Introduction

Collaboration between databases administrators and storage administrators is nearly non-existent. The typical scenario is for a database administrator to ask for additional storage and the storage administrator carving a slice somewhere. The database administrator doesn’t question where the disk slice comes from and the storage administrator doesn’t question what the storage will be used for. To make matters worse, when storage is purchased the amount of space required is usually the only criteria for purchase. When it comes time to configuring the storage array assumptions are made regarding a specific raid level that is based only on various TPC or vendor specifications. Storage specifications are rarely presented in a way that matches the applications I/O requirements to the abilities of a storage system.

When setting up new Oracle databases or extending storage a database administrator and storage administrator must come together for planning and implementation of the storage system. Within Oracle there are different I/O patterns that are based on various workloads that might be different for different times of the day. Plus internal to Oracle, I/O patterns to disk may be different whether Oracle is writing to redo logs, database files, archive logs, control structures, or external objects. The complexity becomes even worse when we begin to break out the various database file types. I/O patterns for Oracle data files are different if they are against undo tablespaces, temporary tablespaces, or have different block sizes associated to them.

It is up to the database administrator and storage administrator to understand these I/O patterns and configure a storage system that will best meet these I/O patterns. It isn’t as easy as putting everything on Raid Level 5 as some would suggest. And just reading various pros and cons that are often publicized about Raid Levels is also not the best alternative.

For a true understanding of how to use a storage system and select the appropriate Raid Level a series of tests or benchmarks must be done. Only after a complete investigation can anyone expect to select the proper configuration and have Oracle operate at peak performance.

Database and Storage Administrators must also keep in mind not only immediate requirements for Oracle or a storage system but also how they are expected to grow over time. Most Oracle databases continually grow in size, support more and more users, and are expected to handle increased workloads. The ability of a storage system to scale along with an Oracle database’s workload is a critical component in providing a continual level of service to end users. When a storage system fails to scale with Oracle a variety of issues will arise.

1. Overall storage subsystem contention

2. Increased system resource usage

3. Poor use of Oracle internal memory structures

4. Increased load on locking structures

5. Physical database design becomes impaired

6. Ability to tune an application becomes impossible

When applications, the Oracle database, or storage systems do not scale a devastating effect can ripple throughout a system. Adding additional hardware often exasperates a problem or moves the bottleneck to a different component of the system. Ultimately the system must be re-designed or re-architected. Failure to take action will only lead to an unusable system or increased downtime.

One of the main hurdles faced to database administrators and storage administrators is there ability easily and quickly change storage configurations. This is important not only after going into production but serves as a catalyst to actually perform tests. No one wants to run through a series of tests if they are difficult to setup, run, and make modifications to.

Using ORION
As the amount of data within Oracle databases continues to increase it is much more difficult for IT organizations to implement database systems that not only scale in size but also scale in performance. The unfortunate aspect of database storage is that purchasing decisions are often based completely on the amount of data that will be housed in an Oracle database. If a 1TB database has been identified, a Database Architect may justify the purchasing of a storage array that consists of three or four disk drives. The problem being that there is more in determining the optimal configuration of a storage array than the size of a database. Database storage is often thought of as a place to hold tables and indexes. Somewhere the relationship between CPU, memory, and disk to a database’s performance has been lost. If a database system is CPU bound or memory deprived it is easy to purchase additional CPUs or memory. But if an Oracle database shows I/O problems with a bottleneck in ‘db file reads and writes’ or problems with log files, configuration issues in a storage array are often never questioned. In an attempt to service I/O requests faster additional CPUs or memory will also be purchased, forgetting that faster CPU or more memory actually lead to the issuing of more I/O requests and tasking disks even more.

Storage system configuration and planning is vital to maintaining and predicting the performance of an Oracle database and ultimately applications performance. Statistics delivered by storage vendors is regarded as the definitive authority for storage system performance. After absorbing data transfer rates, seek times, latencies, and various other specifications, a storage system is often acquired with high hopes for servicing an Oracle database. The storage systems acquired appear to be above industry standards so assumptions are made to its’ viability before any deployment. Actually specifications are invaluable for the a wide range of purchasing decisions but unless a storage vendor has run the targeted application with an Oracle database on the storage system a determination of how an application will ultimately run can not be done. It is up to the purchaser to validate the end configuration for their particular environment.

