Insert focus area name here


Offloading Work to your Standby Database in 11g
Paper 113

Tim Quinlan, TLQ Consulting Inc.
Introduction
More than just a Standby Database

Part 1: Extend your standby database for reporting and testing.

· Logical, Physical and Snapshot standby databases

· Traditional Data Guard and Oracle Active Data Guard

· Redo Apply and SQL Apply

· Real time query

· Time delay and flashback database

· Customizing a logical standby database

Part 2: Rman and Standby Databases

· Roll forward a standby with incremental backups

· Interchangeable backups using RMAN and physical standby

Part 3: Rolling Upgrades and Patches
Scope

· We will cover:

· Different ways to use your standby database

· We will not cover:

· Creation of standby databases

· Maintenance of standby databases
Part 1: Extend your standby database for reporting and testing

In this paper, we will cover the following items:

· Logical, Physical and Snapshot standby databases

· Traditional Data Guard and Oracle Active Data Guard

· Using Redo Apply and SQL Apply 

· Real time query

· Time delay to apply archive logs

· Flashback database on standby including flashback with role transitions.

· Customizing a logical standby database

· Tables that are not maintained by SQL Apply
Physical, Logical and Snapshot standby databases

Physical Standby

· The database is physically the same as the Primary database

· Redo logs are applied to the standby database

· Receive and apply redo while open for read-only access (new in 11g).

· Use for data protection and reporting.
· You can use this to backup the Primary database with RMAN.
Logical Standby

· Has the same logical structure as the Primary database, but…

· some objects may differ. E.g. structures like indexes and materialized views.

· Changes are applied as SQL statements. Redo is transformed into SQL

· DB can be opened while changes are applied to the database.

· More flexibility at the potential expense of performance issues.

· DR benefits plus can be used for querying and reporting.
· Can work across different platforms

· Open read/write BUT tables for regenerated SQL are only available for reporting.
· Cannot be used for physical backup of Primary Database
· Can be used to test software releases

· Host other applications and schemas

· Test impact of physical changes such as partitioning.

· Could use to distribute reporting workloads.

· Reduce downtime. Apply an upgrade here first, switch roles and then upgrade the old Primary db. 

· Block level corruption on primary may not propagate here.

· Provides an extra level of protection.
Snapshot Standby

· Convert a physical standby into a snapshot standby.

· Fully updatable standby database that is an exact replica of Primary db.

· Receives and archives redo data from the primary db.

· but – does not apply redo the data it receives.

· Data is applied only after the snapshot standby is converted back into a physical standby.

· Local updates must be discarded before this is converted back.

· Resync with production, optionally apply logs, create a standby again and perform new tests ... an ongoing cycle

· Useful if you need a temporary, updatable copy of primary db.

· The time required for role transition depends directly on the amount of redo data to be applied.

· Sample new config parms:

Convert database to [snapshot|physical] standby 

[Disable | Enable] fast_start failover condition 

Traditional Data Guard Overview

Data Guard: No additional licenses needed (except of course, CPU licenses)

3 main Components make up Data Guard:

1) Data Guard broker helps configure, control and monitor db resources into 1 unit of failure for a Data Guard configuration.
· 2 interfaces provided: GUI and DGMGRL command line.

· GUI is Data Guard Manager: performs operational, configuration and setup tasks

· dgmgrl: execute role changes; setup Data Guard Manager; perform basic monitoring.

· Automates configuration and creation of a Standby db. 

· A Data Guard process resides on each server

2) Redo transport services 

· Ship the archived redo logs from primary to up to 9 standby DBs. 

· Resolve gaps in archive redo logs due to network failures

· Detect corrupt or missing archive redo logs and auto retrieve them from the primary db or another standby.

· Can send to the following transport destinations:

· Standby DB’s; Archive Log repository (instance + physical standby controlfile and no datafiles); Streams downstream capture DB’s, Change Data Capture staging DB’s.

· v$system_event view can be used to track redo transport wait time.
3)
Log apply services: Redo Apply and SQL Apply
· Responsible for applying the logs on the standby database site. 

· Redo Apply with physical standby only

· SQL Apply with logical standby only

· Default apply service uses full archive redo logs.

· Real-Time Apply to apply redo immediately on Physical Standby:




SQL> alter database recover managed standby database using current logfile;

· Uses standard recovery techniques of an Oracle database.

· For Logical Standby, standby redo logs are needed to apply the SQL. This uses the Remote File Server (RFS) process.  



      SQL> alter database start logical standby apply immediate;

· Transforms redo data received into SQL statements and executes these on the logical standby database.

Data Guard Overview and Features

· Dependent databases are grouped into 1 unit of failure.

· Add or remove databases and apps and sites. 

· Failover policies you can customize and supports planned switchover to reduce downtime.

· configure site failover with little to no downtime.

· n-way failover & replicated data across all server nodes.

· Monitor and control the systems in a single standby configuration. 

· Data can be copied in a synchronous or an asynchronous manner.

Data Guard Overview


[image: image2.wmf]
Data Guard Manager and Broker

Data Guard consists of the following 3 processes:

1. Data Guard Broker

· Part of the oracle server process

· Components are: Enterprise Manager GUI; DGMGRL command line interface connects to each process one at a time. 
· Data Guard Monitor (DMON). Server-side process & config files maintained for each DB the broker manages. Also, monitors health of broker config. So every database has a consistent description of the configuration.

· Manage all DB’s together. 

· Without a broker, primary & standby DB’s must be managed individually.
2. Data Guard Manager (gui)

· Requires oracle management server

· Can access all databases at the same time.

3. Oracle Management Server

· Not needed for command line interface dgmgrl

Data Guard Broker Responsibilities

Distributed management framework to centralize and automate management and monitoring of all DB’s in the environment.

1. Allow CLI (dgmgrl) access from a client to any system (1 at a time). 

2. Groups primary and standby databases into a configuration allowing the broker to manage and monitor them as a unit.

3. Broker configuration file is synchronized at each system in the config. When a new config is needed, all config. files are changed. This may happen at failover during a change in roles. RAC DB has 1 configuration file shared by all DB instances. 

4. Provide lights out admin with fast-start failover.

· Also, dbms_dg package allows an application to initiate this.

· Observer process monitors all DB’s to see if failover needed.

5. Provide EM wizards to view, define, manage, monitor the databases.

· Logically define & create a Data Guard configuration.

· Create physical/logical standby db; Enable flashback for fast-start failover

· Switchover, failover, performance tools, set DB properties
6. Automatically setup the redo transport and log apply services.
7. Perform switchover and failover with one command..
8. Role changes: Automate failover if broker determines it’s needed.

9. Integrate Cluster Ready Services (CRS) and instance management across DB role transitions.

· CRS is a subset of Oracle Clusterware that quickly recovers failed instances of a RAC DB to keep primary DB up.

10. Simplify the property, state and config. protection mode changes.
· Property can be same as init.ora parms: e.g. redo transport, log apply,…

· State changes can be set to transport_on or transport_off

· Protection mode to max data protection, min availability or min performance

11. Use spfile for the Broker to reconcile init parms & config settings

12. NOTE: without the Broker, most of this must be done manually.

Oracle Active Data Guard

Oracle Active Data Guard and Real-Time Query

· A physical standby database can be opened read-only while Redo Apply is being performed.

· This is called Real-Time Query

· Oracle Active Data Guard license must be purchased.