Configuring a storage array for use with an Oracle database need not be difficult. Proper planning is the difference between the same hardware having poor or excellent performance. Through the use of Oracle’s ORION workload tool Database Architects can effectively develop a workload that can mimic and stress a storage array in the same manner as the planned application with an Oracle backend database. Because the ORION tool does not require a running Oracle database, multiple configurations can be tested such that an optimal storage configuration can be obtained while providing for reliability, stability, and scalability.

Application mix

As part of the planning process, understanding the application mix that will be accessing the Oracle database is a good first place to start in understanding the workload mix placed on a database and ultimately the performance requirements of the storage system.

OLTP – Online Transaction Processing.

· Categorized as read and write intensive.

· Categorized as transaction based and performance is based on I/Os per second (IOPS) along with average latency (I/O turn-around time).

· Typically large bursts of small reads followed by inserts and updates.

· Mostly driven by the database issuing small random I/Os the size of the defined Oracle database block size (db_block_size).

· Concern should be given to the percentage of reads to writes as this is a critical ratio for finding storage configurations. Typical ratio is 70:30.

· Be aware that just because a database may have a low write percentage, database logs often make up for this and need to be considered.

· Database block size may range from 2KB to 32KB with 8KB being somewhat the norm.

· Certain operations such as table or index scans, backups, and parallel queries can issue large I/Os.

OLAP – Online Analytical Processing.

Often thought of as data warehouses or reporting systems.

Categorized as throughput based and performance is based on moving large amounts of data in Mega-bytes per second (MBPS).

Almost always purely read only databases except during the load stage.

I/O pattern is primarily large multi-block read/write I/O streams that are composed of multiple 1MB I/Os.

Keep in mind that application mixes may change.

A simple OLTP database could be cloned to a different system and begin to be used with an OLAP application. The data is the same but the I/O pattern is very different.

Consider a new group of power users that turn an OLTP into an OLAP reporting engine without notice.

Application mix might change throughout the day

· Database backups that run during the day will change the type of read activity of the database
· Data loads or ETL processing could switch an OLAP environment into an OLTP environment
Constant interrogation of a database system can easily tell how it is being used and ultimately configuring a storage array.

Oracle Workloads

An Oracle workload is often descriptive of its’ application mix and follow the previously mentioned application mixes defined. Understanding and translating an application mix into a database workload is critical for optimizing a storage system. Keep in mind that a single storage system if shared between two different workload types will not perform as well as a single storage system configured for a single workload type. But truly understanding all workload types and properly testing the storage system will often produce a better solution. Just as there are basically two application mixes there are also two primary workload types (Small Random I/O and Large Sequential I/O). But as databases are interrogated additional workload types may be seen.

1. Small Random I/O

OLTP applications as described previously.

Transaction based (IOPS & Latency)

High levels of IOPS require more back-end drives

2. Large Sequential I/O

OLAP applications as described previously.

Throughput based (MBPS)

High levels of MBPS can often be satisfied by less back-end drivesf

3. Large Random I/O

Because of various database traffic or configurations, Large Sequential I/O may be turned into Large Random I/O at the disk level of the storage system such as:
· Large sequential I/O caused by data warehouses, reporting applications, or utilities such as backups that typically request large I/O streams can be broken up by normal small random I/O of an OLTP system.
· Stripping will spread large sequential I/O across many disks that cause the storage array to experience large random I/O.
4. Mixed I/O

Database systems often are predominantly one of the three previously mentioned workloads. But there are times when a database exhibits one or more of those workloads continually and thus falls into the category of a Mixed I/O Workload.

Workload for Existing Oracle Database

If an existing Oracle 10gR2 database is servicing the application mix intended to be re-configured on a storage array, the following SQL can be used in determining the workload.

set linesize 100

set head off

SELECT 'Number of Small Reads :'||

 sum(decode(name,'physical read total IO requests',value,0)-

 decode(name,'physical read total multi block requests',value,0)),

 'Number of Small Writes:'||

 sum(decode(name,'physical write total IO requests',value,0)-

 decode(name,'physical write total multi block requests',value,0)),

 'Number of Large Reads :'||

 sum(decode(name,'physical read total multi block requests',value,0)),

 'Number of Large Writes:'||

 sum(decode(name,'physical write total multi block requests',value,0)),

 'Total Bytes Read :'||

 sum(decode(name,'physical read total bytes',value,0)),

 'Total Bytes Written :'||

 sum(decode(name,'physical write total bytes',value,0))

 FROM gv$sysstat;

Number of Small Reads :205903

Number of Small Writes:106883

Number of Large Reads :40298

Number of Large Writes:2791

Total Bytes Read :4188587008

Total Bytes Written :2009381888

Remember that statistics contained in the GV$ views are cumulative and therefore should be sampled at the beginning and then end of a peak I/O cycle. The beginning statistics can then be subtracted from the ending statistics to give the true reads and writes that have occurred. Use this to determine the read to write ratios and also to classify the database application mix and its’ workload type.