· Read-only access to physical standby databases

· Query, sorting, reporting, web-based access

· Read access while applying changes

SQL> alter database recover managed standby database cancel;

SQL> alter database open;  -- open standby db read-only

SQL> alter database recover managed standby database using current logfile disconnect;

Update Standby with a Lag - Using Time delay to apply archive logs

2 ways to set Standby Database behind the Primary:

1. You can delay the applying of logs at the Standby with the following parm at the primary db:


log_archive_dest_n = ‘SERVICE=stbydb1 DELAY 120’

· Delays application of logs 120 minutes

· Does not impact the transmission of logs.

· Gives the DBA 120 minutes to react to user errors.

· Delay interval begins once the archive log has been selected for recovery.

2. You can also use Flashback Database to recover from bad data rather than using a Delay.
Update Standby with a Lag - Flashback on standby including transitions

· Flashback Standby Database

· You no longer need to specify a log apply delay since you can roll back changes to a standby database to the time you want using flashback technology.

· Keep standby db closely aligned to primary and also have protection for user errors or logical corruptions by flashing back the standby.
Flashback across Data Guard switchover

· The primary and standby databases can be flashed back to a time before the switchover with “flashback database”.

· Flashback can be done to both physical or logical to an scn or point in time before a switchover. 

· Doing this on physical standby, preserves the standby role.

· Doing this on logical standby, changes the role to what it was at the target scn or time.

Update Standby with a Lag – Flashback for Fast-Start failover

· Data Guard automatic failover to the standby Database 

· No manual intervention

· After failover, the old Primary database is automatically converted to Standby status.

· Does not need to be recreated.

· Only for synchronous redo transport with no data loss.




- i.e. Maximum protection and max availability modes.

· Flashback database must be enabled on primary and standby database.

· Can force this through EM or dgmgrl command line.

STEPS:

1) Specify primary and standby servers when > 1 standby database.


DGMGRL> EDIT DATABASE ‘primaryDB' SET PROPERTY FastStartFailoverTarget = ‘standbyDB'; 

DGMGRL> EDIT DATABASE ‘standbyDB' SET PROPERTY FastStartFailoverTarget = ‘primaryDB'; 
2) Set the seconds to wait after primary DB becomes unavailable


DGMGRL> edit configuration set property FastStartFailoverThreshold = 60;
3) Enable Fast-Start Failover


DGMGRL> enable fast_start failover;

4) Start the “Observer”. Only the Primary DB must be up

· Recommended with fast-start failover to monitor the status and connections to the primary and standby databases.

· A continuous, foreground process.

· Prompt does not return until “stop observer” is issued from another dgmgrl session.

· Must use another dgmgrl session to issue commands.

DGMGRL> start observer;

5) Verify the configuration.


DGMGRL> show configuration verbose;

Logical Standby DB Customizing: Making Modifications

· Logical Standby database can be used for read-only reporting. They can be enhanced by adding and modifying some database objects.  

· Tables, indexes, constraints, materialized views can be added or changed. 
· Modifications to the L-Standby can be performed by disabling Data Guard. 



SQL> alter session database disable guard;

· DDL changes can also be applied. For example, to add a constraint:



SQL> alter database stop logical standby apply;



SQL> alter session disable guard;



SQL> alter table  cust.country add (constraint “prime_key” primary key(“country_id”));



SQL> alter session enable guard; 



SQL> alter database start logical standby apply; 

· Do not perform DML on SQL Apply maintained tables while the database guard is bypassed.

· This could put the logical standby out of sync with the primary database.    

Tables can be changed and updated at the L-Stdby as long as data is not maintained by SQL Apply.

1. Use dbms_logstdby.skip at L_Stdby to list tables that can be written to (DML) and also have DDL performed on them.


SQL> alter database stop logical standby apply;


SQL> execute dbms_logstdby.skip(stmt => ‘SCHEMA DDL’,-

 
           schema_name => ‘CUST’, object_name => ‘SUMMARY%’);


SQL> execute dbms_logstdby.skip(‘DML’,’CUST’,’SUMMARY%’); 

2.   Setup dataguard to protect standby tables and update metadata with tables in the skip rules. Check that SQL Apply is ready.


SQL> alter database start logical standby apply immediate;  


SQL> select * from dba_logstdby_parameters where name = ‘GUARD_STANDBY’;

Logical Standby DB Customizing: Dealing with Materialized Views

· Materialized View creates, alters and drops are not supported by SQL Apply. 

· Those at the primary before l-standby created will exist.

· Those creates/changes after l-standby created will not be propagated. 

· On-Commit materialized views are refreshed at l-standby when a commit happens.

· On-Demand materialized view is not maintained by SQL Apply and requires the dbms_mview.refresh procedure be run.

Logical Standby DB Customizing Preventing Changes to Tables

· You can customize tables to have DDL or DML skipped.

· To skip DDL for  a table, run the following:


SQL> alter database stop logical standby apply;


SQL> execute dbms_logstdby.skip (stmt => ‘DDL’, -
     
     

        

schema_name => ‘SALES’,  object_name => 
  

 
   
‘PRODUCT_TABLES’, proc_name => null); 


SQL> execute dbms_logstdby.skip (stmt => ‘DML’, -
  

       

schema_name => ‘SALES’,  object_name => 
     

        

‘PRODUCT_TABLES’, proc_name => null); 


SQL> alter database start logical standby apply;

Logical Standby DB Customizing: Adding Tables

· To add a table, ensure that rows can be uniquely identified. 

· To re-create a table at the L-Stdby that was skipped, do the following:

1. SQL> alter database stop logical standby apply; 

2. Make sure individual operations are not being skipped (e.g. schema_ddl or dml):


SQL> select * from dba_logstdby_skip;


If rules exist, use the dbms_logstdby.unskip procedure to delete them before re-creating a table. 

3. Recreate the table in the L-Stdby database

SQL> execute dbms_logstdby.instantiate_table(schema_name => ‘CUST’, object_name => ‘COUNTRY’, dblink => ‘prime’);

4. Start SQL Apply:


SQL> alter database start logical standby apply immediate;

5. Wait for SQL Apply to catch up with the primary database:

 
SQL> select current_scn from v$database@prime;


SQL> select applied_scn from v$logstdby_progress; 

6. After applied_scn is > current_scn, you can start to query the new table. 

Logical Standby DB Customizing - Dealing with Triggers and Constraints

These are handled on the L-Standby.

2 situations can exist:


1) For tables maintained by SQL Apply:

· Check constraints are evaluated at the primary and this is not needed at L-standby.

· Trigger changes are logged and applied at L-standby.

2) For tables not maintained by SQL Apply

· Constraints are evaluated and triggers fired.
Logical Standby DB Customizing: Rely Constraints

For tables without unique or primary keys:

· Create a “rely” constraint on unique columns to enable supplemental logging.

· Create an index on the “rely” columns on the standby database to help Updates and Deletes.


1) At the primary add the rely constraint & disable data guard:



SQL>  alter table <name> add primary key <cols,…> rely disable;



SQL> alter session disable guard; 


2) Stop SQL Apply:



SQL> alter database stop logical standby apply; 


3) Disable data guard



SQL> Alter session disable guard;


4) Add the unique index at the standby DB.



SQL> create unique index …


5) Enable Data Guard



SQL> alter session enable guard;


6) Start SQL Apply



SQL> alter database start logical standby apply immediate;

Logical Standby DB Customizing: Skip Handler for DDL

· A “skip handler” can replace DDL with a new statement.

· Can be used to change file names at the logical standby.