For instance if the above SQL was issued again in 10 minutes and had the following statistics.

Number of Small Reads :500211

Number of Small Writes:123474

Number of Large Reads :142981

Number of Large Writes:8010

Total Bytes Read :22232604961

Total Bytes Written :5586081648

It is now easy to calculate the IOPS for small and large I/O, the percentage of reads to writes, and the MBPS throughput.

Small Read IOPS =(500211–205903)/(10*60) = 490 IOPS

Small Write IOPS =(123474–106883)/(10*60) = 27 IOPS

Total Small IOPS =(294308-16591)/(10*60) = 517 IOPS

I/O Percentage of Reads to Writes = 94:6

Large Read IOPS =(142981–40298)/(10*60) = 171 IOPS

Large Write IOPS =(8010–2791) /(10*60) = 8 IOPS

Total Large IOPS =(102683+5219) /(10*60) = 179 IOPS

I/O Percentage of Reads to Writes = 96:4

Total MBPS Read =((22232604961-4188587008)/(10*60))/1048576= 28 MBPS

Total MBPS Written =((5586081648-2009381888) /(10*60))/1048576= 5 MBPS

Total MBPS =((18044017953+3576699760)/(10*60))/1048576= 34 MBPS

These numbers show that this particular system is very much an OLTP system with many small I/Os. Also the percentage of reads to writes is in favor of writes by 12%.

Scripting can be extended into using Oracle’s Workload Repository and snapshots.

As an example the following will extract the IOPS & MBPS between two snapshots.

--# --

--# Script : wrh_sysstat_ioworkload.sql

--# Tested : Oracle 10.2

--# Version : 2007/08/07

--# Purpose : Report on IOPS & MBPS over a period of time as seen by DB.

--# --

--# NOTES : Assumes no database restart between snap IDs selected

--# --

set echo off

set feedback off

set heading off

set linesize 132

set pagesize 55

set verify off

prompt

prompt

prompt Enter the number of days to look for snapshot IDs

prompt ^^^

select dba_hist_database_instance.instance_name,

 dba_hist_database_instance.db_name,

 dba_hist_snapshot.snap_id,

 to_char(dba_hist_snapshot.begin_interval_time,'MM/DD/YYYY:HH24:MI') begin_snap_time,

 to_char(dba_hist_snapshot.end_interval_time,'MM/DD/YYYY:HH24:MI') end_snap_time,

 decode(dba_hist_snapshot.startup_time,dba_hist_snapshot.begin_interval_time,'**** database restart ****',null) db_bounce

 from dba_hist_snapshot,

 dba_hist_database_instance

 where dba_hist_database_instance.dbid = dba_hist_snapshot.dbid

 and dba_hist_database_instance.instance_number = dba_hist_snapshot.instance_number

 and dba_hist_database_instance.startup_time = dba_hist_snapshot.startup_time

 and dba_hist_snapshot.end_interval_time >= to_date(sysdate - &&num_days_back)

 order by db_name, instance_name, snap_id;

prompt

prompt

prompt Enter Begining snapshot ID

prompt ^^^^^^^^^^^^^^^^^^^^^^^^^^

prompt &&beg_snap_id

prompt

prompt Enter Ending snapshot ID

prompt ^^^^^^^^^^^^^^^^^^^^^^^^^^

prompt &&end_snap_id

set termout off

column rpt new_value rpt

select instance_name||'_wrh_ioworkload_'||&&beg_snap_id||'_'||&&end_snap_id||'.LST' rpt from v$instance;

set termout on

prompt

prompt

prompt ^^^^^^^^^^^^^

prompt Report Name : ../LST/&&rpt

prompt ^^^^^^^^^^^^^

spool ../LST/&&rpt

column db_bounce new_value db_bounce

column sr1 new_value sr1

column sw1 new_value sw1

column lr1 new_value lr1

column lw1 new_value lw1

column tbr1 new_value tbr1

column tbw1 new_value tbw1

set termout off

SELECT

sum(decode(stat_name,'physical read total IO requests',value,0)- decode(stat_name,'physical read total multi block requests',value,0)) sr1,

sum(decode(stat_name,'physical write total IO requests',value,0)- decode(stat_name,'physical write total multi block requests',value,0)) sw1,

sum(decode(stat_name,'physical read total multi block requests',value,0)) lr1,

sum(decode(stat_name,'physical write total multi block requests',value,0)) lw1,

sum(decode(stat_name,'physical read total bytes',value,0)) tbr1,

sum(decode(stat_name,'physical write total bytes',value,0)) tbw1

 FROM wrh$_sysstat, wrh$_stat_name

 WHERE wrh$_sysstat.stat_id = wrh$_stat_name.stat_id

 AND wrh$_sysstat.snap_id = &&beg_snap_id ;

select decode(startup_time,begin_interval_time,1,0) db_bounce

 from dba_hist_snapshot

 where snap_id = &&end_snap_id;