· Write a dbms_logstdby.skip proc to do this.
Steps are:

1. Write a skip proc to translate tablespace DDL.

 create procedure sys.file_name_change (stmt_in in varchar2, 

     stmt_typ in varchar2, schema_name in varchar2, 

     stmt_name in varchar2, xidusn in number, xidslt in number, 

     xidsqn in number, action out number, stmt_out out varchar2) 

AS BEGIN

   stmt_out = replace(stmt_in, ‘/u01/oradata/prod’, ‘/u21/oradata/stby’);

   ACTION := dbms_logstdby.skip_action_replace;

   EXCEPTION when others then 

        ACTION := dbms_logstdby.skip_error; 

        stmt_out := null;

END sys.file_name_change;

2. Stop SQL Apply


SQL> alter database stop logical standby apply; 

3: Register your new procedure with SQL Apply

       SQL> -- the stmt below is a keyword to the skip proc.

       SQL> execute dbms_logstdby.skip (stmt => ‘TABLESPACE’, -  

               proc_name => ‘sys.file_name_change’); 

4: Stop SQL Apply


SQL> alter database start logical standby apply immediate; 

Logical Standby DB Customizing: Gathering Stats

The standby database may have different objects and workloads, so …

- Stats can and should be gathered on the Logical standby.

Logical Standby DB Customizing: Realtime Apply
· Data Guard uses archive log files by default.

· Override this to use Realtime Apply with redo data from standby redo logs when the log files are written.

· Do not need to wait for an archive log to be created.

· To turn this on:


  SQL> alter database start logical standby apply immediate; 

Convert Physical Standby to a Reporting DB

Convert Physical standby to a reporting database.

· Open read/write for reporting as a primary database.

· After reporting, flash back to time that it can be converted back to a physical standby.

· Data Guard will then synchronize the standby database with the primary.

· Allows standby to be used for reporting, read/write activities and testing.

1. Prepare the physical standby by setting up a flash recovery area:



alter system set db_recovery_file_dest_size=50G;



alter system set db_recovery_file_dest=‘/u01/oradata/db’;

2. Cancel redo apply and set up a restore point at physical standby:



alter database recover managed standby database cancel;



create restore point time1 guarantee flashback database;

3.  Archive the current log on the primary database so the SCN of the restore point from above will be archived at the standby.



alter system archive log current;
4. On primary database defer archiving of redo data.


   
alter system set log_archive_dest_state_2=DEFER;

5. Activate the physical standby


   
alter database activate standby database;

6. If the database had been opened read-only after instance startup, do a startup force:


   
startup mount force;

7. Set standby performance mode to maximum and open the DB.


   
alter database set standby database to maximum performance;


   
alter database open;

8. Use the Database

9. Set the database back to physical standby and flash back.



startup mount force;



flashback database to restore point time1;



alter database convert to physical standby;



startup mount force;

10. Synchronize the primary and physical standby.



alter database recover managed standby database disconnect;

11. At the primary database, enable archiving at the to the standby.



alter system set log_archive_dest_state_2=ENABLE;

Part 2: Rman and Standby Databases

In this section, we will cover the following items:
· Roll forward a standby with incremental backups

· Interchangeable backups using RMAN and physical standby

Interchangeable RMAN Backups in a Data Guard Environment

· Offload your backups to a physical standby database!

· RMAN commands can perform interchangeably on Primary and Physical Standby databases in a Data Guard environment.

· Backups can be performed on the physical standby rather than the primary database.

· Recovery catalog needed because controlfiles do not know of other DBs.

· Logical standby database backups are not interchangeable at the primary.

· Offload datafile, controlfile, archive log backups to the standby db.

· You can back up a tablespace on a physical standby and restore it on the primary database and vice versa.

· Controlfile backups are interchangeable across standby and nonstandby databases.

· RMAN updates the filenames for database files during restore and recovery at the databases.

· Loss of files on the Primary database can be recovered using files on a standby database or backups.

· Need to use the DB_UNIQUE_NAME init.ora parm

· Unique across all DB’s with the same dbid.

· Only primary DB is registered in the catalog using “Register Database”.

· Standby is automatically registered when the recovery catalog when you connect to it or “Configure db_unique_name”

· Unregister db_unique_name to unregister a Standby DB.

· You can associate backups to other databases using the command: 




- change backup reset db_unique_name

· To remove backup metadata, use the command:




- unregister db_unique_name … including backups 

· Report, List, Show, crosscheck use “for db_unique_name” to point to a specific DB.

· Delete backups or archivelogs using “db_unique_name”

· Rename db_unique_name using:




- change db_unique_name from oldname to newname;

Set persistent configuration settings for Primary & Physical Standby db’s. 

For example:

· Configure backup retention policy, default backup, device type ,…

· Configure db_unique_name for a persistent configuration for a database without connecting to a standby or primary as the target.

· defines connection to physical standby & implicitly registers new db.

· connect RMAN to recovery catalog, set dbid, create a configuration for the physical standby so it applies when the database is created.

· RMAN updates the controlfile when connected as Target during a resync. If not connected as Target, only the recovery catalog is updated.

· The Configure command used with “for db_unique_name” can be used to configure specific settings for a specific database.

· You can configure an archive redo log deletion policy based on whether archived logs are transferred or applied to a standby.
RMAN and interchangeable backups

Accessibility and Association

· Files are associated with a database through the db_unique_name.

· Can use “change… reset db_unique_name” to change this.

· File accessibility differs from association:

· Disk backup is accessible only to the DB it’s associated with.

· Tape backups created on one DB are accessible to all DB’s in the Data Guard environment.

· Backups not associated with a DB have a null site_key. 

· These will be associated to the DB connected to as Target by default.

· Commands like “backup, restore, …” work on all accessible backups.

· FTP a backup from primary to standby (& vice versa), connect as target to the DB and catalog the backup. 

- This associates the ftp’d backup with the new Target database. 
Using RMAN in a Data Guard Environment

· The Recovery Catalog can update a backup or standby controlfile as a reverse resync.
· The “Duplicate” command can be used to create a physical standby database from primary database backups

· Auto delete archive logs used for input after they’ve been backed up.

· SPFile from 1 db cannot be used in another with 11g. 

· But, SPFile can be backed up to disk, cataloged manually at a site  backed up to tape. The SPFile metadata lets RMAN know which database it belongs to so that the proper file can be used in case of a restore. 

RMAN Setup at Primary DB: Sample

· Connect to the primary database and recovery catalog

· Configure retention policy to recovery window of 15 days;

· Configure archivelog deletion policy to [shipped to | applied on] all standby;

# ===================================================
# NOTES: Set up all DBs with same sysdba password and password file.

#               Configure connect identifiers for standby databases:

# ===================================================
· Configure db_unique_name stdbydb1 connect identifier ‘stdbydb1’;

· List db_unique_name of database;           -- to list all standby DBs.

RMAN Setup at Standby DB where backups are performed: Sample

· Connect to recovery catalog and standby as target

· Configure controlfile autobackup on;

· Configure backup optimization on;

#           NOTE: Setup tape use for media management interface

· Configure channel device type sbt parms …

· Configure archivelog deletion policy….

· Use the Backed Up option since the database is being backed up here.

How about Standby DBs where backups are not performed?


- Delete archivelogs as soon as they’re applied.

· Configure archivelog deletion policy to applied on all standby;

Roll forward a Standby with Incremental Backups

· A standby database can be Rolled forward using incremental backups.

· An RMAN incremental backup created at the Primary DB can be applied to a standby DB  

· Allows you to move the standby forward from an SCN.

· Can also move standby database forward using Time rather than SCN.

· Combining this this with the ability to use a physical standby for reporting can be powerful and flexible.

· Refresh the standby with an incremental backup created at the Primary with “backup incremental … from scn” syntax.

· … then, perform managed recovery

· Create backup on disk & copy the files to the standby server and catalog them at the standby. Tape backups cannot be cataloged.

Performing Scheduled Daily Incremental Backups at the Primary DB

1. Resync the Recovery Catalog with info from all Primary and Standby DBs. RMAN must connect to the Target. Resync done if same password file used.