SELECT

decode(&&db_bounce,1,0,&&sr1) sr1,

decode(&&db_bounce,1,0,&&sw1) sw1,

decode(&&db_bounce,1,0,&&lr1) lr1,

decode(&&db_bounce,1,0,&&lw1) lw1,

decode(&&db_bounce,1,0,&&tbr1) tbr1,

decode(&&db_bounce,1,0,&&tbw1) tbw1

 FROM dual;

set termout on

prompt

prompt

prompt ^^^^^^^^^^^^

prompt First Sample

prompt ^^^^^^^^^^^^

prompt Number of Small Reads : &&sr1

prompt Number of Small Writes: &&sw1

prompt Number of Large Reads : &&lr1

prompt Number of Large Writes: &&lw1

prompt Total Bytes Read : &&tbr1

prompt Total Bytes Written : &&tbw1

prompt

prompt

column sr2 new_value sr2

column sw2 new_value sw2

column lr2 new_value lr2

column lw2 new_value lw2

column tbr2 new_value tbr2

column tbw2 new_value tbw2

set termout off

SELECT

sum(decode(stat_name,'physical read total IO requests',value,0)- decode(stat_name,'physical read total multi block requests',value,0)) sr2,

sum(decode(stat_name,'physical write total IO requests',value,0)- decode(stat_name,'physical write total multi block requests',value,0)) sw2,

sum(decode(stat_name,'physical read total multi block requests',value,0)) lr2,

sum(decode(stat_name,'physical write total multi block requests',value,0)) lw2,

sum(decode(stat_name,'physical read total bytes',value,0)) tbr2,

sum(decode(stat_name,'physical write total bytes',value,0)) tbw2

 FROM wrh$_sysstat, wrh$_stat_name

 WHERE wrh$_sysstat.stat_id = wrh$_stat_name.stat_id

 AND wrh$_sysstat.snap_id = &&end_snap_id;

set termout on

prompt

prompt

prompt ^^^^^^^^^^^^^

prompt Second Sample

prompt ^^^^^^^^^^^^^

prompt Number of Small Reads : &&sr2

prompt Number of Small Writes: &&sw2

prompt Number of Large Reads : &&lr2

prompt Number of Large Writes: &&lw2

prompt Total Bytes Read : &&tbr2

prompt Total Bytes Written : &&tbw2

prompt

prompt

prompt ^^^^^^^^^

prompt Results :

prompt ^^^^^^^^^

column inttime new_value inttime

column sri new_value sri

column swi new_value swi

column tsi new_value tsi

column srp new_value srp

column swp new_value swp

column lri new_value lri

column lwi new_value lwi

column tli new_value tli

column lrp new_value lrp

column lwp new_value lwp

column tr new_value tr

column tw new_value tw

column tm new_value tm

set termout off

select (extract(day from (end.end_interval_time - beg.end_interval_time))*86400)+

 (extract(hour from (end.end_interval_time - beg.end_interval_time))*3600)+

 (extract(minute from (end.end_interval_time - beg.end_interval_time))*60)+

 (extract(second from (end.end_interval_time - beg.end_interval_time))*01) inttime

 from (select end_interval_time from dba_hist_snapshot where snap_id = &&beg_snap_id) beg,

 (select end_interval_time from dba_hist_snapshot where snap_id = &&end_snap_id) end;

SELECT

ROUND((&&sr2-&&sr1)/(&&inttime)),3) sri,

ROUND((&&sw2-&&sw1)/(&&inttime)),3) swi,

ROUND(((&&sr2-&&sr1)+(&&sw2-&&sw1))/(&&inttime)),3) tsi,

ROUND((&&sr2-&&sr1)/DECODE(((&&sr2-&&sr1)+(&&sw2-&&sw1)),0,1,((&&sr2-&&sr1)+(&&sw2-&&sw1)))*100,3) srp,