· resync catalog from db_unique_name all

2. Apply level 1 backup with previous level 0, creating a new level 0. Does nothing until 3rd day after a level 0 and 1 have been created.

· recover copy of database with tag ‘incrbkup’;

3. Create a new level 1 backup. Creates level 0 the first day.

· backup device type disk incremental level 1 for recover of copy with tag ‘incrbkup’ database;

4. Backup the archivelogs to tape, backup the backupsets and delete the archivelogs based on the configure archivelog delete policy.

· backup device type sbt archivelog all;

· backup backupset all;

· delete archivelog all;

Roll forward a Physical Standby with Incremental Backups

Apply an RMAN incremental backup to a standby DB.   

1. Stop redo apply on the standby and find the scn it’s at. 

· You can also query v$datafile for nologging changes in column  first_nonlogged_scn. This could be used to get incrementals for a datafile from an scn on a file-by-file manner.

SQL> Alter database recover managed standby cancel;

SQL>select current_scn from v$database;
2. Create the incremental at the primary database:

· RMAN> backup device type disk incremental from scn 12345 database format ‘/u01/incr_%U’ tag ‘PrimaryToStdby’;

3. Copy the incremental backup pieces to the standby server.
4.    Catalog incremental backups in the standby RMAN repository.

· In Rman, connect to the standby db as target and recovery catalog and run:



RMAN> catalog start with ‘/u01/incr’;

5. Apply the incremental backup to the standby. Use the noredo option to apply the incremental..


RMAN> startup force mount;



RMAN> restore standby controlfile from tag ‘PrimaryToStdby’;



RMAN> alter database mount;


RMAN> recover database noredo;

6. You can now perform managed recovery at the standby to apply redo if you wish:



SQL> alter database recover managed standby database using current logfile disconnect from session; 
Recovering a lost datafile at the  Primary from Standby

Lost datafiles can also be restored at the Primary from a Physical Standby DB.

· Connect to the Standby as Target and Primary as auxiliary databases:

> Connect target sys/pwd@pstndby1;

> Connect auxiliary sys/pwd@primarydb;

· Backup the file as a copy over the network

> Backup as copy datafile 9 auxiliary format ‘/u27/oradata/primarydb/tools.dbf’;

> Exit;

· Connect to the Recovery Catalog & Primary DB. Catalog & rename the file: 

> Connect sys/pwd@primarydb

> Connect catalog rmanuser/pwd@rmancat

> Catalog datafilecopy ‘/u27/oradata/primarydb/tools.dbf’;

> RUN {set newname for datafile 9 to ‘/u27/oradata/primarydb/tools.dbf’;

>     Switch datafile 9;}
Part 3: Rolling Upgrades with a Logical Standby

· A logical standby can be used to perform a rolling upgrade of Oracle software.

· Started in 10.1.0.3

· Upgrade databases one at a time while another performs the workload. 

· Requirements

· Must be proper database versions. Compatible parm must be pre-upgrade value.

· Databases cannot be part of Data Guard Broker config. This may need to be removed.

· Protection mode must be max availability or max performance.

· Log_archive_dest_n must not be “mandatory”.

· You may decide to create a logical standby just for this purpose.
Rolling Upgrades with a Logical Standby - Steps

· Backup the logical standby database.
· Stop SQL Apply at the logical standby.
· Alter database stop logical apply;

· Set Compatible parm to version of Primary before upgrade on both DBs.
· Upgrade the logical standby database..
· Deal with unsupported tables and transactions on the logical standby.
· Exec dbms_logstdby.apply_set(‘max_events_recorded’,dbms_logstdby.max_events);

· Exec dbms_logstdby.apply_set(‘max_unsupported_operations’,’TRUE’);

· Restart SQL Apply at the logical standby

· Alter database start logical standby apply immediate;

· Monitor progress of updates to the standby and for unsupported events:

· Select … from  DBA_Logstdby_Events view for unsupported operations

· Select … from v$logstdby_progress;

· If unsupported operations looks fine, continue with the upgrade. 