ROUND((&&sw2-&&sw1)/DECODE(((&&sr2-&&sr1)+(&&sw2-&&sw1)),0,1,((&&sr2-&&sr1)+(&&sw2-&&sw1)))*100,3) swp,

ROUND((&&lr2-&&lr1)/(&&inttime)),3) lri,

ROUND((&&lw2-&&lw1)/(&&inttime)),3) lwi,

ROUND(((&&lr2-&&lr1)+(&&lw2-&&lw1))/(&&inttime)),3) tli,

ROUND((&&lr2-&&lr1)/DECODE(((&&lr2-&&lr1)+(&&lw2-&&lw1)),0,1,((&&lr2-&&lr1)+(&&lw2-&&lw1)))*100,3) lrp,

ROUND((&&lw2-&&lw1)/DECODE(((&&lr2-&&lr1)+(&&lw2-&&lw1)),0,1,((&&lr2-&&lr1)+(&&lw2-&&lw1)))*100,3) lwp,

ROUND(((&&tbr2-&&tbr1)/(&&inttime)))/1048576,3) tr,

ROUND(((&&tbw2-&&tbw1)/(&&inttime)))/1048576,3) tw,

ROUND((((&&tbr2-&&tbr1)+(&&tbw2-&&tbw1))/(&&inttime)))/1048576,3) tm

FROM dual;

set termout on

prompt Small Read IOPS = &&sri IOPS

prompt Small Write IOPS = &&swi IOPS

prompt Total Small IOPS = &&tsi IOPS

prompt Small Read I/O % = &&srp %

prompt Small Write I/O % = &&swp %

prompt Large Read IOPS = &&lri IOPS

prompt Large Write IOPS = &&lwi IOPS

prompt Total Large IOPS = &&tli IOPS

prompt Large Read I/O % = &&lrp %

prompt Large Write I/O % = &&lwp %

prompt Total Read = &&tr MBPS

prompt Total Written = &&tw MBPS

prompt Total MBPS = &&tm MBPS

spool off

undefine sleeptime

undefine num_days_back

undefine beg_snap_id

undefine end_snap_id

undefine db_bounce

RAID Levels

Level 0 – Disk Striping

Level 1 – Disk Mirroring

Level 0+1 – Disk Striping plus Disk Mirroring

Level 5 – Disk striping with rotational parity

Calculating IOPS/MBPS for a disk

Typical specifications given by a storage vendor for disks:

[image: image8.wmf]
Example Calculation of IOPS
	RPM

Rotations

Per

Minute
	Rotations

Per

Second
	Rotations

Per

Mili-second
	Full Rotation

	Rotational Latency

(Half Rotation)

	Average

Seek

Time

	IO

Time

	IOPS

	(x)
	(x/60)
	(x/60,000)
	(1/ [x/60000])
	(1/ [x/60000]) / 2
	
	
	

	
	
	
	
	Y
	Z
	(Y+Z)
	(1/[Y+Z])*1000

	15,000
	15,000/60
	15,000/

60,000
	4ms
	2ms
	4ms
	6ms
	167

Example Calculation of MBPS

	IOPS

	Number of

Disks

	Segment

Size

	MBPS

	X
	Y
	Z
	(X*Y*Z)/1024

	167
	1
	128K
	20MBPS

Using ORION
Whether or not a workload has been sampled and realized from a current database system it is imperative that a storage array be measured for expected performance before creating an Oracle database. Only after stressing a storage system to determine its’ capabilities can a proper assessment of current or future growth be addressed.

Oracle’s Orion tool is just such a tool that can be used to calibrate and design a storage array that can be relied upon to meet expected performance levels. The Orion tool measures Oracle performance without the need to install Oracle software or even create an Oracle database. Instead, Orion issues I/Os against raw disks using the same libraries an Oracle database would issue. Orion is able to simulate a variety of Oracle I/O workloads as described above and through command line options to fine tune the storage array thus creating the optimal storage array architecture for a particular environment and eliminating guess work. After using Orion the architect will have a finer understanding for the performance capabilities of a storage array and will be confident in its’ deployment.

The Orion tool has a variety of options to fine-tune the sample workload desired to stress the storage system. Of interest are the following:

1. Run Level

a. Simple – Small and Large Random I/O are tested individually.

b. Normal – Same as the simple run level but does combinations of small and random I/Os together.

c. Advanced – Allows the user to use a wide variety of options to fine tune the workload.

2. num_disks – Defines the number of spindles in the storage array that will be tested.

3. size_small – Defines the size for small random I/O.

4. size_large – Defines the size for large random or sequential I/O.

5. type – Defines the type of large I/O (random or sequential).

6. write – Defines the percentage of writes in the workload.

7. matrix – Defines the mixture of workload to run.

It is very easy to begin using the Orion tool

1. Download Orion

2. Install by unzipping the file

3. Create a file that contains a list of raw volume or files to test

4. Execute the Orion binary with workload options

5. View the tabular output

It is suggested that the reader visit the Orion download page, as referenced at the end of this paper, and read the Orion User Guide to obtain the latest instructions on how to run various workload scenarios.

For any workload that is tested against the storage system, Orion will load the system with various I/O streams of varying intensities to determine IOPS, latency, and MBPS. The exact load level is represented in the form of outstanding asynchronous I/Os that can continually be maintained. For instance if a mix workload of 2 outstanding large random I/Os in combination with 4 outstanding small random I/Os was maintained to produce a data transfer rate of 95MBPS than there is actually two load levels. One load level of 2 for large random I/Os and one load level of 4 for small random I/Os. These two load levels together for the storage configuration tested produces the 95MBPS throughput. The key point to remember is that the load level represents the number of outstanding I/Os that are queued and not the number of I/Os that have been serviced.

Benefits of ORION

The Orion tool provides two very important benefits. The first is the ease at which it allows architects to configure a system for use with an Oracle database. The guess work is quickly removed for by performing a variety of benchmark test. Tests can be done for specific applications as well as different physical structures within Oracle. The long term operational benefits can also be seen for performance, scalability, and reliability. Without the Orion tool these operational benefits are often harder and harder Orion allows the architect to simulate a real Oracle workload through particular storage configurations and empowers them to develop an optimal storage configuration.

Configuration Benefits
1. Create benchmarks for specific database application mixes

2. Single node tests can easily be extend to multi-node RAC configurations

3. Balance disk layout against system workload

4. Verify performance levels for various I/O scenarios

5. Reveals specific I/O benefits and deficiencies

6. Allows for a storage system to be configured before being used

7. Allows for quick re-configuration of storage before installing an Oracle database

8. Allows the architect to fix hardware flaws

9. Allows for the architect to fully understand limits of the storage system

10. Benchmarks can be compare across different storage products and configurations

Operational Benefits
1. Performance
· When used to simulate a real-world Oracle workload the Orion tool will direct the user towards configurations that will provide current and future levels of performance not experienced from non-benchmark solutions.
2. Scalability
· The nature of the Orion tool is to provide a picture of how I/O patterns scale when workloads change. A typical storage system is often configured to allow for growth and the Orion tool proves how growth in workload will relate to performance and thus gives a clear picture of the scalability of the system.
3. Reliability
· When scalability and performance is met higher levels of reliability in the storage system are experienced. By performing Orion benchmarks the architect can, with a high level of assuredly state that the configuration will be able to meet or exceed I/O requirements of an application mix.
ORION Testing
The following test is not an exhaustive evaluation of the Orion tool. But instead a simple test to show and prove the usefulness of the tool. In this test scenario, two different storage configurations are chosen. One configuration has one disk and the second configuration has three disks. Through this test the reader should take away the ease at which a storage array can be stressed and then configured for an optimal Oracle storage system.

For this test, an Orion advanced run level was selected so that a proper workload could be used for the expected storage system. Notice that the example specifies the number of disks to test, will be a read-only test, provides a test name, and will mix small random with large random and sequential reads. Again this is only to prove the usefulness of the tool and after looking at the many options that are available with the Orion tool the reader should construct a viable workload for the purposes their particular storage array will be used for.

./orion_linux_em64t -run advanced -testname orion1 -num_disks 1 -write 0 -simulate concat -matrix detailed
./orion_linux_em64t -run advanced -testname orion3 -num_disks 3 -write 0 -simulate concat -matrix detailed

Test Results

Summary Results
A summary file, <testname>_summary.txt, is created from the Orion workload tool and contains a description of the options chosen and some high level statistics collected for the test.

For this test it is immediately evident that the three disk configuration gives better numbers for IOPS, MBPS, and I/O latency. Note that the numbers revolve around the maximum value seen for each I/O type. These numbers provide the best case scenario for the storage configuration. Further investigation of additional Orion statistics will prove or disprove the usefulness of these values in determining scalability of 1 disk to 3 disks.