· Otherwise, determine if you can correct the issue or if you need to restore/downgrade the old version of the database. 

· Switchover to the logical standby using the following on the primary DB:

· Alter database commit to switchover to logical standby;

· Existing transactions need to complete before switchover finishes. Have users disconnect from the primary and reconnect to standby to speed this up.

· If unsupported DML was run on the Primary during the upgrade, use a Data Pump exp/imp to move the tables from the primary to the standby.

· Select switchover_status from v$database;

· If “TO PRIMARY” then complete the switchover from standby to primary

· Alter database commit to switchover to logical primary;
· The previous logical standby database is now the primary database.

· The old primary database is now the standby database

· Note that redo data cannot be sent to the new standby, but is accumulated.

· Upgrade the new standby (old primary) database

· Start SQL Apply on the new standby

· Alter database start logical standby apply immediate new primary dblink_to_new_primary;

· Set the Compatible level to the new version

· Continue to query the dba_logstdby_events view for unsupported operations.

Rolling Upgrades with a Physical Standby - Steps

· Enable flashback database, create a guaranteed restore point and create a physical standby controlfile:

· Shutdown immediate;

· Startup mount;

· Alter database flashback on;

· Alter database open;

· Create restore point tag1234 guarantee flashback database;

· Alter database create physical standby controlfile as ‘/u01/ctrl.ora’ reuse;

· Convert physical standby to logical standby &  retain the dbid and db_name using “keep identity”. This clause is only used for a rolling upgrade.

· Alter database recover to logical standby keep identity;

· Disable deletion of archive logs at the logical standby and start SQL Apply. These Archive logs processed by the standby  are needed later.

· Execute dbms_logstdby.apply_set(‘log_auto_delete’,’FALSE’);

· Alter database start logical standby apply immediate;
· Upgrade the logical standby, catch up to the primary and Switchover

· Same as steps described in the previous section. Primary and standby have now switched roles.

· Flashback old primary (new standby) to the guaranteed restore point:

· Shutdown imemediate;

· Startup mount;

· Flashback database to restore point tag1234;

· Shutdown immediate;

RMAN>Startup nomount;

RMAN>Restore controlfile from ‘/u01/ctrl.ora’;

· Start up standby database as new physical standby

· Shutdown immediate;

· Alter database mount;

· Archive the current logfile at the new Primary and register it at the new Standby, so it knows the current incarnation of the Primary.

· Alter database recover managed standby database using current logfile disconnect from session;

Switchback to the original Primary and Standby

· At Primary, run: 

· Select switchover_status from v$database; 

· should say “TO STANDBY” 

· Alter database commit to switchover to physical standby with session shutdown;

· Shutdown immediate;

· Startup mount;

· At Standby, run: 

· Select switchover_status from v$database; 

· should say “TO PRIMARY” 

· Alter database commit to switchover to primary;

· Shutdown immediate;

· Startup;

Conclusion

· Logical, Physical and Snapshot Standby Databases can be used for more than Disaster Recovery.

· As we’ve just seen, we can extend their use to include:

· Reporting and testing.

· Making interchangeable backups using RMAN and Physical Standby

· Rolling Upgrades and Patches

· It’s worth rethinking ways in which we can use our standby databases to enhance their usefulness! 
RFS



Online redo



Standby redo logs



Oracle Net



Oracle Net



Standby redo



Enterprise Management Server



Standby Database



Log Apply

Services



Archive logs



Data Guard 

Monitor 

(DMON)



Data Guard Mgr: gui or command line



Standby Site 9



Standby Site 2



Standby Site 1



Archive logs



Log Transport 

Services



Primary Database



Online redo logs



Data Guard 

Monitor 

(DMON)








1





Paper # 113


[image: image1]