Single Disk
Maximum Large MBPS=64.43 @ Small=0 and Large=2

Maximum Small IOPS=586 @ Small=4 and Large=0

Minimum Small Latency=4.45 @ Small=2 and Large=0
Multile (3) Disks
Maximum Large MBPS=95.38 @ Small=0 and Large=6

Maximum Small IOPS=1021 @ Small=15 and Large=0

Minimum Small Latency=3.47 @ Small=2 and Large=0
I/O Throughput

In the file <testname>_iops.csv Orion produces comma-separated values that represent the IOPS for small random workloads. Imposed upon the small random I/O load are varying loads of large random I/O. Along the X-axis is the small I/O load level. The lines represent the large I/O load level, and the Y-axis represents the intersection of those load levels as realized IOPS.

Single Disk
In a single disk configuration it is hard to service both large and small I/Os concurrently. Thus the only benefit for this particular single disk configuration, if IOPS is of concern, would be for small random I/Os only.

	Large/Small
	1
	2
	3
	4
	5

	0
	206
	285
	329
	448
	586

	1
	53
	79
	100
	116
	131

	2
	29
	49
	60
	74
	87

[image: image2.emf]I/O Throughput

0

100

200

300

400

500

600

700

1 2 3 4 5

Outstanding Asynchronous I/O

IOPS

0

1

2

Multiple (3) Disks

When moving to a three disk configuration both large and small I/Os can be serviced concurrently. Degradation quickly comes into play after more than one outstanding large I/O enters the mix. The three disk configuration produces more IOPS, at the same load levels, than the single disk configuration. Also note that the three disk configuration for just small random I/Os provides close to twice as much IOPS with 15 outstanding I/Os than does the single disk system that is taxed at 5 outstanding I/Os.

	Large/Small
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	0
	221
	346
	478
	564
	634
	696
	749
	798
	841
	875
	909
	937
	970
	995
	1021

	1
	90
	157
	225
	277
	303
	352
	394
	420
	462
	492
	523
	545
	565
	596
	613

	2
	64
	106
	148
	176
	207
	239
	266
	290
	305
	334
	359
	379
	403
	424
	447

	3
	44
	82
	111
	141
	166
	188
	213
	233
	255
	276
	291
	310
	323
	344
	366

	4
	34
	64
	92
	116
	141
	159
	180
	198
	219
	236
	255
	267
	283
	297
	316

	5
	26
	54
	78
	97
	121
	141
	155
	171
	194
	206
	227
	240
	252
	271
	290

	6
	23
	47
	63
	84
	102
	124
	139
	159
	169
	188
	200
	216
	230
	245
	259

[image: image3.emf]I/O Throughput

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Outstanding Asynchronous I/O

IOPS

0

1

1

3

4

5

6

Data Transfer Rate
In the file <testname>_mbps.csv Orion produces comma-separated values that represent the MBPS for large random/sequential workloads. Imposed upon the large random I/O load are varying loads of small random I/O. Along the X-axis is the large I/O load level. The lines represent the small I/O load level, and the Y-axis represents the intersection of those load levels as realized MBPS.

Single Disk
A single disk configuration reaches the MBPS limit when there are only two outstanding large I/Os queued and, as expected, has declining performance as small random I/Os enter the test.

	Large/Small
	0
	1
	2
	3
	4
	5

	1
	53.16
	47.07
	42.92
	41.17
	39.7
	37.69

	2
	64.43
	56.53
	52.12
	50.41
	48.05
	46.69

[image: image4.emf]Data Transfer Rate

0

10

20

30

40

50

60

70

1 2

Outstanding Asynchronous I/O

MBPS

0

1

2

3

4

5

Multiple (3) Disks

A three disk configuration is able to produce more MBPS as expected. Under the IOPS test the storage system was able to deliver twice the throughput when fully loaded but the MBPS test didn’t do as well. This tends to indicate that IOPS is much more disk sensitive than MBPS.

	Large

/Small
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	1
	66.07
	60.46
	57.33
	52.94
	50.24
	50.39
	47.01
	45.71
	44.88
	42.74
	41.73
	40.47
	39.44
	38.95
	37.43
	36.8

	2
	93.06
	83.12
	78.33
	73.9
	71.31
	68.5
	66.14
	64.44
	62.56
	61.87
	58.82
	58.07
	56.85
	55.58
	54.16
	52.15

	3
	94.46
	88.17
	83.33
	79.82
	76.05
	74.48
	72.26
	70.05
	68.62
	66.93
	65.26
	64.36
	63.21
	62.34
	60.19
	59.66

	4
	95.17
	90.2
	86.23
	82.66
	80.28
	77.3
	75.9
	73.3
	71.48
	70.28
	68.88
	67.13
	66.57
	65.65
	64.32
	63.09

	5
	95.19
	91.5
	87.18
	84.97
	82.85
	79.96
	77.73
	76.38
	75.3
	72.35
	71.12
	69.82
	68.44
	68.09
	66.34
	64.69

	6
	95.38
	92.18
	88.83
	87.02
	84.83
	82.48
	79.33
	78.34
	76.43
	75.47
	73.41
	72.57
	71.08
	70.09
	68.65
	67.68

[image: image5.emf]Data Transfer Rate

0

20

40

60

80

100

120

1 2 3 4 5 6

Outstanding Asynchronous I/O

MBPS

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Latency

In the file <testname>_lat.csv Orion produces comma-separated values that represent the latency for small random workloads. Imposed upon the small random I/O load are varying loads of large random I/O. Along the X-axis is the small I/O load level. The lines represent the small I/O load level, and the Y-axis represents the intersection of those load levels as realized latency in milliseconds (ms). Latency test are directly related to the IOPS test and as such have the same load levels and number of data points.

Single Disk
As expected, as the load level increases the latency will also increase.

	Large/Small
	1
	2
	3
	4
	5

	0
	4.85
	4.45
	10.5
	6.82
	15.15

	1
	18.74
	25.05
	29.89
	34.34
	38.01

	2
	33.42
	40.58
	49.24
	53.61
	57.16

[image: image6.emf]Latency

0

10

20

30

40

50

60

70

1 2 3 4 5

Outstanding Asynchronous I/O

ms

0

1

2

Multiple (3) Disks

Just as the three disk configuration was able to produce more IOPS at the same load levels as the single disk, the latency is reduced for the three disk system than the single disk system at those load levels.

	Large/Small
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	0
	4.51
	3.47
	6.27
	7.08
	7.88
	8.62
	9.34
	10.01
	10.7
	11.42
	12.09
	12.8
	13.4
	14.05
	14.68

	1
	11.1
	12.73
	13.31
	14.39
	16.46
	17.01
	17.75
	19.04
	19.45
	20.3
	21
	21.99
	22.98
	23.48
	24.46

	2
	15.56
	18.71
	20.2
	22.65
	24.05
	25.06
	26.3
	27.56
	29.45
	29.88
	30.61
	31.59
	32.23
	32.97
	33.55

	3
	22.52
	24.27
	26.89
	28.24
	30.09
	31.79
	32.82
	34.24
	35.24
	36.18
	37.7
	38.6
	40.24
	40.58
	40.94

	4
	29.05
	30.86
	32.26
	34.19
	35.45
	37.69
	38.75
	40.28
	41.06
	42.22
	42.99
	44.81
	45.85
	47.02
	47.4

	5
	37.19
	36.72
	38.18
	41.09
	41.02
	42.45
	44.98
	46.53
	46.31
	48.31
	48.36
	49.91
	51.54
	51.55
	51.64

	6
	42.86
	41.71
	47.56
	47.48
	48.94
	48
	50.22
	50.27
	53.23
	53.01
	54.81
	55.42
	56.41
	57.12
	57.77

[image: image7.emf]Latency

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Outstanding Asynchronous I/O

ms

0

1

2

3

4

5

6

Large SAN Tests

Unfortunately the Large SAN test and how it impacts the configuration of Oracle is too exhaustive to put into this paper. The reader will have to come by and listen to the presentation.
Conclusion

If a storage system is running an Oracle database it is imperative that the storage system be stressed and benchmarked using the Orion tool. Only after running this tool can a true representation of how the storage system will perform under a true Oracle workload be presented to the architect and used for the proper configuration of a storage system.

This information is highly valuable to storage architects and database administrators so they can properly configure a system to meet I/O expectations. For these professionals, understanding real-world performance levels of the systems they manage is critical to the success of the database applications that use a particular storage system. Once Orion statistics are given for increasing levels of Oracle workloads these administrators can effectively provide guidance for a current storage configuration as well as plan for and provide future expansion.

The vendor community should also rise to the occasion and include various Orion benchmarking statistics for various load levels and configurations. Vendors can not run every application but since the Orion tool can be run with relative ease it makes good business to provide these statistics to the end user community. Orion statistics would server giving the purchaser of storage equipment additional information and planning power.

RPM Revolutions Per Minute. The number of rotations completed in one minute.

Seek Time The time required to position the head over the target track. (less for read than write)

Average Latency (Rotational Latency) Average time after head is over the track for the target sector to rotate under the head before a read or write.

17

Paper #

[image: image1]